1
|
Wang T, Tian Z, Yu M, Zhang S, Zhang M, Zhai X, Shen W, Wang J. Whole-Transcriptome Analysis Reveals the Regulatory Network of Immune Response in Dapulian Pig. Animals (Basel) 2024; 14:3546. [PMID: 39682511 DOI: 10.3390/ani14233546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
There is a consensus that indigenous pigs in China are more resistant than modern commercial pigs in terms of disease resistance. Generally, the immune response is an important part of anti-disease capability; however, the related mechanism in pigs is largely puzzling. Here, the public transcriptome data of peripheral blood mononuclear cells (PBMCs) from Dapulian (Chinese local breed) and Landrace (Commercial breed) pigs after stimulation with polyinosinic-polycytidylic acid (poly I:C, a conventional reagent used for simulation of the viral infection) were reanalyzed, and the immune response mechanism in different pig breeds was investigated from a transcriptomic perspective. Of note, through comparative analyses of Dapulian and Landrace pigs, the candidate genes involved in swine broad-spectrum resistance were identified, such as TIMD4, RNF128 and VCAM1. In addition, after differential gene expression, target gene identification and functional enrichment analyses, a potential regulatory network of miRNA genes associated with immune response was obtained in Dapulian pigs, including five miRNAs and 12 genes (such as ssc-miR-181a, ssc-miR-486, IL1R1 and NFKB2). This work provides new insights into the immune response regulation of antiviral responses in indigenous and modern commercial pigs.
Collapse
Affiliation(s)
- Tao Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhe Tian
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Mubin Yu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuer Zhang
- General Station of Animal Husbandry of Shandong Province, Jinan 250100, China
- Protection of Animal Genetic Resources and Biological Breeding Engineering Research Center of Shandong Province, Jinan 250300, China
| | - Min Zhang
- General Station of Animal Husbandry of Shandong Province, Jinan 250100, China
- Protection of Animal Genetic Resources and Biological Breeding Engineering Research Center of Shandong Province, Jinan 250300, China
| | - Xiangwei Zhai
- General Station of Animal Husbandry of Shandong Province, Jinan 250100, China
- Protection of Animal Genetic Resources and Biological Breeding Engineering Research Center of Shandong Province, Jinan 250300, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Junjie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
2
|
Gao YY, Wang Q, Li HW, Zhang S, Zhao J, Bao D, Zhao H, Wang K, Hu GX, Gao FS. Genomic composition and pathomechanisms of porcine circoviruses: A review. Virulence 2024; 15:2439524. [PMID: 39662970 PMCID: PMC11639455 DOI: 10.1080/21505594.2024.2439524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 11/01/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024] Open
Abstract
Porcine circovirus (PCV) belongs to the genus Circovirus within the family Circoviridae; it has the smallest genome and a complicated classification system comprising PCV1, PCV2, PCV3, and PCV4. Most types of these viruses can cause animals to develop serious diseases; in pigs in particular, it may manifest as postweaning multisystemic wasting syndrome (PMWS), reproductive failure, porcine dermatitis and nephropathy syndrome (PDNS), congenital tremors (CTs), proliferative and necrotizing pneumonia (PNP), lymphoid injury, and immunosuppression. Different types of PCVs cause different types of diseases and sometimes feature no pathogenicity; these various PCV types are associated with different pathomechanisms in animals. In this review, the genomic composition and systemic pathomechanisms of porcine circoviruses are introduced, and future research prospects are discussed.
Collapse
Affiliation(s)
- Yong-Yu Gao
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Qian Wang
- The Third Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Han-Wen Li
- College of Life Sciences, Nankai University, Tianjing, China
| | - Shuang Zhang
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Jian Zhao
- ChangChun Sino Biotechnology CO. LTD, Changchun, Jilin, China
| | - Di Bao
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Han Zhao
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Kai Wang
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Gui-Xue Hu
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Feng-Shan Gao
- College of Life and Health, Dalian University, Dalian, China
- The Dalian Animal Virus Antigen Epitope Screening and Protein Engineering Drug Developing Key Laboratory, Dalian, China
| |
Collapse
|
3
|
Lim KS, Cheng J, Tuggle C, Dyck M, Canada P, Fortin F, Harding J, Plastow G, Dekkers J. Genetic analysis of the blood transcriptome of young healthy pigs to improve disease resilience. Genet Sel Evol 2023; 55:90. [PMID: 38087235 PMCID: PMC10714454 DOI: 10.1186/s12711-023-00860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Disease resilience is the ability of an animal to maintain productive performance under disease conditions and is an important selection target. In pig breeding programs, disease resilience must be evaluated on selection candidates without exposing them to disease. To identify potential genetic indicators for disease resilience that can be measured on selection candidates, we focused on the blood transcriptome of 1594 young healthy pigs with subsequent records on disease resilience. Transcriptome data were obtained by 3'mRNA sequencing and genotype data were from a 650 K genotyping array. RESULTS Heritabilities of the expression of 16,545 genes were estimated, of which 5665 genes showed significant estimates of heritability (p < 0.05), ranging from 0.05 to 0.90, with or without accounting for white blood cell composition. Genes with heritable expression levels were spread across chromosomes, but were enriched in the swine leukocyte antigen region (average estimate > 0.2). The correlation of heritability estimates with the corresponding estimates obtained for genes expressed in human blood was weak but a sizable number of genes with heritable expression levels overlapped. Genes with heritable expression levels were significantly enriched for biological processes such as cell activation, immune system process, stress response, and leukocyte activation, and were involved in various disease annotations such as RNA virus infection, including SARS-Cov2, as well as liver disease, and inflammation. To estimate genetic correlations with disease resilience, 3205 genotyped pigs, including the 1594 pigs with transcriptome data, were evaluated for disease resilience following their exposure to a natural polymicrobial disease challenge. Significant genetic correlations (p < 0.05) were observed with all resilience phenotypes, although few exceeded expected false discovery rates. Enrichment analysis of genes ranked by estimates of genetic correlations with resilience phenotypes revealed significance for biological processes such as regulation of cytokines, including interleukins and interferons, and chaperone mediated protein folding. CONCLUSIONS These results suggest that expression levels in the blood of young healthy pigs for genes in biological pathways related to immunity and endoplasmic reticulum stress have potential to be used as genetic indicator traits to select for disease resilience.
Collapse
Affiliation(s)
- Kyu-Sang Lim
- Department of Animal Science, Iowa State University, Ames, IA, USA
- Department of Animal Resource Science, Kongju National University, Yesan, Chungnam, Republic of Korea
| | - Jian Cheng
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | | | - Michael Dyck
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - PigGen Canada
- PigGen Canada Research Consortium, Guelph, ON, Canada
| | - Frederic Fortin
- Centre de Développement du Porc du Québec Inc. (CDPQ), Québec City, QC, Canada
| | - John Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jack Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| |
Collapse
|
4
|
Maity HK, Samanta K, Deb R, Gupta VK. Revisiting Porcine Circovirus Infection: Recent Insights and Its Significance in the Piggery Sector. Vaccines (Basel) 2023; 11:1308. [PMID: 37631876 PMCID: PMC10457769 DOI: 10.3390/vaccines11081308] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Porcine circovirus (PCV), a member of the Circoviridae family within the genus Circovirus, poses a significant economic risk to the global swine industry. PCV2, which has nine identified genotypes (a-i), has emerged as the predominant genotype worldwide, particularly PCV2d. PCV2 has been commonly found in both domestic pigs and wild boars, and sporadically in non-porcine animals. The virus spreads among swine populations through horizontal and vertical transmission routes. Despite the availability of commercial vaccines for controlling porcine circovirus infections and associated diseases, the continuous genotypic shifts from a to b, and subsequently from b to d, have maintained PCV2 as a significant pathogen with substantial economic implications. This review aims to provide an updated understanding of the biology, genetic variation, distribution, and preventive strategies concerning porcine circoviruses and their associated diseases in swine.
Collapse
Affiliation(s)
- Hemanta Kumar Maity
- Department of Avian Science, Faculty of Veterinary & Animal Science, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Kartik Samanta
- Department of Avian Science, Faculty of Veterinary & Animal Science, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Rajib Deb
- ICAR-National Research Center on Pig, Rani, Guwahati 781131, Assam, India
| | - Vivek Kumar Gupta
- ICAR-National Research Center on Pig, Rani, Guwahati 781131, Assam, India
| |
Collapse
|
5
|
Xu Y, Wan S, Sun P, Khan A, Guo J, Zheng X, Sun Y, Fan K, Yin W, Li H, Sun N. Matrine combined with Osthole inhibited the PERK apoptosis of splenic lymphocytes in PCV2-infected mice model. BMC Vet Res 2023; 19:26. [PMID: 36717886 PMCID: PMC9885934 DOI: 10.1186/s12917-023-03581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Porcine circovirus type 2 (PCV2) is one of the major pathogens commonly found in pigs, which causes immunosuppression and apoptosis. Vaccination and a single drug cannot totally prevent and treat PCV2 infection. Our previous in vitro study reported that the synergistic anti-PCV2 effect of Matrine and Osthole was better than that of Matrine or Osthole alone, This study was aimed to evaluate the synergistic anti-PCV2 effect as well as the underline molecular mechanism of Matrine and Osthole in Kunming (KM) mice model infected with PCV2. KM mice were randomly divided into 8 groups namely control group, PCV2 infected, Matrine combined with Osthole high dose treatment (40 mg/kg + 12 mg/kg), medium dose treatment (20 mg/kg + 6 mg/kg), low dose treatment (10 mg/kg + 3 mg/kg), Matrine treatment (40 mg/kg), Osthole treatment (12 mg/kg) and Ribavirin positive control (40 mg/kg) groups. PCV2 was intraperitoneally (i.p.) injected in all mice except the control group. 5 days of post-infection (dpi), mice in different treatment groups were injected i.p. with various doses of Matrine, Osthole and Ribavirin once daily for the next 5 consecutive days. RESULTS The synergistic inhibitory effect of Matrine and Osthole on PCV2 replication in mouse liver was significantly heigher than that of Matrine and Osthole alone. The expression of GRP78, p-PERK, p-eIF2α, ATF4, CHOP, cleaved caspase-3 and Bax proteins were significantly reduced, while that of Bcl-2 was significantly increased in Matrine combined with Osthole groups, which alleviated the pathological changes caused by PCV2, such as interstitial pneumonia, loss of spleen lymphocytes, infiltration of macrophages and eosinophils. CONCLUSIONS The synergistic anti-apoptotic effect of Matrine and Osthole was better than their alone effect, Both Matrine and Osthole had directly inhibited the expression of PCV2 Cap and the apoptosis of spleen cells induced by PCV2 Cap through the PERK pathway activated by endoplasmic reticulum (ER) GRP78. These results provided a new insight to control PCV2 infection and provide good component prescription candidate for the development of novel anti-PCV2 drugs.
Collapse
Affiliation(s)
- Yinlan Xu
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Shuangxiu Wan
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- School of Pharmacy, Heze University, Heze, 274000, Shandong, China
| | - Panpan Sun
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Ajab Khan
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Department of Veterinary Pathology, Faculty of Veterinary and Animal Sciences, the University of Agriculture, Dera Ismail Khan 29050, Khyber Pakhtunkhwa, Pakistan
| | - Jianhua Guo
- Department of Veterinary Pathobiology, Schubot Exotic Bird Health Center, Texas A&M University, College Station, Texas, TX, 77843, USA
| | - Xiaozhong Zheng
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Yaogui Sun
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Kuohai Fan
- Laboratory Animal Center, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Wei Yin
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hongquan Li
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Na Sun
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
6
|
Changes in the Expression and Functional Activities of C-X-C Motif Chemokine Ligand 13 ( CXCL13) in Hyperplastic Prostate. Int J Mol Sci 2022; 24:ijms24010056. [PMID: 36613500 PMCID: PMC9820459 DOI: 10.3390/ijms24010056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND C-X-C motif chemokine ligand 13 (CXCL13), a member of the CXC subtype in chemokine superfamily, affects numerous biological processes of various types of cells and the progress of a great number of clinical diseases. The purpose of the current study was to reveal the internal mechanism between CXCL13 and benign prostatic hyperplasia (BPH). METHODS Human serum, prostate tissues and human prostate cell lines (BPH-1, WPMY-1) were utilized. The effect of recombinant human CXCL13 (rHuCXCL13) protein and the influences of the knockdown/overexpression of CXCL13 on two cell lines were studied. Rescue experiments by anti-CXCR5 were also conducted. In vivo, rHuCXCL13 was injected into the ventral prostate of rats. Additionally, a tissue microarray of hyperplastic prostate tissues was constructed to analyze the correlations between CXCL13 and clinical parameters. RESULTS CXCL13 was highly expressed in the prostate tissues and upregulated in the BPH group. It was observed that CXCL13 modulated cell proliferation, apoptosis, and the epithelial-mesenchymal transition (EMT) through CXCR5 via AKT and the ERK1/2 pathway in BPH-1, while it contributed to inflammation and fibrosis through CXCR5 via the STAT3 pathway in WPMY-1. In vivo, rHuCXCL13 induced the development of rat BPH. Additionally, CXCL13 was positively correlated with the prostate volume and total prostate specific antigen. CONCLUSIONS Our novel data demonstrated that CXCL13 modulated cell proliferation, cell cycle, the EMT of epithelial cells, and induced the fibrosis of prostatic stromal cells via a variety of inflammatory factors, suggesting that CXCL13 might be rediscovered as a potential therapeutic target for the treatment of BPH.
Collapse
|
7
|
Wang S, Wang G, Tang YD, Li S, Qin L, Wang M, Yang YB, Gottschalk M, Cai X. Streptococcus suis Serotype 2 Infection Induces Splenomegaly with Splenocyte Apoptosis. Microbiol Spectr 2022; 10:e0321022. [PMID: 36287014 PMCID: PMC9769541 DOI: 10.1128/spectrum.03210-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/01/2022] [Indexed: 01/10/2023] Open
Abstract
Little is known about the damage to the important peripheral immune organ spleen caused by Streptococcus suis infection. In this study, we found that S. suis induced splenomegaly and lymphocyte disruption in spleens of mice. To explore the mechanism of splenic lesions induced by S. suis, we conducted further studies. The results showed that S. suis induced apoptosis in B cells, which is related to the cleavage of caspase-3 and caspase-8, but not the release of apoptosis-inducing factor (AIF). Thus, S. suis induced apoptosis in the spleen through caspase-dependent and AIF-independent pathways. Inflammation lesions induced in the spleen of infected mice were also investigated; we found macrophages increased in histopathological lesions of infected spleens from 12 h postinoculation to 7 days postinoculation (dpi), and the type of increased macrophages was M1 type by confocal microscopy, which can secrete proinflammatory cytokines. Meanwhile, inflammasome NLRP3 and caspase-1 were activated, and gasdermin D (GSDMD) was cleaved, which causes pyroptosis that may result in the release of numerous proinflammatory cytokines. What's more, the increase of p-JNK and p-p38 indicated that the MAPK pathway was also involved in the proinflammatory responses during S. suis infection, whereas anti-inflammatory responses in spleen were suppressed, with regulatory T cells (Tregs) upregulating at 1 dpi. Taken together, proinflammatory immune responses dominate in early infection, which induce splenomegaly and splenocyte apoptosis. This is the first report of mechanisms associated with S. suis-induced splenic lesions. IMPORTANCE Streptococcus suis serotype 2 is considered an emerging pathogen and represents a threat to humans and animals. The spleen is an important peripheral immune organ, and splenomegaly is a consequence of lesions and an important clinical indicator of S. suis infection. However, knowledge of the mechanisms underlying spleen lesions is still very limited. In the present work, we made the investigation to explain the phenomenon and the related immunomodulation in a mouse infection model. The obtained results show that inflammation contributes to splenomegaly, while apoptosis contributes to lymphocyte disruption in spleens. Related signaling pathways were discovered which have never been associated with S. suis-induced splenic injury. The new knowledge generated will help us better understand the mechanism of S. suis pathogenesis.
Collapse
Affiliation(s)
- Shujie Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Gang Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siqi Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lei Qin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Menghang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yong-Bo Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
8
|
Zhang FL, Zhu WM, He TR, Zhao YT, Ge W, Tan JH, Shen W. Comparative transcriptomic analysis reveals that TPX2 and AURXA are involved in porcine PCV2 infection. Gene 2022; 834:146649. [PMID: 35680028 DOI: 10.1016/j.gene.2022.146649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/23/2022] [Accepted: 06/02/2022] [Indexed: 11/04/2022]
Abstract
Porcine circovirus type 2 (PCV2) has been a notorious killer for the pig industry, causing substantial economic losses worldwide. However, its pathogenesis is still poorly understood. Comparative transcriptomic analysis and weighted gene co-expression network analysis (WGCNA) were performed in different porcine tissues after PCV2 infection. Our comparative transcriptomic analysis obtained 40 key differentially expressed genes (DEGs), and our WGCNA identified 458 hub genes. Significantly, both TPX2 microtubule nucleation factor (TPX2) and Aurora kinase A (AURKA) are included in these key DEGs and hubs genes. Our gene ontology (GO) analysis indicated that the key DEGs and hub genes participated in cell cycle regulation and immune response. The expressive levels of TPX2 and AURKA went down in the spleen but up in the kidneys after infection with PCV2. We conclude that TPX2 and AURKA played an essential role in PCV2 infection.
Collapse
Affiliation(s)
- Fa-Li Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China; College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei-Min Zhu
- Rural Agriculture Bureau of Chengyang District, Qingdao 266109, China
| | - Tao-Ran He
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Yun-Ting Zhao
- Laizhou Animal Husbandry and Veterinary Station, Yantai 261400, China
| | - Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
9
|
Advances in Crosstalk between Porcine Circoviruses and Host. Viruses 2022; 14:v14071419. [PMID: 35891399 PMCID: PMC9315664 DOI: 10.3390/v14071419] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Porcine circoviruses (PCVs), including PCV1 to PCV4, are non-enveloped DNA viruses with a diameter of about 20 nm, belonging to the genus Circovirus in the family Circoviridae. PCV2 is an important causative agent of porcine circovirus disease or porcine circovirus-associated disease (PCVD/PCVAD), which is highly prevalent in pigs and seriously affects the swine industry globally. Furthermore, PCV2 mainly causes subclinical symptoms and immunosuppression, and PCV3 and PCV4 were detected in healthy pigs, sick pigs, and other animals. Although the pathogenicity of PCV3 and PCV4 in the field is still controversial, the infection rates of PCV3 and PCV4 in pigs are increasing. Moreover, PCV3 and PCV4 rescued from infected clones were pathogenic in vivo. It is worth noting that the interaction between virus and host is crucial to the infection and pathogenicity of the virus. This review discusses the latest research progress on the molecular mechanism of PCVs–host interaction, which may provide a scientific basis for disease prevention and control.
Collapse
|
10
|
Chrun T, Maze EA, Vatzia E, Martini V, Paudyal B, Edmans MD, McNee A, Manjegowda T, Salguero FJ, Wanasen N, Koonpaew S, Graham SP, Tchilian E. Simultaneous Infection With Porcine Reproductive and Respiratory Syndrome and Influenza Viruses Abrogates Clinical Protection Induced by Live Attenuated Porcine Reproductive and Respiratory Syndrome Vaccination. Front Immunol 2021; 12:758368. [PMID: 34858411 PMCID: PMC8632230 DOI: 10.3389/fimmu.2021.758368] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
The porcine respiratory disease complex (PRDC) is responsible for significant economic losses in the pig industry worldwide. Porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza virus are major viral contributors to PRDC. Vaccines are cost-effective measures for controlling PRRS, however, their efficacy in the context of co-infections has been poorly investigated. In this study, we aimed to determine the effect of PRRSV-2 and swine influenza H3N2 virus co-infection on the efficacy of PRRSV modified live virus (MLV) vaccination, which is widely used in the field. Following simultaneous challenge with contemporary PRRSV-2 and H3N2 field isolates, we found that the protective effect of PRRS MLV vaccination on clinical disease and pathology was abrogated, although viral load was unaffected and antibody responses were enhanced. In contrast, co-infection in non-immunized animals reduced PRRSV-2 viremia and H3N2 virus load in the upper respiratory tract and potentiated T cell responses against both PRRSV-2 and H3N2 in the lung. Further analysis suggested that an upregulation of inhibitory cytokines gene expression in the lungs of vaccinated pigs may have influenced responses to H3N2 and PRRSV-2. These findings provide important insights into the effect of viral co-infections on PRRS vaccine efficacy that may help identify more effective vaccination strategies against PRDC in the field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adam McNee
- The Pirbright Institute, Woking, United Kingdom
| | | | | | - Nanchaya Wanasen
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Surapong Koonpaew
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | | | | |
Collapse
|
11
|
Cao M, Yang J, Wang X, Hu W, Xie X, Zhao Y, Liu M, Wei Y, Yu M, Hu T. Sophora subprostrate polysaccharide regulates histone acetylation to inhibit inflammation in PCV2-infected murine splenic lymphocytes in vitro and in vivo. Int J Biol Macromol 2021; 191:668-678. [PMID: 34560152 DOI: 10.1016/j.ijbiomac.2021.09.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 09/10/2021] [Accepted: 09/18/2021] [Indexed: 11/26/2022]
Abstract
Porcine circovirus type 2 (PCV2) has caused large economic losses in the swine industry worldwide; therefore, research on relevant therapeutic medicines is still urgently needed. To define the relationship between histone acetylation and inflammation induced by PCV2, we investigated whether traditional Chinese medicinal polysaccharides could alleviate viral infection by regulating histone acetylation. In this study, Sophora subprostrate polysaccharide (SSP)-treated PCV2-infected murine splenic lymphocytes in vitro and murine spleen in vivo were used to explore the regulatory effects of SSP on inflammation and histone acetylation caused by PCV2. SSP at different concentrations significantly reduced the secretion levels of the proinflammatory cytokines TNF-α and IL-6, the activity of COX-2, the mRNA expression levels of TNF-α, IL-6, iNOS and COX-2 and the protein expression levels of iNOS and COX-2 but promoted the secretion and mRNA expression levels of IL-10. Furthermore, the different concentrations of SSP significantly regulated the activity of histone acetylase (HAT) and the mRNA expression of HAT1, increased the activity of histone deacetylase (HDAC) and the mRNA expression of HDAC1 and reduced the protein expression levels of Ac-H3 and Ac-H4. Overall, SSP inhibited inflammation in PCV2-infected murine splenic lymphocytes by regulating histone acetylation in vitro and in vivo, thus playing an important role in PCV2 infection.
Collapse
Affiliation(s)
- Mixia Cao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Jian Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China; College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Xinrui Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Wenyue Hu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Xiaodong Xie
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Yi Zhao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Mengqian Liu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Yingyi Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Meiling Yu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Tingjun Hu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
12
|
Zhang S, Zhao X, Hao J, Zhu Y, Wang Y, Wang L, Guo S, Yi H, Liu Y, Liu J. The role of ATF6 in Cr(VI)-induced apoptosis in DF-1 cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124607. [PMID: 33243643 DOI: 10.1016/j.jhazmat.2020.124607] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/02/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Hexavalent chromium (Cr(VI)) is a common heavy metal pollutant in environment and has been proved possessing the cytotoxicity. In this study, we aimed to investigate the role of activating transcription factor 6 (ATF-6) in apoptosis of chicken embryo fibroblasts cell line (DF-1) induced by Cr(VI). Firstly, DF-1 cells were exposed to Cr(VI) to establish the cytotoxicity model, then the cell apoptosis and ATF-6 protein level were analyzed. By silencing ATF-6 gene, changes of the apoptosis rate and apoptotic proteins were examined. To further explore the regulatory mechanism of ATF-6, endoplasmic reticulum (ER) stress, mitochondrial function, reactive oxygen species (ROS) level, as well as the related pathway were evaluated. Results showed that Cr(VI) can result in DF-1 cell apoptosis, along with mitochondrial membrane potential (MMP) reducing and ER stress. Meanwhile, ATF-6 silencing lowered the apoptosis rate and ER stress level, showing with the decrease of XBP-1, PERK, GRP78, Caspase-12, Cleaved Caspase-3 and the increase of Bcl-2. Further analysis found that ATF-6 silencing down-regulated ROS and caused MMP loss, suggesting that ATF-6 silencing inhibited Cr(VI)-induced mitochondrial damage. In conclusion, this study indicate that ATF-6 plays an important regulatory role in Cr(VI)-induced DF-1 cell apoptosis through the ER stress and mitochondrial pathway.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xiaona Zhao
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jiajia Hao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yiran Zhu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yue Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Lumei Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shuhua Guo
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hui Yi
- Animal Husbandry and Veterinary Services Centre of Tai'an City, Tai'an, Shandong 271000, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
13
|
A 14 bp indel polymorphism in the promoter region is associated with different responses to porcine circovirus type 2 infection by regulating MRC1 transcription. Vet Immunol Immunopathol 2021; 234:110202. [PMID: 33578325 DOI: 10.1016/j.vetimm.2021.110202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/17/2021] [Accepted: 02/02/2021] [Indexed: 11/20/2022]
Abstract
Mannose receptor, C type 1 (MRC1) is a key factor in regulating the body's immune response to resist pathogen invasions. In this study, mRNA expressions of MRC1 gene in nine porcine organs/tissues were compared between Laiwu (LW) and Yorkshire × Landrace crossbred (YL) pigs prior to and post PCV2 infection. We found that, for pigs uninfected with PCV2, MRC1 mRNA expressions in the lung, spleen, large intestine, small intestine and mesenteric lymph node tissues of LW were significantly higher than those of YL pigs (P < 0.05). After PCV2 infection, MRC1 mRNA levels in the liver, kidney and mesenteric lymph node were significantly increased in LW pigs (P < 0.05); while, significantly decreased in the heart and lung tissues of YL pigs (P < 0.05). The transcriptional activity of porcine MRC1 promoter was further analyzed to investigate the molecular mechanism underlying these expressional differences in response to PCV2 infection. Luciferase assay indicated that a 14 bp indel polymorphism "GTTTTTTTTTTTTT" at the site -864 of MRC1 promoter contributed to the transcriptional activity. The frequency of 14 bp insertion in LW and Dapulian pigs, generally resistant to PCV2 infection, was higher than that in Duroc, Landrace and Yorkshire pigs, which were sensitive to PCV2 infection. The promoter with 14 bp insertion displayed higher MRC1 transcription level both prior to and post PCV2 infection compared with that carrying no insertion in PK15 cells (P < 0.01). The results suggest that this 14 bp indel polymorphism is associated with different responses to PCV2 infection by regulating MRC1 transcription.
Collapse
|
14
|
Ma C, Sun Y, Wang J, Kang L, Jiang Y. Identification of a promoter polymorphism affecting GPAT3 gene expression that is likely related to intramuscular fat content in pigs. Anim Biotechnol 2020; 33:1378-1381. [PMID: 33345707 DOI: 10.1080/10495398.2020.1858847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The intramuscular fat content (IMF) is an economically important trait in pigs and the Laiwu pig is famous for its excessively extremely high level of IMF. Our previous transcriptome study revealed that the dynamic expression of glycerol-phosphate acyltransferase 3 (GPAT3) is consistent with changes in the IMF of Laiwu pigs. In this study, we further analyzed the expression and polymorphism of GPAT3 in its promoter region. The results indicated that the expression of GPAT3 increased dramatically from 120 to 240 days and is consistent with changes in IMF deposition, and at both mRNA and protein levels, GPAT3 expression was markedly higher in the LD muscle of Laiwu pigs than that of Duroc × Landrace × Yorkshire pigs. Deletion from -1695 to -1187 of porcine GPAT3 greatly increased its transcription. Of the two SNPs identified, the transition from C to T at -1526 site increased the transcription of porcine GPAT3 and allele T mainly distributed in Laiwu pig population. These results collectively suggest that the SNP at -1526 site of GPAT3 may contribute to IMF deposition by affecting its expression in pigs.
Collapse
Affiliation(s)
- Cai Ma
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, PR China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, PR China
| | - Jiying Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, PR China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, PR China
| |
Collapse
|
15
|
The Monoclonal Antibody Recognized the Open Reading Frame Protein in Porcine Circovirus Type 2-Infected Peripheral Blood Mononuclear Cells. Viruses 2020; 12:v12090961. [PMID: 32872497 PMCID: PMC7551997 DOI: 10.3390/v12090961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
The purpose of this study in the context of the open reading frame 3 (ORF3) protein of porcine circovirus type 2 (PCV2) was especially its location and its relation to the capsid protein and the apoptosis protein in PCV2-infected porcine peripheral blood mononuclear cells (PBMCs). To detect the ORF3 protein, monoclonal antibodies (mAbs) were generated in this study. The mAb 7D3 binds to the ORF3 peptide (residues 35–66) and the native ORF3 protein in PCV2-infected PBMCs, as shown by immunofluorescence assay (IFA). The data show that 3–5% of PBMCs were positive for ORF3 protein or p53 protein. Further, 78–82% of PBMCs were positive for the capsid. This study confirmed the ORF3 protein not only colocalized with the capsid protein but also colocalized with the p53 protein in PBMCs. Immunoassays were conducted in this study to detect the capsid protein, the ORF3 protein, anti-capsid IgG, and anti-ORF3 IgG. The data show the correlation (r = 0.758) of the ORF3 protein and the capsid protein in the blood samples from the PCV2-infected herd. However, each anti-viral protein IgG had a different curve of the profile in the same herd after vaccination. Overall, this study provides a blueprint to explore the ORF3 protein in PCV2-infected PBMCs.
Collapse
|
16
|
Sah V, Kumar A, Dhar P, Upmanyu V, Tiwari AK, Wani SA, Sahu AR, Kumar A, Badasara SK, Pandey A, Saxena S, Rai A, Mishra BP, Singh RK, Gandham RK. Signature of genome wide gene expression in classical swine fever virus infected macrophages and PBMCs of indigenous vis-a-vis crossbred pigs. Gene 2020; 731:144356. [PMID: 31935504 DOI: 10.1016/j.gene.2020.144356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/07/2023]
Abstract
The genetic basis of differential host immune response vis-à-vis transcriptome profile was explored in PBMCs of indigenous (Ghurrah) and crossbred pigs after classical swine fever vaccination and in monocyte derived macrophages (MDMs) challenged with virulent classical swine fever (CSF) virus. The humoral immune response (E2 antibody) was higher (74.87%) in crossbred than indigenous pigs (58.20%) at 21st days post vaccination (21dpv). The rate of reduction of ratio of CD4+/CD8+ was higher in crossbred pigs than indigenous pigs at 7th days post vaccination (7dpv). The immune genes IFIT1, IFIT5, RELA, NFKB2, TNF and LAT2 were up regulated at 7dpv in RNA seq data set and was in concordance during qRT-PCR validation. The Laminin Subunit Beta 1 (LAMB1) was significantly (p ≤ 0.05) down-regulated in MDMs of indigenous pigs and consequently a significantly (p ≤ 0.01) higher copy number of virulent CSF virus was evidenced in macrophages of crossbred pigs than indigenous pigs. Activation of LXR:RXR pathway at 60 h post infection (60hpi) in MDMs of indigenous versus crossbred pigs inhibited nuclear translocation of NF-κB, resulted into transrepression of proinflammatory genes. But it helped in maintenance of HDL level by lowering down cholesterol/LDL level in MDMs of indigenous pigs. The key immune genes (TLR2, TLR4, IL10, IL8, CD86, CD54, CASP1) of TREM1 signaling pathway were upregulated at 7dpv in PBMCs but those genes were downregulated at 60hpi in MDMs indigenous pigs. Using qRT-PCR, the validation of differentially expressed, immunologically important genes (LAMB1, OAS1, TLR 4, TLR8 and CD86) in MDMs revealed that expression of these genes were in concordance with RNA-seq data.
Collapse
Affiliation(s)
- Vaishali Sah
- Animal Genetics, ICAR-IVRI, Izatnagar, Bareilly, India
| | - Amit Kumar
- Animal Genetics, ICAR-IVRI, Izatnagar, Bareilly, India.
| | - P Dhar
- Standardization Division, ICAR-IVRI, Izatnagar, Bareilly, India
| | - V Upmanyu
- Standardization Division, ICAR-IVRI, Izatnagar, Bareilly, India
| | - A K Tiwari
- Standardization Division, ICAR-IVRI, Izatnagar, Bareilly, India
| | | | - A R Sahu
- Animal Biotechnology, ICAR-IVRI, Izatnagar, Bareilly, India
| | - Ajay Kumar
- Animal Biochemistry, ICAR-IVRI, Izatnagar, Bareilly, India
| | - S K Badasara
- Immunology, ICAR-IVRI, Izatnagar, Bareilly, India
| | - Aruna Pandey
- Animal Biotechnology, ICAR-IVRI, Izatnagar, Bareilly, India
| | - Shikha Saxena
- Animal Genetics, ICAR-IVRI, Izatnagar, Bareilly, India
| | - Anil Rai
- Centre for Bioinformatics, ICAR-IASRI, Pusa, New Delhi, India
| | - B P Mishra
- Animal Biotechnology, ICAR-IVRI, Izatnagar, Bareilly, India
| | - R K Singh
- Animal Biotechnology, ICAR-IVRI, Izatnagar, Bareilly, India
| | - Ravi Kumar Gandham
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India.
| |
Collapse
|