1
|
Zawisza M, Rebl A, Teitge F, Krzystyniak B, Piackova V, Gela D, Kocour M, Chadzinska M, Adamek M, Rakus K. Stressing out-carp edema virus induces stress and modulates immune response in common carp. Front Immunol 2024; 15:1350197. [PMID: 38576605 PMCID: PMC10991768 DOI: 10.3389/fimmu.2024.1350197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Carp edema virus (CEV) is a fish poxvirus that primarily infects the gills of common carp. CEV causes koi sleepy disease (KSD), which is highly contagious and can result in mortality of up to 100%. Methods In the present study, we analyzed the stress and immune responses during KSD in two strains of common carp with different resistance to CEV: susceptible koi and resistant Amur sazan. Experiments were performed at two temperatures: 12°C and 18°C. In the case of koi carp, we also analyzed the effect of supplementation of 0.6% NaCl into tank water, which prevents mortality of the CEV-infected fish (salt rescue model). Results We found that CEV-infected koi kept at 18°C had the highest viral load, which correlated with the most severe histopathological changes in the gills. CEV infection resulted in the activation of stress response reflected by the upregulated expression of genes involved in stress response in the stress axis organs and increased levels of cortisol and glucose in the blood plasma. These changes were the most pronounced in CEV-infected koi kept at 18°C. At both temperatures, the activation of antiviral immune response was observed in koi kept under freshwater and NaCl conditions upon CEV infection. Interestingly, a clear downregulation of the expression of adaptive immune genes was observed in CEV-infected koi kept under freshwater at 18°C. Conclusion CEV induces a stress response and modulates adaptive immune response in koi, and this is correlated with the level of viral load and disease development.
Collapse
Affiliation(s)
- Maria Zawisza
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Alexander Rebl
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Felix Teitge
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Barbara Krzystyniak
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Veronika Piackova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodnany, Czechia
| | - David Gela
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodnany, Czechia
| | - Martin Kocour
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodnany, Czechia
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
2
|
Nylund A, Kloster-Jensen T, Mohammadi F, Lagadec E, Plarre H. Genotyping tool for salmonid gill pox virus (SGPV) obtained from farmed and wild Atlantic salmon (Salmo salar). Arch Virol 2023; 168:249. [PMID: 37684418 PMCID: PMC10491535 DOI: 10.1007/s00705-023-05866-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/30/2023] [Indexed: 09/10/2023]
Abstract
Poxviruses are common viruses found in vertebrate species. In 2006, the first poxvirus associated with salmon, salmonid gill poxvirus (SGPV), was identified during an outbreak of gill disease at a smolt production site in northern Norway and at two marine farms in western Norway. Poxviruses had previously been detected in ayu (Plecoglossus altivelis) and koi carp (Cyprinus carpio). In all three fish species, poxviruses are associated with gill disease. It has not been possible to culture SGPV from Norway, and little is known about its virulence. However, the association between SGPV and gill disease in salmon has shown the need for molecular tools to identify reservoirs and transmission routes. Sequencing the genome of a second isolate of SGPV has made it possible to compare variable regions between two strains of the virus, showing the presence of a large number of variable regions that exhibit both variable numbers of tandem repeats and intra-ORF variation. We present eight regions that are suitable for distinguishing strains of SGPV and determining their phylogenetic relationship, and these were used to compare SGPV isolates obtained from both farmed and wild salmon in fresh and sea water. The prevalence of the virus was found to be higher in wild salmon in rivers than in returning wild salmon collected from traps in Norwegian fjords. Genotyping based on the eight selected variable regions, suggests the presence of geographically distinct isolates in freshwater among both farmed and wild salmon, while SGPV from marine farms shows high local diversity and a wide geographical distribution of similar strains of the virus.
Collapse
Affiliation(s)
- Are Nylund
- Fish Diseases Research Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Thomas Kloster-Jensen
- Fish Diseases Research Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Faezeh Mohammadi
- Fish Diseases Research Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Erwan Lagadec
- Fish Diseases Research Group, Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | - Heidrun Plarre
- Fish Diseases Research Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Emergence of Salmon Gill Poxvirus. Viruses 2022; 14:v14122701. [PMID: 36560705 PMCID: PMC9783891 DOI: 10.3390/v14122701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The Salmon gill poxvirus (SGPV) has emerged in recent years as the cause of an acute respiratory disease that can lead to high mortality in farmed Atlantic salmon presmolts, known as Salmon gill poxvirus disease. SGPV was first identified in Norway in the 1990s, and its large DNA genome, consisting of over 206 predicted protein-coding genes, was characterized in 2015. This review summarizes current knowledge relating to disease manifestation and its effects on the host immune system and describes dissemination of the virus. It also demonstrates how newly established molecular tools can help us to understand SGPV and its pathogenesis. Finally, we conclude and ask some burning questions that should be addressed in future research.
Collapse
|
4
|
Østevik L, Stormoen M, Hellberg H, Kraugerud M, Manji F, Lie K, Nødtvedt A, Rodger H, Alarcón M. A cohort study of gill infections, gill pathology and gill-related mortality in sea-farmed Atlantic salmon (Salmo salar L.): A descriptive analysis. JOURNAL OF FISH DISEASES 2022; 45:1301-1321. [PMID: 35707921 PMCID: PMC9543555 DOI: 10.1111/jfd.13662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 05/30/2023]
Abstract
Gill disease is an important cause of economic losses, fish mortality and reduced animal welfare in salmonid farming. We performed a prospective cohort study, following groups of Atlantic salmon in Western Norway with repeated sampling and data collection from the hatchery phase and throughout the 1st year at sea. The objective was to determine if variation in pathogen prevalence and load, and zoo- and phytoplankton levels had an impact on gill health. Further to describe the temporal development of pathogen prevalence and load, and gill pathology, and how these relate to each other. Neoparamoeba perurans appeared to be the most important cause of gill pathology. No consistent covariation and no or weak associations between the extent of gill pathology and prevalence and load of SGPV, Ca. B. cysticola and D. lepeophtherii were observed. At sea, D. lepeophtherii and Ca. B. cysticola persistently infected all fish groups. Fish groups negative for SGPV at sea transfer were infected at sea and fish groups tested negative before again testing positive. This is suggestive of horizontal transmission of infection at sea and may indicate that previous SGPV infection does not protect against reinfection. Coinfections with three or more putative gill pathogens were found in all fish groups and appear to be the norm in sea-farmed Atlantic salmon in Western Norway.
Collapse
Affiliation(s)
| | - Marit Stormoen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary MedicineNorwegian University of Life SciencesÅsNorway
| | | | | | | | | | - Ane Nødtvedt
- Department of Production Animal Clinical Sciences, Faculty of Veterinary MedicineNorwegian University of Life SciencesÅsNorway
| | | | | |
Collapse
|
5
|
Herrero A, Rodger H, Hayward AD, Cousens C, Bron JE, Dagleish MP, Thompson KD. Prospective Longitudinal Study of Putative Agents Involved in Complex Gill Disorder in Atlantic salmon ( Salmo salar). Pathogens 2022; 11:878. [PMID: 36014998 PMCID: PMC9415954 DOI: 10.3390/pathogens11080878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 01/27/2023] Open
Abstract
Complex gill disorder (CGD) is an important condition in Atlantic salmon aquaculture, but the roles of the putative aetiological agents in the pathogenesis are uncertain. A longitudinal study was undertaken on two salmon farms in Scotland to determine the variations in loads of CGD-associated pathogens (Desmozoon lepeophtherii, Candidatus Branchiomonas cysticola, salmon gill pox virus (SGPV) and Neoparamoeba perurans) estimated by quantitative PCR. In freshwater, Ca. B. cysticola and SGPV were detected in both populations, but all four pathogens were detected on both farms during the marine stage. Candidatus B. cysticola and D. lepeophtherii were detected frequently, with SGPV detected sporadically. In the marine phase, increased N. perurans loads associated significantly (p < 0.05) with increases in semi-quantitative histological gill-score (HGS). Increased Ca. B. cysticola load associated significantly (p < 0.05) with increased HGS when only Farm B was analysed. Higher loads of D. lepeophtherii were associated significantly (p < 0.05) with increased HGS on Farm B despite the absence of D. lepeophtherii-type microvesicles. Variations in SGPV were not associated significantly (p > 0.05) with changes in HSG. This study also showed that water temperature (season) and certain management factors were associated with higher HGS. This increase in histological gill lesions will have a deleterious impact on fish health and welfare, and production performance.
Collapse
Affiliation(s)
- Ana Herrero
- Moredun Research Institute, Penicuik EH26 0PZ, UK
- VAI Consulting, Oban PA37 1SZ, UK
| | - Hamish Rodger
- VAI Consulting, Kinvara, Co., Galway H91 F8XF, Ireland
| | | | | | - James E Bron
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
| | | | | |
Collapse
|
6
|
Multi-agent in situ hybridization confirms Ca. Branchiomonas cysticola as a major contributor in complex gill disease in Atlantic salmon. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100026. [DOI: 10.1016/j.fsirep.2021.100026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/25/2021] [Accepted: 09/05/2021] [Indexed: 02/08/2023] Open
|
7
|
Amundsen MM, Tartor H, Andersen K, Sveinsson K, Thoen E, Gjessing MC, Dahle MK. Mucosal and Systemic Immune Responses to Salmon Gill Poxvirus Infection in Atlantic Salmon Are Modulated Upon Hydrocortisone Injection. Front Immunol 2021; 12:689302. [PMID: 34177946 PMCID: PMC8221106 DOI: 10.3389/fimmu.2021.689302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Salmon Gill Poxvirus Disease (SGPVD) has emerged as a cause of acute mortality in Atlantic salmon (Salmo salar L.) presmolts in Norwegian aquaculture. The clinical phase of the disease is associated with apoptotic cell death in the gill epithelium causing acute respiratory distress, followed by proliferative changes in the regenerating gill in the period after the disease outbreak. In an experimental SGPV challenge trial published in 2020, acute disease was only seen in fish injected with hydrocortisone 24 h prior to infection. SGPV-mediated mortality in the hydrocortisone-injected group was associated with more extensive gill pathology and higher SGPV levels compared to the group infected with SGPV only. In this study based on the same trial, SGPV gene expression and the innate and adaptive antiviral immune response was monitored in gills and spleen in the presence and absence of hydrocortisone. Whereas most SGPV genes were induced from day 3 along with the interferon-regulated innate immune response in gills, the putative SGPV virulence genes of the B22R family were expressed already one day after SGPV exposure, indicating a potential role as early markers of SGPV infection. In gills of the hydrocortisone-injected fish infected with SGPV, MX expression was delayed until day 10, and then expression skyrocketed along with the viral peak, gill pathology and mortality occurring from day 14. A similar expression pattern was observed for Interferon gamma (IFNγ) and granzyme A (GzmA) in the gills, indicating a role of acute cytotoxic cell activity in SGPVD. Duplex in situ hybridization demonstrated effects of hydrocortisone on the number and localization of GzmA-containing cells, and colocalization with SGPV infected cells in the gill. SGPV was generally not detected in spleen, and gill infection did not induce any corresponding systemic immune activity in the absence of stress hormone injection. However, in fish injected with hydrocortisone, IFNγ and GzmA gene expression was induced in spleen in the days prior to acute mortality. These data indicate that suppressed mucosal immune response in the gills and the late triggered systemic immune response in the spleen following hormonal stress induction may be the key to the onset of clinical SGPVD.
Collapse
Affiliation(s)
- Marit M Amundsen
- Department of Fish Health, Norwegian Veterinary Institute, Ås, Norway
| | - Haitham Tartor
- Department of Fish Health, Norwegian Veterinary Institute, Ås, Norway
| | - Kathrine Andersen
- Department of Fish Health, Norwegian Veterinary Institute, Ås, Norway
| | | | - Even Thoen
- Department of Fish Health, Norwegian Veterinary Institute, Ås, Norway.,Patogen, Ålesund, Norway
| | - Mona C Gjessing
- Department of Fish Health, Norwegian Veterinary Institute, Ås, Norway
| | - Maria K Dahle
- Department of Fish Health, Norwegian Veterinary Institute, Ås, Norway.,The Norwegian College of Fishery Science, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
8
|
Gjessing MC, Krasnov A, Timmerhaus G, Brun S, Afanasyev S, Dale OB, Dahle MK. The Atlantic Salmon Gill Transcriptome Response in a Natural Outbreak of Salmon Gill Pox Virus Infection Reveals New Biomarkers of Gill Pathology and Suppression of Mucosal Defense. Front Immunol 2020; 11:2154. [PMID: 33013908 PMCID: PMC7509425 DOI: 10.3389/fimmu.2020.02154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
The salmon gill poxvirus (SGPV) is a large DNA virus that infects gill epithelial cells in Atlantic salmon and is associated with acute high mortality disease outbreaks in aquaculture. The pathological effects of SGPV infection include gill epithelial apoptosis in the acute phase of the disease and hyperplasia of gill epithelial cells in surviving fish, causing damage to the gill respiratory surface. In this study, we sampled gills from Atlantic salmon presmolts during a natural outbreak of SGPV disease (SGPVD). Samples covered the early phase of infection, the acute mortality phase, the resolving phase of the disease and control fish from the same group and facility. Mortality, the presence and level of SGPV and gill epithelial apoptosis were clearly associated. The gene expression pattern in the acute phase of SGPVD was in tune with the pathological findings and revealed novel transcript-based disease biomarkers, including pro-apoptotic and proliferative genes, along with changes in expression of ion channels and mucins. The innate antiviral response was strongly upregulated in infected gills and chemokine expression was altered. The regenerating phase did not reveal adaptive immune activity within the study period, but several immune effector genes involved in mucosal protection were downregulated into the late phase, indicating that SGPV infection could compromise mucosal defense. These data provide novel insight into the infection mechanisms and host interaction of SGPV.
Collapse
Affiliation(s)
- Mona C Gjessing
- Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway
| | - Aleksei Krasnov
- Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway
| | - Gerrit Timmerhaus
- Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway
| | | | - Sergey Afanasyev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Ole Bendik Dale
- Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway
| | - Maria K Dahle
- Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway.,The Norwegian College of Fishery Science, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|