1
|
Gholami A, Mohkam M, Soleimanian S, Sadraeian M, Lauto A. Bacterial nanotechnology as a paradigm in targeted cancer therapeutic delivery and immunotherapy. MICROSYSTEMS & NANOENGINEERING 2024; 10:113. [PMID: 39166136 PMCID: PMC11333603 DOI: 10.1038/s41378-024-00743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/02/2024] [Accepted: 06/23/2024] [Indexed: 08/22/2024]
Abstract
Cancer, a multifaceted and diverse ailment, presents formidable obstacles to traditional treatment modalities. Nanotechnology presents novel prospects for surmounting these challenges through its capacity to facilitate meticulous and regulated administration of therapeutic agents to malignant cells while concurrently modulating the immune system to combat neoplasms. Bacteria and their derivatives have emerged as highly versatile and multifunctional platforms for cancer nanotherapy within the realm of nanomaterials. This comprehensive review delves into the multifaceted and groundbreaking implementations of bacterial nanotechnology within cancer therapy. This review encompasses four primary facets: the utilization of bacteria as living conveyors of medicinal substances, the employment of bacterial components as agents that stimulate the immune system, the deployment of bacterial vectors as tools for delivering genetic material, and the development of bacteria-derived nano-drugs as intelligent nano-medications. Furthermore, we elucidate the merits and modalities of operation pertaining to these bacterial nano-systems, along with their capacity to synergize with other cutting-edge nanotechnologies, such as CRISPR-Cas systems. Additionally, we offer insightful viewpoints regarding the forthcoming trajectories and prospects within this expanding domain. It is our deduction that bacterial nanotechnology embodies a propitious and innovative paradigm in the realm of cancer therapy, which has the potential to provide numerous advantages and synergistic effects in enhancing the outcomes and quality of life for individuals afflicted with cancer.
Collapse
Affiliation(s)
- Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Mohkam
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Sadraeian
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Antonio Lauto
- School of Science, University of Western Sydney, Campbelltown, NSW 2560 Australia
- School of Medicine, University of Western Sydney, Campbelltown, NSW 2560 Australia
| |
Collapse
|
2
|
Ebadi Sharafabad B, Abdoli A, Panahi M, Abdolmohammadi Khiav L, Jamur P, Abedi Jafari F, Dilmaghani A. Anti-tumor Effects of Cisplatin Synergist in Combined Treatment with Clostridium novyi-NT Spores Against Hypoxic Microenvironments in a Mouse Model of Cervical Cancer Caused by TC-1 Cell Line. Adv Pharm Bull 2023; 13:817-826. [PMID: 38022809 PMCID: PMC10676560 DOI: 10.34172/apb.2023.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Despite the development of anti-human papillomavirus (HPV) vaccines, cervical cancer is still a common disease in women, especially in developing countries. The presence of a hypoxic microenvironment causes traditional treatments to fail. In this study, we presented a combined treatment method based on the chemotherapeutic agent cisplatin and Clostridium novyi-NT spores to treat normoxic and hypoxic areas of the tumor. Methods TC-1 Cell line capable of expressing HPV-16 E6/7 oncoproteins was subcutaneously transplanted into female 6-8 week old C57/BL6 mice. The tumor-bearing mice were randomly divided into four groups and treated with different methods after selecting a control group. Group 1: Control without treatment (0.1 mL sterile PBS intratumorally), Group: C. novyi-NT (107 C. novyi-NT). Group 3: Receives cisplatin intraperitoneally (10 mg/kg). Fourth group: Intratumoral administration of C. novyi-NT spores + intraperitoneal cisplatin. Western blot analysis was used to examine the effects of anti-hypoxia treatment and expression of hypoxia-inducible factor 1 (HIF-1) and vascular endothelial growth factor (VEGF) proteins. Results The results clearly showed that combined treatment based on C. novyi-NT and cisplatin significantly reduced the expression of HIF-1 alpha and VEGF proteins compared to cisplatin alone. At the same time, the amount of necrosis of tumor cells in the combined treatment increased significantly compared to the single treatment and the control. At the same time, the mitotic count decreased significantly. Conclusion Our research showed that developing a combined treatment method based on C. novyi-NT and cisplatin against HPV-positive cervical cancer could overcome the treatment limitations caused by the existence of hypoxic areas of the tumor.
Collapse
Affiliation(s)
- Behrouz Ebadi Sharafabad
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Abdoli
- Department of Hepatitis and HIV, Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Mohammad Panahi
- Department of Hepatitis and HIV, Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Lida Abdolmohammadi Khiav
- Department of Anaerobic Vaccine Research and Production, Specialized Clostridia Research Laboratory, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Parisa Jamur
- Department of Hepatitis and HIV, Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Fatemeh Abedi Jafari
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Azita Dilmaghani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Zhou M, Tang Y, Xu W, Hao X, Li Y, Huang S, Xiang D, Wu J. Bacteria-based immunotherapy for cancer: a systematic review of preclinical studies. Front Immunol 2023; 14:1140463. [PMID: 37600773 PMCID: PMC10436994 DOI: 10.3389/fimmu.2023.1140463] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/30/2023] [Indexed: 08/22/2023] Open
Abstract
Immunotherapy has been emerging as a powerful strategy for cancer management. Recently, accumulating evidence has demonstrated that bacteria-based immunotherapy including naive bacteria, bacterial components, and bacterial derivatives, can modulate immune response via various cellular and molecular pathways. The key mechanisms of bacterial antitumor immunity include inducing immune cells to kill tumor cells directly or reverse the immunosuppressive microenvironment. Currently, bacterial antigens synthesized as vaccine candidates by bioengineering technology are novel antitumor immunotherapy. Especially the combination therapy of bacterial vaccine with conventional therapies may further achieve enhanced therapeutic benefits against cancers. However, the clinical translation of bacteria-based immunotherapy is limited for biosafety concerns and non-uniform production standards. In this review, we aim to summarize immunotherapy strategies based on advanced bacterial therapeutics and discuss their potential for cancer management, we will also propose approaches for optimizing bacteria-based immunotherapy for facilitating clinical translation.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yucheng Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenjie Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xinyan Hao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yongjiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Si Huang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| |
Collapse
|
4
|
Wang J, Ghosh D, Maniruzzaman M. Using bugs as drugs: administration of bacteria-related microbes to fight cancer. Adv Drug Deliv Rev 2023; 197:114825. [PMID: 37075953 DOI: 10.1016/j.addr.2023.114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Driven by the advancement of microbiology and cancer biology, bioengineering of bacteria-related microbes has demonstrated great potential in targeted cancer therapy. Presently, the major administration routes of bacteria-related microbes for cancer treatment include intravenous injection, intratumoral injection, intraperitoneal injection, and oral delivery. Administration routes of bacteria play a key role in anticancer therapeutic efficacy since different delivery approaches might exert an anticancer effect through diverse mechanisms. Herein, we provide an overview of the primary routes of bacteria administration as well as their advantages and limitations. Furthermore, we discuss that microencapsulation can overcome the current challenges of direct administration of free bacteria. We also review the latest advancements in combining functional particles with engineered bacteria to fight against cancer, which can be further coupled with conventional anticancer therapies to improve the therapeutic effect. Eventually, we highlight the application prospect of bioprinting in cancer bacteriotherapy, which enables the long-term sustained delivery and individualized dose regimen, representing a new paradigm for personalized cancer treatment.
Collapse
Affiliation(s)
- Jiawei Wang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
5
|
Liu Y, Niu L, Li N, Wang Y, Liu M, Su X, Bao X, Yin B, Shen S. Bacterial-Mediated Tumor Therapy: Old Treatment in a New Context. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205641. [PMID: 36908053 PMCID: PMC10131876 DOI: 10.1002/advs.202205641] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Targeted therapy and immunotherapy have brought hopes for precision cancer treatment. However, complex physiological barriers and tumor immunosuppression result in poor efficacy, side effects, and resistance to antitumor therapies. Bacteria-mediated antitumor therapy provides new options to address these challenges. Thanks to their special characteristics, bacteria have excellent ability to destroy tumor cells from the inside and induce innate and adaptive antitumor immune responses. Furthermore, bacterial components, including bacterial vesicles, spores, toxins, metabolites, and other active substances, similarly inherit their unique targeting properties and antitumor capabilities. Bacteria and their accessory products can even be reprogrammed to produce and deliver antitumor agents according to clinical needs. This review first discusses the role of different bacteria in the development of tumorigenesis and the latest advances in bacteria-based delivery platforms and the existing obstacles for application. Moreover, the prospect and challenges of clinical transformation of engineered bacteria are also summarized.
Collapse
Affiliation(s)
- Yao Liu
- Key Laboratory of Spine and Spinal Cord Injury Repairand Regeneration of Ministry of EducationOrthopaedic Department of Tongji Hospital, The Institute for Biomedical Engineering and Nano ScienceTongji University School of MedicineShanghai200092P. R. China
- Pharmacy Department and Center for Medical Research and InnovationShanghai Pudong HospitalFudan University Pudong Medical CenterShanghai201399China
| | - Lili Niu
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Nannan Li
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Yang Wang
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Mingyang Liu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Xiaomin Su
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Xuhui Bao
- Institute for Therapeutic Cancer VaccinesFudan University Pudong Medical CenterShanghai201399China
| | - Bo Yin
- Institute for Therapeutic Cancer Vaccines and Department of OncologyFudan University Pudong Medical CenterShanghai201399China
| | - Shun Shen
- Pharmacy Department and Center for Medical Research and InnovationShanghai Pudong HospitalFudan University Pudong Medical CenterShanghai201399China
| |
Collapse
|
6
|
Xie YJ, Huang M, Li D, Hou JC, Liang HH, Nasim AA, Huang JM, Xie C, Leung ELH, Fan XX. Bacteria-based nanodrug for anticancer therapy. Pharmacol Res 2022; 182:106282. [PMID: 35662630 DOI: 10.1016/j.phrs.2022.106282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022]
Abstract
Bacteria-based immunotherapy has become a promising strategy to induce innate and adaptive responses for fighting cancer. The advantages of bacteriolytic tumor therapy mainly lie in stimulation of innate immunity and colonization of some bacteria targeting the tumor microenvironment (TME). These bacteria have cytotoxic proteins and immune modulating factors that can effectively restrain tumor growth. However, cancer is a multifactorial disease and single therapy is typically unable to eradicate tumors. Rapid progress has been made in combining bacteria with nanotechnology. Using the nanomolecular properties of bacterial products for tumor treatment preserves many features from the original bacteria while providing some unique advantages. Nano-bacterial therapy can enhance permeability and retention of drugs, increase the tolerability of the targeted drugs, promote the release of immune cell mediators, and induce immunogenic cell death pathways. In addition, combining nano-bacterial mediated antitumor therapeutic systems with modern therapy is an effective strategy for overcoming existing barriers in antitumor treatment and can achieve satisfactory therapeutic efficacy. Overall, exploring the immune antitumor characteristics of adjuvant clinical treatment with bacteria can provide potential efficacious treatment strategies for combatting cancer.
Collapse
Affiliation(s)
- Ya-Jia Xie
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Min Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Dan Li
- Beijing Wante'er Biological Pharmaceutical Co., Ltd., No. 32 Yard, East 2nd Road, Yanqi Economic Development Zone, Huairou District, Beijing, China
| | - Jin-Cai Hou
- Beijing Wante'er Biological Pharmaceutical Co., Ltd., No. 32 Yard, East 2nd Road, Yanqi Economic Development Zone, Huairou District, Beijing, China
| | - Hai-Hai Liang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ali Adnan Nasim
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ju-Min Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chun Xie
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Elaine Lai-Han Leung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xing-Xing Fan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
7
|
Bacteria and bacterial derivatives as delivery carriers for immunotherapy. Adv Drug Deliv Rev 2022; 181:114085. [PMID: 34933064 DOI: 10.1016/j.addr.2021.114085] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
There is growing interest in the role of microorganisms in human health and disease, with evidence showing that new types of biotherapy using engineered bacterial therapeutics, including bacterial derivatives, can address specific mechanisms of disease. The complex interactions between microorganisms and metabolic/immunologic pathways underlie many diseases with unmet medical needs, suggesting that targeting these interactions may improve patient treatment. Using tools from synthetic biology and chemical engineering, non-pathogenic bacteria or bacterial products can be programmed and designed to sense and respond to environmental signals to deliver therapeutic effectors. This review describes current progress in biotherapy using live bacteria and their derivatives to achieve therapeutic benefits against various diseases.
Collapse
|
8
|
Maitz CA, Tate D, Bechtel S, Lunceford J, Henry C, Flesner B, Collins A, Varterasian M, Tung D, Zhang L, Saha S, Bryan JN. Paired 18F-Fluorodeoxyglucose (18F-FDG), and 64Cu-Copper(II)-diacetyl-bis(N(4)-methylthiosemicarbazone) (64Cu-ATSM) PET Scans in Dogs with Spontaneous Tumors and Evaluation for Hypoxia-Directed Therapy. Radiat Res 2021; 197:253-260. [PMID: 34855934 DOI: 10.1667/rade-20-00186.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/01/2021] [Indexed: 11/03/2022]
Abstract
Hypoxia is associated with neoplastic tissue, protecting cancer cells from death by irradiation and chemotherapy. Identification of hypoxic volume of tumors could optimize patient selection for hypoxia-directed medical, immunological, and radiation therapies. Clostridium novyi-NT (CNV-NT) is an oncolytic bacterium derived from attenuated wild-type Clostridium novyi spores, which germinates exclusively in the anaerobic core of tumors with low-oxygen content. The hypothesis was that 64Cu-ATSM would localize to regions of hypoxia, and that greater hypoxic volume would result in greater germination of Clostridium novyi-NT (CNV-NT). Tumor-bearing companion dogs were recruited to a veterinary clinical trial. Dogs received a CT scan, 18F-FDG PET scan (74 MBq) and 64Cu-ATSM PET scan (74 MBq). Scan regions of interest were defined as the highest 20% of counts/voxel for each PET scan, and regions with voxels overlapping between the two scans. Maximum standardized uptake value (MaxSUV) and threshold volume were calculated. Direct oximetry was performed in select tumors. Tumor types evaluated included nerve sheath tumor (10), apocrine carcinoma (1), melanoma (3) and oral sarcoma (6). MaxSUVATSM ranged from 0.3-6.6. Measured oxygen tension ranged from 0.05-89.9 mmHg. Inverse of MaxSUVATSM had a linear relationship with oxygen tension (R2 = 0.53, P = 0.0048). Hypoxia <8 mmHg was associated with an SUVATSM > 1.0. Hypoxic volume ranged from 0 to 100% of gross tumor volume (GTV) and MaxSUVATSM was positively correlated with hypoxic volume (R = 0.674; P = 0.0001), but not GTV (P = 0.182). Tumor hypoxic volume was heterogeneous in location and distribution. 64Cu-ATSM-avid regions were associated with differential CT attenuation. Hypoxic volume did not predict CNV-NT germination. 64Cu-ATSM PET scanning predicts hypoxia patterns within spontaneously occurring tumors of dogs as measured by direct oxymetry. Total tumor volume does not accurately predict degree or proportion of tumor hypoxia.
Collapse
Affiliation(s)
- Charles A Maitz
- Department of Veterinary Medicine and Surgery, University of Missouri - Columbia, Missouri
| | - Deborah Tate
- Department of Veterinary Medicine and Surgery, University of Missouri - Columbia, Missouri
| | - Sandra Bechtel
- Department of Veterinary Medicine and Surgery, University of Missouri - Columbia, Missouri
| | - Joni Lunceford
- Department of Veterinary Medicine and Surgery, University of Missouri - Columbia, Missouri
| | - Carolyn Henry
- Department of Veterinary Medicine and Surgery, University of Missouri - Columbia, Missouri
| | - Brian Flesner
- Department of Veterinary Medicine and Surgery, University of Missouri - Columbia, Missouri
| | | | | | - David Tung
- Biomed Valley Discoveries, Inc., Kansas City, Missouri
| | - Linping Zhang
- Biomed Valley Discoveries, Inc., Kansas City, Missouri
| | - Saurabh Saha
- Biomed Valley Discoveries, Inc., Kansas City, Missouri
| | - Jeffrey N Bryan
- Department of Veterinary Medicine and Surgery, University of Missouri - Columbia, Missouri
| |
Collapse
|
9
|
The Evolution and Future of Targeted Cancer Therapy: From Nanoparticles, Oncolytic Viruses, and Oncolytic Bacteria to the Treatment of Solid Tumors. NANOMATERIALS 2021; 11:nano11113018. [PMID: 34835785 PMCID: PMC8623458 DOI: 10.3390/nano11113018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
While many classes of chemotherapeutic agents exist to treat solid tumors, few can generate a lasting response without substantial off-target toxicity despite significant scientific advancements and investments. In this review, the paths of development for nanoparticles, oncolytic viruses, and oncolytic bacteria over the last 20 years of research towards clinical translation and acceptance as novel cancer therapeutics are compared. Novel nanoparticle, oncolytic virus, and oncolytic bacteria therapies all start with a common goal of accomplishing therapeutic drug activity or delivery to a specific site while avoiding off-target effects, with overlapping methodology between all three modalities. Indeed, the degree of overlap is substantial enough that breakthroughs in one therapeutic could have considerable implications on the progression of the other two. Each oncotherapeutic modality has accomplished clinical translation, successfully overcoming the potential pitfalls promising therapeutics face. However, once studies enter clinical trials, the data all but disappears, leaving pre-clinical researchers largely in the dark. Overall, the creativity, flexibility, and innovation of these modalities for solid tumor treatments are greatly encouraging, and usher in a new age of pharmaceutical development.
Collapse
|
10
|
Fu Z, Mowday AM, Smaill JB, Hermans IF, Patterson AV. Tumour Hypoxia-Mediated Immunosuppression: Mechanisms and Therapeutic Approaches to Improve Cancer Immunotherapy. Cells 2021; 10:1006. [PMID: 33923305 PMCID: PMC8146304 DOI: 10.3390/cells10051006] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 01/05/2023] Open
Abstract
The magnitude of the host immune response can be regulated by either stimulatory or inhibitory immune checkpoint molecules. Receptor-ligand binding between inhibitory molecules is often exploited by tumours to suppress anti-tumour immune responses. Immune checkpoint inhibitors that block these inhibitory interactions can relieve T-cells from negative regulation, and have yielded remarkable activity in the clinic. Despite this success, clinical data reveal that durable responses are limited to a minority of patients and malignancies, indicating the presence of underlying resistance mechanisms. Accumulating evidence suggests that tumour hypoxia, a pervasive feature of many solid cancers, is a critical phenomenon involved in suppressing the anti-tumour immune response generated by checkpoint inhibitors. In this review, we discuss the mechanisms associated with hypoxia-mediate immunosuppression and focus on modulating tumour hypoxia as an approach to improve immunotherapy responsiveness.
Collapse
Affiliation(s)
- Zhe Fu
- Malaghan Institute of Medical Research, Wellington 6042, New Zealand; (Z.F.); (I.F.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, University of Auckland, Auckland 1142, New Zealand; (A.M.M.); (J.B.S.)
| | - Alexandra M. Mowday
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, University of Auckland, Auckland 1142, New Zealand; (A.M.M.); (J.B.S.)
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Jeff B. Smaill
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, University of Auckland, Auckland 1142, New Zealand; (A.M.M.); (J.B.S.)
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Ian F. Hermans
- Malaghan Institute of Medical Research, Wellington 6042, New Zealand; (Z.F.); (I.F.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, University of Auckland, Auckland 1142, New Zealand; (A.M.M.); (J.B.S.)
| | - Adam V. Patterson
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, University of Auckland, Auckland 1142, New Zealand; (A.M.M.); (J.B.S.)
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
11
|
Huang X, Pan J, Xu F, Shao B, Wang Y, Guo X, Zhou S. Bacteria-Based Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003572. [PMID: 33854892 PMCID: PMC8025040 DOI: 10.1002/advs.202003572] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/03/2020] [Indexed: 05/24/2023]
Abstract
In the past decade, bacteria-based cancer immunotherapy has attracted much attention in the academic circle due to its unique mechanism and abundant applications in triggering the host anti-tumor immunity. One advantage of bacteria lies in their capability in targeting tumors and preferentially colonizing the core area of the tumor. Because bacteria are abundant in pathogen-associated molecular patterns that can effectively activate the immune cells even in the tumor immunosuppressive microenvironment, they are capable of enhancing the specific immune recognition and elimination of tumor cells. More attractively, during the rapid development of synthetic biology, using gene technology to enable bacteria to be an efficient producer of immunotherapeutic agents has led to many creative immunotherapy paradigms. The combination of bacteria and nanomaterials also displays infinite imagination in the multifunctional endowment for cancer immunotherapy. The current progress report summarizes the recent advances in bacteria-based cancer immunotherapy with specific foci on the applications of naive bacteria-, engineered bacteria-, and bacterial components-based cancer immunotherapy, and at the same time discusses future directions in this field of research based on the present developments.
Collapse
Affiliation(s)
- Xuehui Huang
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Jingmei Pan
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Funeng Xu
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Binfen Shao
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Yi Wang
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Xing Guo
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| |
Collapse
|
12
|
Feng X, He P, Zeng C, Li YH, Das SK, Li B, Yang HF, Du Y. Novel insights into the role of Clostridium novyi-NT related combination bacteriolytic therapy in solid tumors. Oncol Lett 2020; 21:110. [PMID: 33376543 PMCID: PMC7751347 DOI: 10.3892/ol.2020.12371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Several solid tumors (for example leiomyosarcoma, melanoma and hepatocellular carcinoma) possess areas of hypoxia, which underlies one of the primary reasons of failure of conventional anticancer therapies. The areas of poor vascularization are insensitive to radiotherapy and chemotherapeutic drugs. Conversely, the hypoxic regions of tumors provide an ideal environment for anaerobic bacteria. The attenuated anaerobic bacterium, Clostridium novyi-NT (C. novyi-NT), is highly sensitive to oxygen and can target the destruction of hypoxic and necrotic areas of tumors, inducing oncolysis and characteristics indicative of an immune response. Theoretically, chemotherapy, radiotherapy and immunotherapy combined with bacterial therapy can be used as a novel means of treating solid tumors, promoting tumor regression and inhibiting metastasis formation with a notable beneficial effect. The present review discusses the molecular mechanisms of combined bacteriolytic therapy, predominantly focusing on C. novyi-NT, and summarizes the findings of previous studies on experimental animal models, including its efficacy and safety via different drug delivery routes. This strategy has great potential to overcome the limitations of conventional cancer therapy, resulting in improved treatments, and thus potentially improved outcomes for patients.
Collapse
Affiliation(s)
- Xu Feng
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Pan He
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Chen Zeng
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Ye-Han Li
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Sushant K Das
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Bing Li
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Han-Feng Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yong Du
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
13
|
Sawant SS, Patil SM, Gupta V, Kunda NK. Microbes as Medicines: Harnessing the Power of Bacteria in Advancing Cancer Treatment. Int J Mol Sci 2020; 21:ijms21207575. [PMID: 33066447 PMCID: PMC7589870 DOI: 10.3390/ijms21207575] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Conventional anti-cancer therapy involves the use of chemical chemotherapeutics and radiation and are often non-specific in action. The development of drug resistance and the inability of the drug to penetrate the tumor cells has been a major pitfall in current treatment. This has led to the investigation of alternative anti-tumor therapeutics possessing greater specificity and efficacy. There is a significant interest in exploring the use of microbes as potential anti-cancer medicines. The inherent tropism of the bacteria for hypoxic tumor environment and its ability to be genetically engineered as a vector for gene and drug therapy has led to the development of bacteria as a potential weapon against cancer. In this review, we will introduce bacterial anti-cancer therapy with an emphasis on the various mechanisms involved in tumor targeting and tumor suppression. The bacteriotherapy approaches in conjunction with the conventional cancer therapy can be effective in designing novel cancer therapies. We focus on the current progress achieved in bacterial cancer therapies that show potential in advancing existing cancer treatment options and help attain positive clinical outcomes with minimal systemic side-effects.
Collapse
|
14
|
Baindara P, Mandal SM. Bacteria and bacterial anticancer agents as a promising alternative for cancer therapeutics. Biochimie 2020; 177:164-189. [PMID: 32827604 DOI: 10.1016/j.biochi.2020.07.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/04/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
Cancer is the leading cause of deaths worldwide, though significant advances have occurred in its diagnosis and treatment. The development of resistance against chemotherapeutic agents, their side effects, and non-specific toxicity urge to screen for the novel anticancer agent. Hence, the development of novel anticancer agents with a new mechanism of action has become a major scientific challenge. Bacteria and bacterially produced bioactive compounds have recently emerged as a promising alternative for cancer therapeutics. Bacterial anticancer agents such as antibiotics, bacteriocins, non-ribosomal peptides, polyketides, toxins, etc. These are adopted different mechanisms of actions such as apoptosis, necrosis, reduced angiogenesis, inhibition of translation and splicing, and obstructing essential signaling pathways to kill cancer cells. Also, live tumor-targeting bacteria provided a unique therapeutic alternative for cancer treatment. This review summarizes the anticancer properties and mechanism of actions of the anticancer agents of bacterial origin and antitumor bacteria along with their possible future applications in cancer therapeutics.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65212, USA.
| | - Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India.
| |
Collapse
|