1
|
Ren F, Li Y, Luo H, Gao S, Jiang S, Yang J, Rao C, Chen Y, Peng C. Extraction, detection, bioactivity, and product development of luteolin: A review. Heliyon 2024; 10:e41068. [PMID: 39759280 PMCID: PMC11700251 DOI: 10.1016/j.heliyon.2024.e41068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Luteolin is a kind of natural flavonoid, widely existing in a variety of plants, has been revealed to have a wide range of biological activities. In recent years, the research results of luteolin are abundant. Here we review the latest research results of luteolin in order to provide new ideas for further research and development of luteolin. In this paper, the focus of the search was published between 2010 and 2024 on the extraction and determination of luteolin, biological activities, and the development and application of luteolin products. A comprehensive search using the keyword "luteolin" was conducted in the PubMed, Web of Science and WIPO databases. Through the collection of related literature, this paper summarized a variety of extraction techniques of luteolin, including immersion extraction, solvent extraction, ultrasonic-assisted extraction, supercritical fluid extraction and so on. The determination methods include: thin layer chromatography (TLC), high performance liquid chromatography (HPLC), capillary electrophoresis (CE), electrochemical method (ED) and so on. In addition, the biological activities of luteolin, including antioxidant, anti-inflammatory, anti-tumor, antibacterial, analgesic and so on, were described. And luteolin as the main component of the product is being gradually developed, and has been used in the field of food, medicine and cosmetics. This paper provides a reference for further study of luteolin.
Collapse
Affiliation(s)
- Fajian Ren
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ying Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Hanyuan Luo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Song Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Shanshan Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Jian Yang
- Chuan-chu UNITED INTERNATIONAL Engineering Co., LTD, Chengdu, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Cheng Peng
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 611137, China
| |
Collapse
|
2
|
Abass S, Parveen R, Irfan M, Malik Z, Husain SA, Ahmad S. Mechanism of antibacterial phytoconstituents: an updated review. Arch Microbiol 2024; 206:325. [PMID: 38913205 DOI: 10.1007/s00203-024-04035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024]
Abstract
The increase of multiple drug resistance bacteria significantly diminishes the effectiveness of antibiotic armory and subsequently exaggerates the level of therapeutic failure. Phytoconstituents are exceptional substitutes for resistance-modifying vehicles. The plants appear to be a deep well for the discovery of novel antibacterial compounds. This is owing to the numerous enticing characteristics of plants, they are easily accessible and inexpensive, extracts or chemicals derived from plants typically have significant levels of action against infections, and they rarely cause serious adverse effects. The enormous selection of phytochemicals offers very distinct chemical structures that may provide both novel mechanisms of antimicrobial activity and deliver us with different targets in the interior of the bacterial cell. They can directly affect bacteria or act together with the crucial events of pathogenicity, in this manner decreasing the aptitude of bacteria to create resistance. Abundant phytoconstituents demonstrate various mechanisms of action toward multi drug resistance bacteria. Overall, this comprehensive review will provide insights into the potential of phytoconstituents as alternative treatments for bacterial infections, particularly those caused by multi drug resistance strains. By examining the current state of research in this area, the review will shed light on potential future directions for the development of new antimicrobial therapies.
Collapse
Affiliation(s)
- Sageer Abass
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Rabea Parveen
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Irfan
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Zoya Malik
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Akhtar Husain
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sayeed Ahmad
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
3
|
Li Y, Wangjiang T, Sun Z, Shi L, Chen S, Chen L, Guo X, Wu W, Xiong G, Wang L. Inhibition mechanism of crude lipopeptide from Bacillus subtilis against Aeromonas veronii growth, biofilm formation, and spoilage of channel catfish flesh. Food Microbiol 2024; 120:104489. [PMID: 38431332 DOI: 10.1016/j.fm.2024.104489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Aeromonas veronii is associated with food spoilage and some human diseases, such as diarrhea, gastroenteritis, hemorrhagic septicemia or asymptomatic and even death. This research investigated the mechanism of the growth, biofilm formation, virulence, stress resistance, and spoilage potential of Bacillus subtilis lipopeptide against Aeromonas veronii. Lipopeptides suppressed the transmembrane transport of Aeromonas veronii by changing the cell membrane's permeability, the structure of membrane proteins, and Na+/K+-ATPase. Lipopeptide significantly reduced the activities of succinate dehydrogenase (SDH) and malate dehydrogenase (MDH) by 86.03% and 56.12%, respectively, ultimately slowing Aeromonas veronii growth. Lipopeptides also restrained biofilm formation by inhibiting Aeromonas veronii motivation and extracellular polysaccharide secretion. Lipopeptides downregulated gene transcriptional levels related to the virulence and stress tolerance of Aeromonas veronii. Furthermore, lipopeptides treatment resulted in a considerable decrease in the extracellular protease activity of Aeromonas veronii, which restrained the decomposing of channel catfish flesh. This research provides new insights into lipopeptides for controlling Aeromonas veronii and improving food safety.
Collapse
Affiliation(s)
- Yali Li
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tianqi Wangjiang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zhida Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liu Shi
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Sheng Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Lang Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Xiaojia Guo
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Wenjin Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Guangquan Xiong
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| |
Collapse
|
4
|
Zhang L, Tian X, Sun L, Mi K, Wang R, Gong F, Huang L. Bacterial Efflux Pump Inhibitors Reduce Antibiotic Resistance. Pharmaceutics 2024; 16:170. [PMID: 38399231 PMCID: PMC10892612 DOI: 10.3390/pharmaceutics16020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Bacterial resistance is a growing problem worldwide, and the number of deaths due to drug resistance is increasing every year. We must pay great attention to bacterial resistance. Otherwise, we may go back to the pre-antibiotic era and have no drugs on which to rely. Bacterial resistance is the result of several causes, with efflux mechanisms widely recognised as a significant factor in the development of resistance to a variety of chemotherapeutic and antimicrobial medications. Efflux pump inhibitors, small molecules capable of restoring the effectiveness of existing antibiotics, are considered potential solutions to antibiotic resistance and have been an active area of research in recent years. This article provides a review of the efflux mechanisms of common clinical pathogenic bacteria and their efflux pump inhibitors and describes the effects of efflux pump inhibitors on biofilm formation, bacterial virulence, the formation of bacterial persister cells, the transfer of drug resistance among bacteria, and mismatch repair. Numerous efforts have been made in the past 20 years to find novel efflux pump inhibitors which are known to increase the effectiveness of medicines against multidrug-resistant strains. Therefore, the application of efflux pump inhibitors has excellent potential to address and reduce bacterial resistance.
Collapse
Affiliation(s)
- Lan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (X.T.); (L.S.); (K.M.); (R.W.); (F.G.)
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyuan Tian
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (X.T.); (L.S.); (K.M.); (R.W.); (F.G.)
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Sun
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (X.T.); (L.S.); (K.M.); (R.W.); (F.G.)
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Kun Mi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (X.T.); (L.S.); (K.M.); (R.W.); (F.G.)
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Ru Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (X.T.); (L.S.); (K.M.); (R.W.); (F.G.)
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Fengying Gong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (X.T.); (L.S.); (K.M.); (R.W.); (F.G.)
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingli Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (X.T.); (L.S.); (K.M.); (R.W.); (F.G.)
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Pathak D, Mazumder A. Potential of Flavonoids as Promising Phytotherapeutic Agents to Combat Multidrug-Resistant Infections. Curr Pharm Biotechnol 2024; 25:1664-1692. [PMID: 38031767 DOI: 10.2174/0113892010271172231108190233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Considering the limited number of current effective treatments, Multidrug- Resistant (MDR) illnesses have grown to be a serious concern to public health. It has become necessary to look for new antimicrobial drugs because of the emergence of resistance to numerous kinds of antibiotics. The use of flavonoids is one phytotherapeutic strategy that has been researched as a potential remedy for this issue. Secondary plant compounds called flavonoids have been found to have an antibacterial effect against resistant microorganisms. OBJECTIVE This review seeks to give readers a glimpse into contemporary studies on flavonoids' potential to fight MDR infections. METHODS A systematic search was conducted on electronic databases (PubMed, Scopus, and Google Scholar) using relevant keywords such as flavonoids, MDR infections, antimicrobial activity, and resistance microbes. Studies that investigated the antimicrobial activity of flavonoids against resistant microbes were included in this review. RESULTS Most research found that flavonoids have antibacterial efficacy against resistant microorganisms, and some also showed that they have synergistic benefits with traditional antibiotics. The flavonoids quercetin, kaempferol, apigenin, and luteolin were the most often investigated ones. According to research, flavonoids affect microbial gene expression, inhibit microbial enzymes, and disrupt the integrity of microbial cell membranes. Additionally, a few studies have noted the flavonoids' low toxicity and safety. CONCLUSION For the treatment of infections that are resistant to many drugs, flavonoids constitute a promising class of phytotherapeutic agents. To develop flavonoid-based treatment methods for treating MDR illnesses and assess the potential of flavonoids as adjuvants to conventional antimicrobial drugs, more study is required.
Collapse
Affiliation(s)
- Deepika Pathak
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), Uttar Pradesh, India
| | - Avijit Mazumder
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), Uttar Pradesh, India
| |
Collapse
|
6
|
Zhang S, Wang J, Ahn J. Advances in the Discovery of Efflux Pump Inhibitors as Novel Potentiators to Control Antimicrobial-Resistant Pathogens. Antibiotics (Basel) 2023; 12:1417. [PMID: 37760714 PMCID: PMC10525980 DOI: 10.3390/antibiotics12091417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The excessive use of antibiotics has led to the emergence of multidrug-resistant (MDR) pathogens in clinical settings and food-producing animals, posing significant challenges to clinical management and food control. Over the past few decades, the discovery of antimicrobials has slowed down, leading to a lack of treatment options for clinical infectious diseases and foodborne illnesses. Given the increasing prevalence of antibiotic resistance and the limited availability of effective antibiotics, the discovery of novel antibiotic potentiators may prove useful for the treatment of bacterial infections. The application of antibiotics combined with antibiotic potentiators has demonstrated successful outcomes in bench-scale experiments and clinical settings. For instance, the use of efflux pump inhibitors (EPIs) in combination with antibiotics showed effective inhibition of MDR pathogens. Thus, this review aims to enable the possibility of using novel EPIs as potential adjuvants to effectively control MDR pathogens. Specifically, it provides a comprehensive summary of the advances in novel EPI discovery and the underlying mechanisms that restore antimicrobial activity. In addition, we also characterize plant-derived EPIs as novel potentiators. This review provides insights into current challenges and potential strategies for future advancements in fighting antibiotic resistance.
Collapse
Affiliation(s)
- Song Zhang
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
7
|
Zhang L, Cai Y, Li L, Chen C, Zhao H, Zhang Z, Liu Y, Wang Y, Tian C, Liu M. Effects of Luteolin on Biofilm of Trueperella pyogenes and Its Therapeutic Effect on Rat Endometritis. Int J Mol Sci 2022; 23:ijms232214451. [PMID: 36430929 PMCID: PMC9692790 DOI: 10.3390/ijms232214451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/22/2022] Open
Abstract
Trueperella pyogenes is an opportunistic pathogen that causes suppurative infections in animals. The development of new anti-biofilm drugs will improve the current treatment status for controlling T. pyogenes infections in the animal husbandry industry. Luteolin is a naturally derived flavonoid compound with antibacterial properties. In this study, the effects and the mechanism of luteolin on T. pyogenes biofilm were analyzed and explored. The MBIC and MBEC of luteolin on T. pyogenes were 156 μg/mL and 312 μg/mL, respectively. The anti-biofilm effects of luteolin were also observed by a confocal laser microscope and scanning electron microscope. The results indicated that 312 μg/mL of luteolin could disperse large pieces of biofilm into small clusters after 8 h of treatment. According to the real-time quantitative PCR detection results, luteolin could significantly inhibit the relative expression of the biofilm-associated genes luxS, plo, rbsB and lsrB. In addition, the in vivo anti-biofilm activity of luteolin against T. pyogenes was studied using a rat endometritis model established by glacial acetic acid stimulation and T. pyogenes intrauterine infusion. Our study showed that luteolin could significantly reduce the symptoms of rat endometritis. These data may provide new opinions on the clinical treatment of luteolin and other flavonoid compounds on T. pyogenes biofilm-associated infections.
Collapse
|
8
|
Molecular Basis for Luteolin as a Natural TatD DNase Inhibitor in Trueperella pyogenes. Int J Mol Sci 2022; 23:ijms23158374. [PMID: 35955509 PMCID: PMC9369154 DOI: 10.3390/ijms23158374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
TatD960 and TatD825 are DNases that contribute to biofilm formation and virulence in Trueperella pyogenes (T. pyogenes). Luteolin is a natural flavonoid commonly found in plants that exhibits antimicrobial capacity. Our study aims to investigate the effects of luteolin on TatD DNases as a natural inhibitor. In this research, the expression of tatD genes and TatD proteins in T. pyogenes treated with luteolin was detected, and then the effect of luteolin on the hydrolysis of DNA by TatD DNases was analyzed using agarose gel electrophoresis. Moreover, the interactions between luteolin and TatD DNases were tested using surface plasmon resonance (SPR) assays and molecular docking analysis. After 1/2 MIC luteolin treatment, the transcription of tatD genes and expression of TatD proteins appeared to be reduced in 80–90% of T. pyogenes (n = 20). The gel assay revealed that luteolin can inhibit the activity of TatD DNases. The SPR assay showed that the KD values of luteolin to TatD960 and TatD825 were 6.268 × 10−6 M and 5.654 × 10−6 M, respectively. We found through molecular docking that hydrogen bonding is predominant in the interaction of luteolin and TatD DNases. Our data indicate that luteolin inhibited the ability of TatD DNases by decreasing their binding to DNA. The current study provides an insight into the development of luteolin as a DNase inhibitor in preventing biofilm formation and virulence in T. pyogenes.
Collapse
|
9
|
Song L, Hu X, Ren X, Liu J, Liu X. Antibacterial Modes of Herbal Flavonoids Combat Resistant Bacteria. Front Pharmacol 2022; 13:873374. [PMID: 35847042 PMCID: PMC9278433 DOI: 10.3389/fphar.2022.873374] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/17/2022] [Indexed: 12/21/2022] Open
Abstract
The increasing dissemination of multidrug resistant (MDR) bacterial infections endangers global public health. How to develop effective antibacterial agents against resistant bacteria is becoming one of the most urgent demands to solve the drug resistance crisis. Traditional Chinese medicine (TCM) with multi-target antibacterial actions are emerging as an effective way to combat the antibacterial resistance. Based on the innovative concept of organic wholeness and syndrome differentiation, TCM use in antibacterial therapies is encouraging. Herein, advances on flavonoid compounds of heat-clearing Chinese medicine exhibit their potential for the therapy of resistant bacteria. In this review, we focus on the antibacterial modes of herbal flavonoids. Additionally, we overview the targets of flavonoid compounds and divide them into direct-acting antibacterial compounds (DACs) and host-acting antibacterial compounds (HACs) based on their modes of action. We also discuss the associated functional groups of flavonoid compounds and highlight recent pharmacological activities against diverse resistant bacteria to provide the candidate drugs for the clinical infection.
Collapse
Affiliation(s)
- Lianyu Song
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
| | - Xin Hu
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
| | - Xiaomin Ren
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
| | - Jing Liu
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
| | - Xiaoye Liu
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
- *Correspondence: Xiaoye Liu,
| |
Collapse
|