1
|
Lu L, Qi Z, Wang H, Chen Z, Song Z, Li Z, Wang X, Zhao B, Wei X, Shao Y, Wang Z, Tu J, Song X. The Hcp2b of APEC induces mitochondrial damage in chicken DF-1 cells. Avian Pathol 2024:1-9. [PMID: 39552458 DOI: 10.1080/03079457.2024.2431803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/19/2024]
Abstract
The haemolysin co-regulatory protein (Hcp) plays a significant role in the pathogenicity of avian pathogenic Escherichia coli (APEC) as an effector protein of the type VI secretion system (T6SS) to the host. Meanwhile, mitochondria in the host are the target of effector proteins of various secretion systems. Here, we explored the effects of APEC effector Hcp2b on the mitochondria of DF-1 cells and found that Hcp2b results in damage in mitochondria. Next, 68 target proteins in DF-1 cell lysates were identified that interacted with Hcp2b by streptavidin-biotin pull-down assay combined with LC-MS/MS, among which ADP/ATP transporter carrier (SLC25A4) is a mitochondria-associated protein; protein docking analysis showed that Hcp2b binds well to SLC25A4. Therefore, we hypothesize that the Hcp2b contributes to mitochondrial damage in DF-1 cells through interaction with the SLC25A4.
Collapse
Affiliation(s)
- Liting Lu
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Zhao Qi
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Haiyang Wang
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Zhe Chen
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Zichao Song
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Ziqi Li
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Xiaoru Wang
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Bingyu Zhao
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Xiyang Wei
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Ying Shao
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Zhenyu Wang
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Jian Tu
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Xiangjun Song
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| |
Collapse
|
2
|
Liu K, Qiu S, Fang L, Cui L, Dong J, Guo L, Meng X, Li J, Wang H. The Effect of Meloxicam on Inflammatory Response and Oxidative Stress Induced by Klebsiella pneumoniae in Bovine Mammary Epithelial Cells. Vet Sci 2024; 11:607. [PMID: 39728947 DOI: 10.3390/vetsci11120607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) is a significant pathogen associated with clinical mastitis in cattle. Anti-inflammatory drugs are necessary to alleviate pain and inflammation during clinical mastitis. Among many drugs, meloxicam (MEL) has been widely used in clinical mastitis because of its excellent inhibitory effect on the cyclooxygenase-2 (COX-2) enzyme. However, the effectiveness of MEL on the inflammatory response and oxidative stress induced by K. pneumoniae are unclear. In the present study, primary BMECs were infected with K. pneumoniae in the presence or absence of plasma maintenance concentration of MEL (0.5 and 5 μM). Following 1 or 3 h of combined treatment with K. pneumoniae and MEL, BMECs were gathered to assess the related indicators. The results showed that MEL at plasma maintenance concentrations exerted no influence on the viability of uninfected BMECs and also had no impact on bacterial load in BMECs. At these concentrations, MEL was able to inhibit the mRNA expression of COX-2, Interleukin (IL)-1β, Tumor necrosis factor α (TNF-α), and IL-6 while simultaneously elevating the mRNA levels of IL-8 in K. pneumoniae-infected BMECs. MEL had clear effects on relieving oxidative stress by increasing the activity of superoxide dismutase (SOD) and catalase (CAT) and the level of total antioxidant capacity (T-AOC). The mechanisms by which MEL mitigated the inflammatory response and oxidative stress were partially attributed to inhibition of the nuclear transcription factor-kappa B (NF-κB) signaling pathway and improvement of the activation of the nuclear factor erythroid 2-related factors (Nrf2) signaling pathway. To conclude, the results manifested that MEL at plasma maintenance concentrations protected BMECs from inflammatory and oxidative damage induced by K. pneumoniae.
Collapse
Affiliation(s)
- Kangjun Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225000, China
| | - Shangfei Qiu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225000, China
| | - Li Fang
- School of Veterinary Medicine, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Luying Cui
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225000, China
| | - Junsheng Dong
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225000, China
| | - Long Guo
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225000, China
| | - Xia Meng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225000, China
| | - Jianji Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225000, China
| | - Heng Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225000, China
| |
Collapse
|
3
|
Yang J, Xiong Y, Barkema HW, Tong X, Lin Y, Deng Z, Kastelic JP, Nobrega DB, Wang Y, Han B, Gao J. Comparative genomic analyses of Klebsiella pneumoniae K57 capsule serotypes isolated from bovine mastitis in China. J Dairy Sci 2024; 107:3114-3126. [PMID: 37944808 DOI: 10.3168/jds.2023-23721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/21/2023] [Indexed: 11/12/2023]
Abstract
Klebsiella pneumoniae can cause severe clinical mastitis in dairy cows, with K. pneumoniae type K57 (K57-KP) being the most common capsular serotype. To identify virulence factors and antimicrobial-resistance (AMR) genes of K57-KP with varying virulence, Galleria mellonella (greater wax moth) larvae were infected as a screening model to characterize virulence of 90 K57-KP strains, with 10 and 11 strains defined as virulent or attenuated, respectively, based on larval survival rates. Next, virulence of these 21 isolates was subsequently confirmed in adhesion and lactate dehydrogenase release assays, using bovine mammary epithelial cells cultured in vitro. Finally, genes associated with virulence and AMR were characterize with whole-genome sequencing. These 21 K57-KP strains were designated into 16 sequence types based on multi-locus sequence typing and allocated in phylogenetic analysis based on single nucleotide polymorphisms. We found great genetic diversity among isolates. In addition, adhesion-associated genes (e.g., fimA, sfaA, and focA) aminoglycoside-resistance genes (aph(6)-Id, strAB) were associated with virulence. This study provided new knowledge regarding virulence of K57-KP associated with bovine mastitis, which may inform development of novel diagnostic tools and prevention strategies for bovine mastitis.
Collapse
Affiliation(s)
- Jingyue Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yindi Xiong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Herman W Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Xiaofang Tong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yushan Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhaoju Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - John P Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Diego B Nobrega
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Yue Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Lu L, Qi Z, Chen Z, Wang H, Wei X, Zhao B, Wang Z, Shao Y, Tu J, Song X. Avian pathogenic Escherichia coli T6SS effector protein Hcp2a causes mitochondrial dysfunction through interaction with LETM1 protein in DF-1 cells. Poult Sci 2024; 103:103514. [PMID: 38367471 PMCID: PMC10879833 DOI: 10.1016/j.psj.2024.103514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/19/2024] Open
Abstract
The type VI secretion system (T6SS) of avian pathogenic Escherichia coli (APEC) can affect the functions of eukaryotic cells by secreting or injecting effectors. Hemolysin co-regulatory protein (Hcp), one of the markers of the T6SS, is both a structural protein and an effector protein of the T6SS. According to previous studies, mitochondria in eukaryotic cells are targeted by pathogenic bacteria. However, little is known about the regulation of mitochondria in eukaryotic host cells by the T6SS effector protein Hcp of APEC. In our study, DF-1 cells co-incubated with Hcp2a protein for 6 h showed decreased mitochondrial membrane potential, increased Ca2+ concentration, and increased cellular reactive oxygen species (ROS) levels. We therefore conclude that Hcp2a protein causes dysfunction to mitochondria in DF-1 cells. To explain the mechanism that causes mitochondrial dysfunction, we reanalyzed the Hcp2a interaction protein dataset in DF-1 cells, and the Leucine zipper EF-hand-containing transmembrane protein 1 (LETM1), which is associated with mitochondria, was screened. The protein and molecular docking results showed that Hcp2a protein and LETM1 protein have better binding. Finally, subcellular localization results showed that Hcp2a was localized to mitochondria. In summary, Hcp2a effector proteins caused dysfunction to DF-1 cellular mitochondria, and we hypothesize that the interaction of Hcp2a protein with LETM1 protein induces mitochondrial dysfunction and promotes mitochondrial localization of Hcp2a in DF-1 cells.
Collapse
Affiliation(s)
- Liting Lu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Zhao Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Zhe Chen
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Haiyang Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Xiyang Wei
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Bingyu Zhao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Zhenyu Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Ying Shao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, PR China
| | - Xiangjun Song
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, PR China.
| |
Collapse
|
5
|
Liu J, Gao Y, Zhang H, Hao Z, Zhou G, Wen H, Su Q, Tong C, Yang X, Wang X. Forsythiaside A attenuates mastitis via PINK1/Parkin-mediated mitophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155358. [PMID: 38241916 DOI: 10.1016/j.phymed.2024.155358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Bovine mastitis is the most common animal production disease in the global dairy industry, which affects the health of dairy cows. When bovine mastitis occurs, the mitochondrial metabolism of breast tissue increases, and the relationship between inflammation and mitophagy has become a hot topic for many scholars. The abuse of antibiotics leads to the increase of resistance to bovine mastitis. FTA is one of the main effective components of Forsythia suspensa, which has anti-inflammatory, anti-infection, anti-oxidation and anti-virus pharmacological effects, and has broad application prospects in the prevention and treatment of bovine mastitis. However, the relationship between the anti-inflammatory effects of FTA and mitophagy is still unclear. PURPOSE This study mainly explores the anti-inflammatory effect of FTA in bovine mastitis and the relationship between mitophagy. METHODS MAC-T cells and wild-type mice were used to simulate the in vitro and in vivo response of mastitis. After the pretreatment with FTA, CsA inhibitors and siPINK1 were used to interfere with mitophagy, and the mitochondrial function impairment and the expression of inflammatory factors were detected. RESULTS It was found that pre-treatment with FTA significantly reduced LPS induced inflammatory response and mitochondrial damage, while promoting the expression of mitophagy related factors. However, after inhibiting mitophagy, the anti-inflammatory effect of FTA was inhibited. CONCLUSION This study is the first to suggest the relationship between the anti-inflammatory effect of FTA and mitophagy. PINK1/Parkin-mediated mitophagy is one of the ways that FTA protects MAC-T cells from LPS-induced inflammatory damage.
Collapse
Affiliation(s)
- Jingjing Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Yingkui Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Huaqiang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Zhonghua Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Guangwei Zhou
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Haojie Wen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Qing Su
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Chao Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China; Zhengzhou Key Laboratory of Research and Evaluation of Traditional Chinese Veterinary Medicine, Zhengzhou 450000, Henan province, PR China
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China; Zhengzhou Key Laboratory of Research and Evaluation of Traditional Chinese Veterinary Medicine, Zhengzhou 450000, Henan province, PR China.
| |
Collapse
|
6
|
Dhital B, Chuang ST, Hsieh JC, Hsieh MH, Chiang HI. Prevalence, Virulence, and Antimicrobial Resistance of Major Mastitis Pathogens Isolated from Taiwanese Dairy Farms. Antibiotics (Basel) 2023; 13:36. [PMID: 38247595 PMCID: PMC10812822 DOI: 10.3390/antibiotics13010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Mastitis, a highly prevalent disease in dairy cows, is responsible for massive financial losses due to decreased milk yield, milk quality, and costly medication. This research paper investigates antimicrobial susceptibility in cows and the role played by both resistance and virulence gene distribution in bovine mastitis. A total of 984 raw milk samples were collected from five different dairy farms and cultured on sheep blood agar plates. Antimicrobial susceptibility was determined by disc diffusion, and corresponding resistance and virulence genes were detected by PCR. Among the collected milk samples, 73, 32, and 19 isolates of Streptococcus spp., Staphylococcus spp., and coliforms were identified, respectively. The antimicrobial susceptibility results showed that Streptococcus spp. were resistant to tetracycline (86.30%), neomycin (79.45%), and oxacillin (73.97%). Staphylococcus spp. were resistant to tetracycline (59.37%) and oxacillin (53.12%). Lastly, coliforms were resistant to oxacillin (100%) and bacitracin (68.42%). The genotyping results showed that Streptococcus spp. carried the resistance genes tetM (46.57%) against tetracycline, bcrB (41.09%) against bacitracin, and aph(3)-II (39.72%) against neomycin. Staphylococcus spp. carried the resistance genes bcrB (40.62%) and tetM (18.75%), and coliforms carried the resistance genes tetM (42.10%) and bcrB (57.89%). Moreover, 57.53%, 75.0%, and 63.15% of Streptococcus spp., Staphylococcus spp., and coliforms carried lmb, fib, and ompC virulence genes, respectively. All three tested bacterial genera showed no significant association between antimicrobial resistance genes and virulence factors, although they were negatively correlated (p > 0.05). The combination of resistance gene identification and susceptibility tests as components of the diagnosis of bovine mastitis can help in selecting effective antimicrobial agents to treat it.
Collapse
Affiliation(s)
- Bigya Dhital
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (B.D.); (M.-H.H.)
| | - Shih-Te Chuang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Jui-Chun Hsieh
- Department of Animal Science and Technology, National Taiwan University, Taipei 106319, Taiwan;
| | - Ming-Hsiu Hsieh
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (B.D.); (M.-H.H.)
| | - Hsin-I Chiang
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (B.D.); (M.-H.H.)
- Smart Sustainable New Agriculture Research Center (SMARTer), Taichung 40227, Taiwan
| |
Collapse
|
7
|
Hoque MN, Faisal GM, Moyna Z, Islam MS, Das ZC, Islam T. Draft genome sequence of a multidrug-resistant Klebsiella pneumoniae fecal isolate from a cow with clinical mastitis. Microbiol Resour Announc 2023; 12:e0073023. [PMID: 37902381 PMCID: PMC10652979 DOI: 10.1128/mra.00730-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/24/2023] [Indexed: 10/31/2023] Open
Abstract
Klebsiella pneumoniae is one of the most important mastitis-causing pathogens. The multidrug-resistant K. pneumoniae strain MNH_G2C5F was isolated from the feces of a cow with clinical mastitis. The MNH_G2C5F strain had a genome size of 5,381,832 bp (85.0× coverage) and typed as sequence type 273 (ST273).
Collapse
Affiliation(s)
- M. Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynaecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Golam Mahbub Faisal
- Molecular Biology and Bioinformatics Laboratory, Department of Gynaecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Zannatara Moyna
- Molecular Biology and Bioinformatics Laboratory, Department of Gynaecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Md. Sayedul Islam
- Department of Microbiology and Public Health, BSMRAU, Gazipur, Bangladesh
| | - Ziban Chandra Das
- Molecular Biology and Bioinformatics Laboratory, Department of Gynaecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), BSMRAU, Gazipur, Bangladesh
| |
Collapse
|
8
|
Shou Y, Le Z, Cheng HS, Liu Q, Ng YZ, Becker DL, Li X, Liu L, Xue C, Yeo NJY, Tan R, Low J, Kumar ARK, Wu KZ, Li H, Cheung C, Lim CT, Tan NS, Chen Y, Liu Z, Tay A. Mechano-Activated Cell Therapy for Accelerated Diabetic Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304638. [PMID: 37681325 DOI: 10.1002/adma.202304638] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/22/2023] [Indexed: 09/09/2023]
Abstract
Chronic diabetic wounds are a significant global healthcare challenge. Current strategies, such as biomaterials, cell therapies, and medical devices, however, only target a few pathological features and have limited efficacy. A powerful platform technology combining magneto-responsive hydrogel, cells, and wireless magneto-induced dynamic mechanical stimulation (MDMS) is developed to accelerate diabetic wound healing. The hydrogel encapsulates U.S. Food and Drug Administration (FDA)-approved fibroblasts and keratinocytes to achieve ∼3-fold better wound closure in a diabetic mouse model. MDMS acts as a nongenetic mechano-rheostat to activate fibroblasts, resulting in ∼240% better proliferation, ∼220% more collagen deposition, and improved keratinocyte paracrine profiles via the Ras/MEK/ERK pathway to boost angiogenesis. The magneto-responsive property also enables on-demand insulin release for spatiotemporal glucose regulation through increasing network deformation and interstitial flow. By mining scRNAseq data, a mechanosensitive fibroblast subpopulation is identified that can be mechanically tuned for enhanced proliferation and collagen production, maximizing therapeutic impact. The "all-in-one" system addresses major pathological factors associated with diabetic wounds in a single platform, with potential applications for other challenging wound types.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Zhicheng Le
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Qimin Liu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Zhen Ng
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 308232, Singapore
| | - David Laurence Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 308232, Singapore
| | - Xianlei Li
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Ling Liu
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore
| | - Chencheng Xue
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Natalie Jia Ying Yeo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Runcheng Tan
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jessalyn Low
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Arun R K Kumar
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119288, Singapore
| | - Kenny Zhuoran Wu
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Hua Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhijia Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore
| |
Collapse
|
9
|
Hoque MN, Moyna Z, Faisal GM, Das ZC, Islam T. Whole-Genome Sequence of Multidrug-Resistant Klebsiella pneumoniae MNH_G2C5, Isolated from Bovine Clinical Mastitis Milk. Microbiol Resour Announc 2023; 12:e0007923. [PMID: 37093061 DOI: 10.1128/mra.00079-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Klebsiella pneumoniae is one of the most common and important mastitis-causing bacteria, and strain MNH_G2C5 was isolated from the milk of a cow suffering from clinical mastitis in a dairy farm of the Gazipur district of Bangladesh. The MNH_G2C5 genome was estimated to be 4,589,728 bp, with 65.5% genome coverage.
Collapse
Affiliation(s)
- M Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynaecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Zannatara Moyna
- Molecular Biology and Bioinformatics Laboratory, Department of Gynaecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Golam Mahbub Faisal
- Molecular Biology and Bioinformatics Laboratory, Department of Gynaecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Ziban Chandra Das
- Molecular Biology and Bioinformatics Laboratory, Department of Gynaecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
10
|
Zhou Y, Li M, Wang Z, Lin X, Xu Y, Feng S, Miao J. AMPK/Drp1 pathway mediates Streptococcus uberis-Induced mitochondrial dysfunction. Int Immunopharmacol 2022; 113:109413. [PMID: 36461586 DOI: 10.1016/j.intimp.2022.109413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
Excessive production of reactive oxygen species (ROS) leads to oxidative stress in host cells and affects the progress of disease. Mitochondria are an important source of ROS and their dysfunction is closely related to ROS production. S. uberis is a common causative agent of mastitis. The expression of key enzymes of the mitochondrial apoptotic pathway is increased in mammary epithelial cells after S. uberis stimulation, while expression of proteins related to mitochondrial function is decreased. Drp1, a key protein associated with mitochondrial function, is activated upon infection. Accompanied by mitochondria-cytosol translocation of Drp1, Fis1 expression is significantly upregulated while Mfn1 expression is downregulated implying that the balance of mitochondrial dynamics is disrupted. This leads to mitochondrial fragmentation, decreased mitochondrial membrane potential, higher levels of mROS and oxidative injury. The AMPK activator AICAR inhibits the increased phosphorylation of Drp1 and the translocation of Drp1 to mitochondria by salvaging mitochondrial function in an AMPK/Drp1 dependent manner, which has a similar effect to Drp1 inhibitor Mdivi-1. These data show that AMPK, as an upstream negative regulator of Drp1, ameliorates mitochondrial dysfunction induced by S. uberis infection.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenglei Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinguang Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shiyuan Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
11
|
Kan X, Hu G, Liu Y, Xu P, Huang Y, Cai X, Guo W, Fu S, Liu J. Mammary Fibrosis Tendency and Mitochondrial Adaptability in Dairy Cows with Mastitis. Metabolites 2022; 12:1035. [PMID: 36355118 PMCID: PMC9692329 DOI: 10.3390/metabo12111035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 03/30/2024] Open
Abstract
Dairy cow mammary gland fibrosis causes huge economic losses to livestock production, however, research on dairy cow mammary gland fibrosis is in its infancy and it lacks effective treatments. Therefore, the purpose of this experiment was to explore the correlation between mastitis and fibrosis and mitochondrial damage, and to further explore its pathogenesis. In vivo, mammary tissue and milk samples were collected from healthy cows (n = 10) and mastitis cows (n = 10). The results of the study showed that compared with the control group, the mastitis tissue showed tissue damage, accumulation of collagen fibers, and the content of TGF-β1 in mammary tissue and milk was significantly increased; the level of inflammatory mediators was significantly increased; the fibrotic phenotype, collagen 1, α-SMA, vimentin gene, and protein levels were significantly increased, while the E-cadherin gene and protein levels were significantly decreased. In vitro, based on TGF-β1-induced bMECs, the above experimental results were further confirmed, and TGF-β1 significantly promoted the fibrotic phenotype of bMECs. On the other hand, in vivo results showed that fibrotic mammary tissue had a significantly stronger mitochondrial damage phenotype and significantly higher ROS than the control group. In vitro, the results also found that TGF-β1 induced a significant increase in the mitochondrial damage phenotype of bMECs, accompanied by a large amount of ROS production. Furthermore, in a TGF-β1-induced bMEC model, inhibiting the accumulation of ROS effectively alleviated the elevated fibrotic phenotype of TGF-β1-induced bMECs. In conclusion, the fibrotic phenotype of mammary gland tissue in dairy cows with mastitis was significantly increased, and mastitis disease was positively correlated with mammary fibrotic lesions. In an in vitro and in vivo model of cow mammary fibrosis, bMECs have impaired mitochondrial structure and dysfunction. Inhibiting the accumulation of ROS effectively alleviates the elevated fibrotic phenotype, which may be a potential therapeutic approach to alleviate mammary fibrosis.
Collapse
Affiliation(s)
- Xingchi Kan
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi’an Road, Changchun 130062, China
- Zhijiang Laboratory, Kechuang Avenue, Hangzhou 311121, China
| | - Guiqiu Hu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi’an Road, Changchun 130062, China
| | - Yiyao Liu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi’an Road, Changchun 130062, China
| | - Ping Xu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi’an Road, Changchun 130062, China
| | - Yaping Huang
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi’an Road, Changchun 130062, China
| | - Xiangyu Cai
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi’an Road, Changchun 130062, China
| | - Wenjin Guo
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi’an Road, Changchun 130062, China
| | - Shoupeng Fu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi’an Road, Changchun 130062, China
| | - Juxiong Liu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi’an Road, Changchun 130062, China
| |
Collapse
|
12
|
Tao DL, Zhao SS, Chen JM, Chen X, Yang X, Song JK, Liu Q, Zhao GH. Neospora caninum infection induced mitochondrial dysfunction in caprine endometrial epithelial cells via downregulating SIRT1. Parasit Vectors 2022; 15:274. [PMID: 35915458 PMCID: PMC9344697 DOI: 10.1186/s13071-022-05406-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
Background Infection of Neospora caninum, an important obligate intracellular protozoan parasite, causes reproductive dysfunctions (e.g. abortions) in ruminants (e.g. cattle, sheep and goats), leading to serious economic losses of livestock worldwide, but the pathogenic mechanisms of N. caninum are poorly understood. Mitochondrial dysfunction has been reported to be closely associated with pathogenesis of many infectious diseases. However, the effect of N. caninum infection on the mitochondrial function of hosts remains unclear. Methods The effects of N. caninum infection on mitochondrial dysfunction in caprine endometrial epithelial cells (EECs), including intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) contents, mitochondrial DNA (mtDNA) copy numbers and ultrastructure of mitochondria, were studied by using JC-1, DCFH-DA, ATP assay kits, quantitative real-time polymerase chain reaction (RT-qPCR) and transmission electron microscopy, respectively, and the regulatory roles of sirtuin 1 (SIRT1) on mitochondrial dysfunction, autophagy and N. caninum propagation in caprine EECs were investigated by using two drugs, namely resveratrol (an activator of SIRT1) and Ex 527 (an inhibitor of SIRT1). Results The current study found that N. caninum infection induced mitochondrial dysfunction of caprine EECs, including accumulation of intracellular ROS, significant reductions of MMP, ATP contents, mtDNA copy numbers and damaged ultrastructure of mitochondria. Downregulated expression of SIRT1 was also detected in caprine EECs infected with N. caninum. Treatments using resveratrol and Ex 527 to caprine EECs showed that dysregulation of SIRT1 significantly reversed mitochondrial dysfunction of cells caused by N. caninum infection. Furthermore, using resveratrol and Ex 527, SIRT1 expression was found to be negatively associated with autophagy induced by N. caninum infection in caprine EECs, and the intracellular propagation of N. caninum tachyzoites in caprine EECs was negatively affected by SIRT1 expression. Conclusions These results indicated that N. caninum infection induced mitochondrial dysfunction by downregulating SIRT1, and downregulation of SIRT1 promoted cell autophagy and intracellular proliferation of N. caninum tachyzoites in caprine EECs. The findings suggested a potential role of SIRT1 as a target to develop control strategies against N. caninum infection. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05406-4.
Collapse
Affiliation(s)
- De-Liang Tao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Shan-Shan Zhao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Jin-Ming Chen
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xi Chen
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xin Yang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Jun-Ke Song
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Guang-Hui Zhao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
13
|
Correlation between Polymerase Chain Reaction Identification of Iron Acquisition Genes and an Iron-Deficient Incubation Test for Klebsiella pneumoniae Isolates from Bovine Mastitis. Microorganisms 2022; 10:microorganisms10061138. [PMID: 35744656 PMCID: PMC9228167 DOI: 10.3390/microorganisms10061138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 01/27/2023] Open
Abstract
We investigated the correlation between the polymerase chain reaction (PCR) identification of six virulence genes associated with siderophore activation and the iron-uptake system (iron-acquisition genes; iucA, entB, fepA, ybtS, psn, and kfu) in mastitis-associated Klebsiella pneumoniae (K. pneumoniae). The growth of 37 K. pneumoniae isolates from the milk of cows with mild mastitis reared on Japanese dairy farms between October 2012 and December 2014 was examined by incubation in an iron-deficient medium. entB-, fepA-, or ybtS-positive isolates grew significantly better than entB-, fepA-, or ybtS-negative isolates after incubating in an iron-deficient medium for three days. Interestingly, the growth of isolates with 0 and ≥4 PCR-positive iron-acquisition genes in the iron-deficient medium were significantly different by day 2, while isolates with 2, 3, and ≥4 PCR-positive iron-acquisition genes grew significantly better than those with no PCR-positive iron-acquisition genes by day 3. Based on the correlation between the results of PCR and iron-deficient incubation tests, iron-deficient incubation for three days can be used to estimate the presence or absence of iron-acquisition genes in mastitis-associated K. pneumoniae.
Collapse
|
14
|
Khatun M, Thomson PC, García SC, Bruckmaier RM. Suitability of milk lactate dehydrogenase and serum albumin for pathogen-specific mastitis detection in automatic milking systems. J Dairy Sci 2022; 105:2558-2571. [PMID: 34998550 DOI: 10.3168/jds.2021-20475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022]
Abstract
In response to intramammary infection (IMI), blood-derived leukocytes are transferred into milk, which can be measured as an increase of somatic cell count (SCC). Additionally, pathogen-dependent IgG increases in milk following infection. The IgG transfer into milk is associated with the opening of the blood-milk barrier, which is much more pronounced during gram-negative than gram-positive IMI. Thus, milk IgG concentration may help to predict the pathogen type causing IMI. Likewise, lactate dehydrogenase (LDH) and serum albumin (SA) cross the blood-milk barrier with IgG if its integrity is reduced. Because exact IgG analysis is complicated and difficult to automate, LDH activity and SA concentration aid as markers to predict the IgG transfer into milk in automatic milking systems (AMS). This study was conducted to test the hypothesis that LDH and SA in milk correlate with the IgG transfer, and in combination with SCC these factors allow the differentiation between gram-positive and gram-negative IMI or even more precisely the infection-causing pathogen. Further, the expression of these parameters in foremilk before (BME) and after (AME) milk ejection was tested. In the AMS, quarter milk samples (n = 686) from 48 Holstein-Friesian cows were collected manually BME and AME, followed by an aseptic sample for bacteriological culture. Mixed models were used to (1) predict the concentration of IgG transmitted from blood into milk based on LDH and SA; (2) use principal component analysis to evaluate joint patterns of SCC (cells/mL), IgG (mg/mL), LDH (U/L), and SA (mg/mL) and use the principal component scores to compare gram-positive, gram-negative, and control IMI types and BME versus AME samples; and (3) predict gram-positive and gram-negative IMI by inclusion of combined SCC-LDH and SCC-SA as predictors in the model. Overall, the SA and LDH had similar ability to predict IgG transmission from blood into milk. Comparing the areas under the curve (AUC) of the receiver operator characteristic curves, the SCC-LDH versus SCC-SA had lower gram-positive (AUC = 0.984 vs. 0.986) but similar gram-negative (AUC = 0.995 vs. 0.998) IMI prediction ability. The SCC, IgG, LDH, and SA were greater in gram-negative than in gram-positive IMI (BME and AME) in early lactation. All measured factors had higher values in milk samples taken BME than AME. In conclusion, LDH and SA could be used as replacement markers to indicate the presence of IgG transfer from blood into milk; in combination with SCC, both SA and LDH are suitable for differentiating IMI type, and BME is better for mastitis detection in AMS.
Collapse
Affiliation(s)
- M Khatun
- School of Life and Environmental Sciences and Sydney Institute of Agriculture, The University of Sydney, Camden 2570, New South Wales, Australia; Bangladesh Agricultural University, Mymensingh, Bangladesh, 2202; Veterinary Physiology, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland.
| | - P C Thomson
- School of Life and Environmental Sciences and Sydney Institute of Agriculture, The University of Sydney, Camden 2570, New South Wales, Australia
| | - S C García
- School of Life and Environmental Sciences and Sydney Institute of Agriculture, The University of Sydney, Camden 2570, New South Wales, Australia
| | - R M Bruckmaier
- Veterinary Physiology, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland
| |
Collapse
|
15
|
An G, Park W, Lim W, Song G. Fluroxypyr-1-methylheptyl ester causes apoptosis of bovine mammary gland epithelial cells by regulating PI3K and MAPK signaling pathways and endoplasmic reticulum stress. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 180:105003. [PMID: 34955186 DOI: 10.1016/j.pestbp.2021.105003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/07/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Fluroxypyr-1-methylheptyl ester (FPMH) is an auxin herbicide that is widely applied to crops and pastures to block growth of post-emergence weeds. Several studies have reported the toxicity of FPMH in aquatic vertebrates. However, the adverse impacts of FPMH on mammals, including domestic animals, have not been reported. The purpose of our current study is to assess the impact of FPMH on the bovine mammary system and milk production. To evaluate the toxicity of FPMH on the mammary glands of lactating cows, the bovine mammary gland epithelial cell line, MAC-T, was exposed to various concentrations (0, 5, 7.5, 10, 15, and 20 μM) of FPMH for 24 h, and then various assessments were performed. The results showed that FPMH dose-dependently reduced MAC-T cell viability following exposure to FPMH and induced mitochondrial depolarization and apoptosis. FPMH also modulated signaling through the PI3K and MAPK pathways. In addition, the expression levels of proteins related to endoplasmic reticulum (ER) stress were upregulated, indicating induction of ER stress, and calcium homeostasis was disrupted following FPMH treatment. In conclusion, our investigation suggests that FPMH may be toxic to the bovine mammary system and may decrease dairy production.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Wonhyoung Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
16
|
Daisley BA, Koenig D, Engelbrecht K, Doney L, Hards K, Al KF, Reid G, Burton JP. Emerging connections between gut microbiome bioenergetics and chronic metabolic diseases. Cell Rep 2021; 37:110087. [PMID: 34879270 DOI: 10.1016/j.celrep.2021.110087] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022] Open
Abstract
The conventional viewpoint of single-celled microbial metabolism fails to adequately depict energy flow at the systems level in host-adapted microbial communities. Emerging paradigms instead support that distinct microbiomes develop interconnected and interdependent electron transport chains that rely on cooperative production and sharing of bioenergetic machinery (i.e., directly involved in generating ATP) in the extracellular space. These communal resources represent an important subset of the microbial metabolome, designated here as the "pantryome" (i.e., pantry or external storage compartment), that critically supports microbiome function and can exert multifunctional effects on host physiology. We review these interactions as they relate to human health by detailing the genomic-based sharing potential of gut-derived bacterial and archaeal reference strains. Aromatic amino acids, metabolic cofactors (B vitamins), menaquinones (vitamin K2), hemes, and short-chain fatty acids (with specific emphasis on acetate as a central regulator of symbiosis) are discussed in depth regarding their role in microbiome-related metabolic diseases.
Collapse
Affiliation(s)
- Brendan A Daisley
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada
| | - David Koenig
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Kathleen Engelbrecht
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Liz Doney
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Kiel Hards
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago, New Zealand
| | - Kait F Al
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada
| | - Gregor Reid
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada; Department of Surgery, Division of Urology, Schulich School of Medicine, London, ON N6A 5C1, Canada
| | - Jeremy P Burton
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada; Department of Surgery, Division of Urology, Schulich School of Medicine, London, ON N6A 5C1, Canada.
| |
Collapse
|