1
|
Madyavanhu N, Shekede MD, Kusangaya S, Pfukenyi DM, Chikerema S, Gwitira I. Bovine anaplasmosis in Zimbabwe: spatio-temporal distribution and environmental drivers. Vet Q 2024; 44:1-16. [PMID: 38279663 PMCID: PMC10823892 DOI: 10.1080/01652176.2024.2306210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
Understanding the spatial and temporal distribution of Bovine anaplasmosis is crucial for identifying areas of high prevalence for targeted disease control. This research was aimed at modelling and mapping the B. anaplasmosis potential distribution, and identify hotspots as well as significant variables explaining the occurrence of the disease. The Getis Ord Gi* statistic for Hotspot analysis was used as well as MaxEnt ecological niche modelling. The effects of time, land-use, and agro-ecological regions on B. anaplasmosis occurrence were tested using Analysis of Variance (ANOVA). Results showed that several districts in Zimbabwe are suitable for the occurence of the disease for example Binga, Seke, Buhera, Kwekwe, Gweru, Mhondoro, Chegutu, Sanyati, and in the North: Mbire, Muzarabani, Mt Darwin, Shamva, Bindura, Zvimba and Makonde. Morbidity and mortality hotspots were detected in Gokwe-south, Kwekwe, and Chirumhanzu districts. Binga, Gokwe-south, Gutu, Hurungwe, Mazoe, Nkayi, Shamva, and Kwekwe districts also experienced high disease incidences. Temperature seasonality, precipitation seasonality, mean diurnal range, and isothermality were the most important variables in explaining 93% of B. anaplasmosis distribution. Unlike land-use and agro-ecological regions, time (months) had a significant effect on B. anaplasmosis occurrence with July and September having significantly (p < 0.05) higher cases and deaths than the rest of the months. The results of this study provide insights into the management strategies and control of B. anaplasmosis in Zimbabwe. It is thus concluded that geo-spatial techniques, combined with ecological niche modelling can provide useful insights into disease prevalence and distribution and hence can contribute to effective management and control of B. anaplasmosis in Zimbabwe.
Collapse
Affiliation(s)
- Natasher Madyavanhu
- Department of Geography Geospatial Sciences and Earth Observation, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe
| | - Munyaradzi Davis Shekede
- Department of Geography Geospatial Sciences and Earth Observation, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe
- Department of Geospatial Sciences and Earth Observation, Zimbabwe National Geospatial and Space Agency, Harare, Zimbabwe
| | - Samuel Kusangaya
- Department of Geography Geospatial Sciences and Earth Observation, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe
| | - Davies Mubika Pfukenyi
- Department of Veterinary Sciences, Faculty of Animal and Veterinary Sciences, Botswana University of Agriculture and Natural Resources, Gaborone, Botswana
| | - Sylvester Chikerema
- Department of Clinical Veterinary Studies, University of Zimbabwe, Harare, Zimbabwe
| | - Isaiah Gwitira
- Department of Geography Geospatial Sciences and Earth Observation, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
2
|
Sirdar MM, Fosgate GT, Blignaut B, Heath L, Lazarus DD, Mampane RL, Rikhotso OB, Du Plessis B, Gummow B. A comparison of risk factor investigation and experts' opinion elicitation analysis for identifying foot-and-mouth disease (FMD) high-risk areas within the FMD protection zone of South Africa (2007-2016). Prev Vet Med 2024; 226:106192. [PMID: 38564991 DOI: 10.1016/j.prevetmed.2024.106192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/26/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Foot-and-mouth disease is a controlled disease in accordance with the South African Animal Diseases Act (Act 35 of 1984). The country was classified by the World Organisation for Animal Health (WOAH) as having a FMD free zone without vaccination in 1996. However, this status was suspended in 2019 due to a FMD outbreak outside the controlled zones. FMD control in South Africa includes animal movement restrictions placed on cloven-hoofed species and products, prophylactic vaccination of cattle, clinical surveillance of susceptible species, and disease control fencing to separate livestock from wildlife reservoirs. The objectives of this study were to evaluate differences in identifying high-risk areas for FMD using risk factor and expert opinion elicitation analysis. Differences in risk between FMD introduction and FMD spread within the FMD protection zone with vaccination (PZV) of South Africa (2007-2016) were also investigated. The study was conducted in the communal farming area of the FMD PZV, which is adjacent to wildlife reserves and characterised by individual faming units. Eleven risk factors that were considered important for FMD occurrence and spread were used to build a weighted linear combination (WLC) score based on risk factor data and expert opinion elicitation. A multivariable conditional logistic regression model was also used to calculate predicted probabilities of a FMD outbreak for all dip-tanks within the study area. Smoothed Bayesian kriged maps were generated for 11 individual risk factors, overall WLC scores for FMD occurrence and spread and for predicted probabilities of a FMD outbreak based on the conditional logistic regression model. Descriptively, vaccine matching was believed to have a great influence on both FMD occurrence and spread. Expert opinion suggested that FMD occurrence was influenced predominantly by proximity to game reserves and cattle density. Cattle populations and vaccination practices were considered most important for FMD spread. Highly effective cattle inspections were observed within areas that previously reported FMD outbreaks, indicating the importance of cattle inspection (surveillance) as a necessary element of FMD outbreak detection. The multivariable conditional logistic regression analysis, which was consistent with expert opinion elicitation; identified three factors including cattle population density (OR 3.87, 95% CI 1.47-10.21) and proximities to game reserve fences (OR 0.82, 95% CI 0.73-0.92) and rivers (OR 1.04, 95% CI 1.01-1.07) as significant factors for reported FMD outbreaks. Regaining and maintaining an FMD-free status without vaccination requires frequent monitoring of high-risk areas and designing targeted surveillance.
Collapse
Affiliation(s)
- M M Sirdar
- Epidemiology Section, Department of Production Animal Studies, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort 0110, South Africa; Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort 0110, South Africa; World Organisation for Animal Health, WOAH Sub-Regional Representation for Southern Africa, Gaborone, Botswana.
| | - G T Fosgate
- Epidemiology Section, Department of Production Animal Studies, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort 0110, South Africa
| | - B Blignaut
- Epidemiology Section, Department of Production Animal Studies, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort 0110, South Africa; Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort 0110, South Africa
| | - L Heath
- Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort 0110, South Africa
| | - D D Lazarus
- Epidemiology Section, Department of Production Animal Studies, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort 0110, South Africa; Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort 0110, South Africa
| | - R L Mampane
- Limpopo Veterinary Services, Department of Agriculture and Rural Development, Polokwane, Limpopo, South Africa
| | - O B Rikhotso
- Mpumalanga Veterinary Services, Department of Agriculture, Rural Development, Land and Environmental Affairs, Mpumalanga, South Africa
| | - B Du Plessis
- Mpumalanga Veterinary Services, Department of Agriculture, Rural Development, Land and Environmental Affairs, Mpumalanga, South Africa
| | - B Gummow
- Epidemiology Section, Department of Production Animal Studies, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort 0110, South Africa; College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
3
|
Robi DT, Bogale A, Temteme S, Aleme M, Urge B. Using participatory epidemiology to investigate the causes of cattle abortion in Southwest Ethiopia. Heliyon 2024; 10:e25726. [PMID: 38390138 PMCID: PMC10881556 DOI: 10.1016/j.heliyon.2024.e25726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Cattle abortion, stemming from both infectious and non-infectious causes, lead to notable financial setbacks in the cattle industry. Between October 2020 and October 2021, an epidemiological investigation took place in Southwest Ethiopia. The objective was to determine the magnitude and seasonal occurrence of the presumed causes of cattle abortion. Information for this research was collected through 30 group discussions, each involving 8-12 participants. Various participatory epidemiological tools, including semi-structured interviews, pairwise ranking, matrix scoring, proportional piling, and seasonal calendars, were employed in the designated areas. By employing the pairwise ranking approach, the relative significance of presumed causes contributing to cattle abortion was established. The identified major presumed causes of cattle abortion, listed in increasing order of importance, were blackleg, foot-and-mouth disease, pasteurellosis, lumpy skin disease, listeriosis, trypanosomosis, Q fever, leptospirosis, and brucellosis. Participants identified brucellosis (6.1%), leptospirosis (6.0%), and Q-fever (5.7%) as the primary presumed causes of abortion, determined through proportional piling. Matrix scoring analysis indicated a robust agreement (W = 0.464-0.989; P < 0.001) among different informant groups regarding both the presumed causes of abortion and the associated clinical signs. Brucellosis and Q-fever were perceived to be more prevalent during the dry season, while leptospirosis, listeriosis, and lumpy skin disease were associated with the wet, hot, and rainy seasons. However, Pasteurellosis, blackleg, and physical/mechanical factors were deemed to be consistently encountered causes of abortion throughout the year. The patterns of seasonal occurrence of suspected abortion causes were widely acknowledged across informant groups (W = 0.977-0.863; P < 0.001). Local practices involving herbal remedies and traditional methods were employed by participants to manage cattle abortion. Moreover, the results underscore the necessity for additional laboratory research to pinpoint the exact causes of abortion in the study areas.
Collapse
Affiliation(s)
- Dereje Tulu Robi
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O Box: 34, Tepi, Ethiopia
| | - Ararsa Bogale
- Ethiopian Institute of Agricultural Research, Holeta Agricultural Research Center, P.O. Box 2003, Holeta, Ethiopia
| | - Shiferaw Temteme
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O Box: 34, Tepi, Ethiopia
| | - Melkam Aleme
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O Box: 34, Tepi, Ethiopia
| | - Beksisa Urge
- Ethiopian Institute of Agricultural Research, Holeta Agricultural Research Center, P.O. Box 2003, Holeta, Ethiopia
| |
Collapse
|
4
|
Tesfaye AB, Assefa GA, Shishaye LB, Abera BM, Gebreanenya NT, Gebregiorgis GL, Dürr S. Outbreak investigation of foot-and-mouth disease in cattle in Tigray region, Northern Ethiopia. Front Vet Sci 2023; 10:1157395. [PMID: 37645676 PMCID: PMC10462391 DOI: 10.3389/fvets.2023.1157395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023] Open
Abstract
An investigation of a foot-and-mouth disease (FMD) outbreak was conducted between late October and mid-December 2019 in Tigray region. The outbreak investigation team collected epidemiological data from the six villages of Kafta Humera and Seharti Samre districts, including morbidity proportions, mortality proportions, and clinical signs, and cattle management and vaccination history were collected via participatory methods, including interviews and group discussions with local experts and farmers in Kafta Humera and reports from the district veterinarians in Seharti Samre. Twenty-two tissue samples were collected for laboratory confirmation. Overall, 4,299/9,811 (43.8%) and 13,654/16,921 (80.6%) cattle showed clinical signs for FMD in Kafta Humera and Seharti Samre, respectively. In Kafta Humera, the highest morbidity proportion was found in adult cows and heifers (48.1%), followed by 27.8% in oxen and 15.9% in calves. In Seharti Samre, the morbidity proportion was similar in all age groups at ~81%. No death of FMD-suspected cattle was reported throughout the outbreak. The serotype of foot-and-mouth disease virus (FMDV) identified by laboratory analysis differed between the two districts (serotype O in Kafta Humera and serotype A in Seharti Samre). We, therefore, suggest that the outbreaks in the two districts occurred independently from each other. Experts and farmers were interviewed and believed that the outbreak in Kafta Humera was most likely caused by interaction between cattle and wildlife from the surrounding Kafta Sheraro National Park, which share common grazing land. This outbreak investigation showed that FMD can cause devastating cattle morbidity. A regular vaccination program against the identified circulating FMDV serotypes with sufficient coverage is required to avoid future outbreaks.
Collapse
Affiliation(s)
- Adehanom Baraki Tesfaye
- Mekelle Agricultural Research Center, Tigray Agricultural Research Institute, Mekelle, Ethiopia
| | - Guash Abay Assefa
- Abergelle Agricultural Research Center, Tigray Agricultural Research Institute, Abi Adi, Ethiopia
| | - Leul Berhe Shishaye
- Humera Begait Research Center, Tigray Agricultural Research Institute, Humera, Ethiopia
| | - Bisrat Mesfin Abera
- Tigray Bureau of Agriculture and Rural Development, Animal Health Core-process, Mekelle, Ethiopia
| | | | | | - Salome Dürr
- Veterinary Public Health Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Begovoeva M, Ehizibolo DO, Adedeji AJ, Oguche MO, Oyekan O, Ijoma SI, Atai RB, Wungak Y, Dogonyaro BB, Lazarus DD, Samson M, Ularamu H, Muhammad M, Rosso F, Sumption KJ, Beard PM, Ludi AB, Stevens KB, Limon G. Factors associated with foot-and-mouth disease seroprevalence in small ruminants and identification of hot-spot areas in northern Nigeria. Prev Vet Med 2023; 212:105842. [PMID: 36706557 DOI: 10.1016/j.prevetmed.2023.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 12/07/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Many small ruminants infected with foot-and-mouth disease (FMD) remain asymptomatic, with the capacity to promote silent viral spread within domestic and wildlife species. However, little is known about the epidemiological role played by small ruminants in FMD. In particular, there are few studies that examine FMD seroprevalence, spatial patterns and risk factors for exposure in small ruminants. A cross-sectional study was conducted in northern Nigeria (Bauchi, Kaduna, and Plateau States) to determine the true seroprevalence of FMD in backyard small ruminants, identify factors associated with FMD seroconversion at animal and household levels, and identify spatial patterns for FMD virus exposure. Data on animal (n = 1800) and household (n = 300) characteristics were collected using a standardised questionnaire. Sera samples from 1800 small ruminants were tested for antibodies against non-structural proteins of FMD virus. True seroprevalence was estimated stochastically to account for variability and uncertainty in the test sensitivity and specificity previously reported. Risk factors for FMD seropositivity were identified at animal and household levels and spatial patterns were determined. The overall true seroprevalence for FMD virus, in the small ruminant population tested, was estimated to be 10.2 % (95 % Credible Interval (CrI) 0.0-19.0), while State-level estimates were 17.3 % (95 % CrI 0.0-25.8) for Kaduna, 6.9 % (95% CrI 0.0-15.8) for Bauchi, and 3.6 % (95 % CrI 0.0-12.6) for Plateau. State and species were the main risk factors identified at animal level, with interaction detected between them. Compared to goats in Plateau, the odds of testing positive were higher for goats in Bauchi (Odds Ratio (OR)= 1.83, 95 % CI 1.13-2.97, p = 0.01) and Kaduna (OR=2.97, 95 % CI 1.89-4.67, p < 0.001), as well as for sheep in Plateau (OR=3.78, 95 % CI 2.08-6.87, p < 0.001), Bauchi (OR=1.61, 95 % CI 0.91-2.84, p = 0.10), and Kaduna (OR=3.11, 95 % CI 1.61-6.01, p = 0.001). Households located in Kaduna were more likely to have a higher number of seropositive SR compared to those in Plateau (Prevalence Ratio (PR)= 1.75, 95 % CI 1.30-2.36, p < 0.001), and households keeping sheep flocks were more likely to be seropositive (from 1 to 10 sheep: PR=1.39, 95 % CI 1.05-1.82, p = 0.02; more than 10 sheep: PR=1.55, 95 % CI 1.12-2.15, p = 0.008) compared to those that did not keep sheep. A hot-spot was detected in Kaduna, and a cold-spot in Plateau. These results reveal that small ruminants had been recently exposed to FMD virus with spatial heterogeneity across the study area.
Collapse
Affiliation(s)
- Mattia Begovoeva
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, NW1 0TU, UK; European Commission for the Control of Foot-and-Mouth Disease, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, Rome, 00153, Italy; Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, Torino, 10154, Italy.
| | - David O Ehizibolo
- National Veterinary Research Institute, Vom, Plateau State, Nigeria.
| | | | - Moses O Oguche
- National Veterinary Research Institute, Vom, Plateau State, Nigeria.
| | - Olumuyiwa Oyekan
- National Veterinary Research Institute, Vom, Plateau State, Nigeria.
| | - Sandra I Ijoma
- National Veterinary Research Institute, Vom, Plateau State, Nigeria.
| | - Rebecca B Atai
- National Veterinary Research Institute, Vom, Plateau State, Nigeria.
| | - Yiltawe Wungak
- National Veterinary Research Institute, Vom, Plateau State, Nigeria.
| | | | - David D Lazarus
- National Veterinary Research Institute, Vom, Plateau State, Nigeria.
| | - Mark Samson
- National Veterinary Research Institute, Vom, Plateau State, Nigeria.
| | - Hussaini Ularamu
- National Veterinary Research Institute, Vom, Plateau State, Nigeria.
| | - Maryam Muhammad
- National Veterinary Research Institute, Vom, Plateau State, Nigeria.
| | - Fabrizio Rosso
- European Commission for the Control of Foot-and-Mouth Disease, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, Rome, 00153, Italy.
| | - Keith J Sumption
- European Commission for the Control of Foot-and-Mouth Disease, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, Rome, 00153, Italy.
| | - Philippa M Beard
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK; School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Anna B Ludi
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK.
| | - Kim B Stevens
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, NW1 0TU, UK.
| | - Georgina Limon
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, NW1 0TU, UK; The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK.
| |
Collapse
|
6
|
Jouzi Z, Leung YF, Nelson S. Addressing the food security and conservation challenges: Can be aligned instead of apposed? FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.921895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This perspective article provides an overview of the interaction between food security and conservation as two of the most important challenges of our time. To provide a better understanding of the topic, a conceptual framework for the possible pathways of positive and negative impacts of protected areas (PAs) on four dimensions of food security is proposed. Considering the importance of hunting and shifting agriculture in food security and the challenges caused by them in conservation, the cases of hunting and shifting agriculture were explored. Finally, the rights-based approaches in conservation and food security, as a new approach with the potential to protect people and the planet as a synergistic approach is discussed.
Collapse
|
7
|
Chimera ET, Fosgate GT, Etter EM, Jemberu W, Kamwendo G, Njoka P. Spatio-temporal patterns and risk factors of foot-and-mouth disease in Malawi between 1957 and 2019. Prev Vet Med 2022; 204:105639. [DOI: 10.1016/j.prevetmed.2022.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/15/2022]
|
8
|
Haoran W, Jianhua X, Maolin O, Hongyan G, Jia B, Li G, Xiang G, Hongbin W. Assessment of foot-and-mouth disease risk areas in mainland China based spatial multi-criteria decision analysis. BMC Vet Res 2021; 17:374. [PMID: 34872574 PMCID: PMC8647368 DOI: 10.1186/s12917-021-03084-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/16/2021] [Indexed: 12/01/2022] Open
Abstract
Background Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals. As a transboundary animal disease, the prevention and control of FMD are important. This study was based on spatial multi-criteria decision analysis (MCDA) to assess FMD risk areas in mainland China. Ten risk factors were identified for constructing risk maps by scoring, and the analytic hierarchy process (AHP) was used to calculate the criteria weights of all factors. Different risk factors had different units and attributes, and fuzzy membership was used to standardize the risk factors. The weighted linear combination (WLC) and one-at-a-time (OAT) were used to obtain risk and uncertainty maps as well as to perform sensitivity analysis. Results Four major risk areas were identified in mainland China, including western (parts of Xinjiang and Tibet), southern (parts of Yunnan, Guizhou, Guangxi, Sichuan and Guangdong), northern (parts of Gansu, Ningxia and Inner Mongolia), and eastern (parts of Hebei, Henan, Anhui, Jiangsu and Shandong). Spring is the main season for FMD outbreaks. Risk areas were associated with the distance to previous outbreak points, grazing areas and cattle density. Receiver operating characteristic (ROC) analysis indicated that the risk map had good predictive power (AUC=0.8634). Conclusions These results can be used to delineate FMD risk areas in mainland China, and veterinary services can adopt the targeted preventive measures and control strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-03084-5.
Collapse
Affiliation(s)
- Wang Haoran
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China
| | - Xiao Jianhua
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China
| | - Ouyang Maolin
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China
| | - Gao Hongyan
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China
| | - Bie Jia
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China
| | - Gao Li
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China
| | - Gao Xiang
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China
| | - Wang Hongbin
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| |
Collapse
|
9
|
Blignaut B, van Heerden J, Reininghaus B, Fosgate GT, Heath L. Characterization of SAT2 foot-and-mouth disease 2013/2014 outbreak viruses at the wildlife-livestock interface in South Africa. Transbound Emerg Dis 2020; 67:1595-1606. [PMID: 31984622 DOI: 10.1111/tbed.13493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 12/12/2019] [Accepted: 01/20/2020] [Indexed: 11/30/2022]
Abstract
The Southern African Territories (SAT)-type foot-and-mouth disease viruses (FMDV) are endemic to the greater Kruger National Park (KNP) area in South Africa, where they are maintained through persistent infections in African buffalo. The occurrence of FMDV within the Greater KNP area constitutes a continual threat to the livestock industry. To expand on knowledge of FMDV diversity, the genetic and antigenic relatedness of SAT2-type viruses isolated from cattle during a FMD outbreak in Mpumalanga Province in 2013 and 2014 were investigated. Cattle from twelve diptanks tested positive on polymerase chain reaction (PCR), and molecular epidemiological relationships of the viruses were determined by VP1 sequencing. Phylogenetic analysis of the SAT2 viruses from the FMD outbreak in Mpumalanga in 2013/2014 revealed their genetic relatedness to other SAT2 isolates from topotype I (South Africa, Zimbabwe and Mozambique), albeit genetically distinct from previous South African outbreak viruses (2011 and 2012) from the same topotype. The fifteen SAT2 field isolates clustered into a novel genotype with ≥98.7% nucleotide identity. High neutralization antibody titres were observed for four 2013/2014 outbreak viruses tested against the SAT2 reference antisera representative of viruses isolated from cattle and buffalo from South Africa (topotype I) and Zimbabwe (topotype II). Comparison of the antigenic relationship (r1 values) of the outbreak viruses with reference antisera indicated a good vaccine match with 90% of r1 values > 0.3. The r1 values for the 2013/2014 outbreak viruses were 0.4 and above for the three South African vaccine/reference strains. These results confirm the presence of genetic and antigenic variability in SAT2 viruses and suggest the emergence of new variants at the wildlife-livestock interface in South Africa. Continuous characterization of field viruses should be performed to identify new virus strains as epidemiological surveillance to improve vaccination efforts.
Collapse
Affiliation(s)
- Belinda Blignaut
- Transboundary Animal Diseases, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, South Africa.,Mpumalanga Veterinary Services, Department of Agriculture, Rural Development, Land and Environmental Affairs, Thulamahashe, South Africa
| | - Juanita van Heerden
- Transboundary Animal Diseases, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, South Africa
| | - Björn Reininghaus
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Geoffrey T Fosgate
- Mpumalanga Veterinary Services, Department of Agriculture, Rural Development, Land and Environmental Affairs, Thulamahashe, South Africa
| | - Livio Heath
- Transboundary Animal Diseases, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, South Africa
| |
Collapse
|