1
|
Ma W, Ren C, Shi L, Meng B, Feng Y, Zhang Y. Isoleucine at position 137 of Hemagglutinin acts as a Mammalian adaptation marker of H9N2 Avian influenza virus. Emerg Microbes Infect 2025:2455597. [PMID: 39817459 DOI: 10.1080/22221751.2025.2455597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
AbstractThe H9N2 subtype of avian influenza virus (AIV) is widely distributed among poultry and wild birds and is also a threat to humans. During AIV active surveillance in Liaoning province from 2015 to 2016, we identified ten H9N2 strains exhibiting different lethality to chick embryos. Two representative strains, A/chicken/China/LN07/2016 (CKLN/07) and A/chicken/China/LN17/2016 (CKLN/17), with similar genomic background but different chick embryo lethality, were chosen to evaluate the molecular basis for this difference. A series of reassortants between CKLN/07 and CKLN/17 were generated and their chick embryo lethality was assessed. We found that the isoleucine (I) residue at position 137 (H3 numbering) in the hemagglutinin (HA) was responsible for the chick embryo lethality of the H9N2 virus. Further studies revealed that the threonine (T) to I mutation at HA position 137 enhanced viral replication in vitro and in vivo. Moreover, the HA-T137I substitution in H9N2 avian influenza virus increased the guinea pig transmission efficiency. We also found that the HA-T137I substitution was critical for α2,6-linked sialic acid binding preference and HA activation and stability of H9N2 virus. Our findings demonstrated that HA-137I is a key molecular marker for mammalian adaptation of H9N2 AIV.
Collapse
Affiliation(s)
- Weiwei Ma
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Chenyang Ren
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Lin Shi
- Poultry Diseases Research laboratory, Liaoning Center for Prevention and Control of Animal Infectious Diseases, Shenyang, People's Republic of China
| | - Bo Meng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Yali Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Ying Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang Agricultural University, Shenyang, People's Republic of China
| |
Collapse
|
2
|
Lu Y, Zeng Y, Luo H, Qiao B, Meng Q, Dai Z, Chen N, Zhao L, Meng X, Zhang H, Xia J, Ping J. Molecular characteristic, evolution, and pathogenicity analysis of avian infectious bronchitis virus isolates associated with QX type in China. Poult Sci 2024; 103:104256. [PMID: 39288718 PMCID: PMC11421327 DOI: 10.1016/j.psj.2024.104256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/21/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Infectious bronchitis virus (IBV) is one of the major avian pathogens plaguing the global poultry industry. Although vaccination is the primary preventive measure for IBV infection, the emergence of virus variants with mutations and recombination has resulted in IBV circulating globally, presenting a challenge for IB control. Here, we isolated 3 IBV strains (CZ200515, CZ210840, and CZ211063) from suspected sick chickens vaccinated with IBV live attenuated vaccines (H120, 4/91, or QXL87). Phylogenetic analysis of the S1 gene sequence of the spike (S) revealed that the 3 isolates belonged to the QX-type (GI-19 lineage). Whole genome sequencing and recombination analysis indicated that CZ200515 and CZ210840 contained genetic material from 4/91 and Scyz3 (QX-type), possibly due to recombination between the circulating strain and the 4/91 vaccine strain, while no evidence of recombination was found in CZ211063. Pathogenicity analysis in 1-day-old specific pathogen-free (SPF) chickens demonstrated that all 3 isolates caused severe tissue damage and varying degrees of mortality. Virus cross-neutralization assay revealed decreased antigen relatedness between the isolates and the QX-type vaccine strain (QXL87). Amino acid sequence homology analysis of S1 revealed 5%-6.5% variances between the isolates and QXL87. Analysis of the S1 subunit structure revealed that mutations of amino acid residues in the hypervariable region (HVR) and the neutralizing epitope region resulted in antigenic variation in isolates by changing the antigen conformation. Our data indicate antigenicity variances between QX isolates and QXL87 vaccine strains, potentially resulting in immune evasion occurrences. Overall, these results offer crucial insights into the epidemiology and pathogenicity of QX-type IBV, facilitating improved selection and formulation of vaccines for disease management.
Collapse
Affiliation(s)
- Yuanlu Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiran Zeng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haowei Luo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bingchen Qiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zijian Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Na Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingcai Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xianchen Meng
- Lihua Nanjing Industrial Research Institute Co. Ltd. Nanjing, 213168, China; Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009 China
| | - Haitao Zhang
- Lihua Nanjing Industrial Research Institute Co. Ltd. Nanjing, 213168, China
| | - Jun Xia
- Key Laboratory for Prevention and Control of Herbivorous Animal Diseases of the Ministry of Agriculture and Rural Affairs & Xinjiang Animal Disease Research Key Laboratory, Xinjiang Academy of Animal Sciences Institute of Veterinary Medicine, 830000, China.
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Yang Y, Xu C, Zhang N, Wan Y, Wu Y, Meng F, Chen Y, Yang H, Liu L, Qiao C, Chen H. Two amino acid residues in the N-terminal region of the polymerase acidic protein determine the virulence of Eurasian avian-like H1N1 swine influenza viruses in mice. J Virol 2024; 98:e0129324. [PMID: 39212447 PMCID: PMC11495010 DOI: 10.1128/jvi.01293-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Reassortant Eurasian avian-like H1N1 (rEA H1N1) viruses carrying the internal genes of H1N1/2009 virus have been circulating in pigs for more than 10 years and have caused sporadic human infections. The enhanced virulence phenotype of the rEA H1N1 viruses highlights potential risks to public health. However, the molecular mechanism underlying the viral pathogenicity of the currently circulating rEA H1N1 viruses remains unclear. In this study, we found that two naturally isolated rEA H1N1 swine influenza viruses, A/swine/Liaoning/FX38/2017 (FX38) and A/swine/Liaoning/SY72/2018 (SY72), possessed similar genetic characteristics but exhibited significantly different pathogenicity in a mouse model. Using reverse genetics, we demonstrated that amino acid mutations at positions 100 and 122 in the polymerase acidic (PA) protein had individual and synergistic effects on the polymerase activity and viral replication capacity in vitro, as well as the viral pathogenicity in mice. Furthermore, we revealed that amino acid residue 100 in PA influenced the transcription of viral RNA (vRNA) by altering the endonuclease activity, and amino acid residue 122 affected the synthesis of complementary RNA and messenger RNA by altering the RNA-binding ability and endonuclease activity of the PA protein. Taken together, we identified that two naturally occurring amino acid mutations in PA derived from H1N1/2009 virus are crucial determinants of the virulence of rEA H1N1 viruses and revealed the differential mechanism by which these two mutations affect the transcription and replication of vRNA. These findings will extend our understanding of the roles of PA in the virulence of influenza A viruses.IMPORTANCEMultiple genetic determinants are involved in the virulence of influenza A viruses. In this study, we identified two naturally occurring amino acid mutations, located at residues 100 and 122 in the polymerase acidic (PA) protein, which are associated with viral polymerase activity, replication competence, and pathogenicity in mice. In particular, we clarified the specific mechanism by which the two residues play an important role in viral transcription and replication. These findings will help to improve understanding the functions of amino acid residues in the N-terminal region of the PA protein involved in the pathogenicity of influenza A viruses.
Collapse
Affiliation(s)
- Yuying Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Chengzhi Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Naixin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Yunfei Wan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Yunpu Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Fei Meng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Yan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Huanliang Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Liling Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Chuanling Qiao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| |
Collapse
|
4
|
Wu H, Zhou L, Wang F, Chen Z, Lu Y. Molecular epidemiology and phylogeny of the emerging zoonotic virus Rocahepevirus: A global genetic analysis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105557. [PMID: 38244748 DOI: 10.1016/j.meegid.2024.105557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Human infections with Rocahepevirus ratti genotype C1 (HEV-C1) in Hong Kong of China, Canada, Spain, and France have drawn worldwide concern towards Rocahepevirus. This study conducted a global genetic analysis of Rocahepevirus, aiming to furnish comprehensive molecular insights and promote further research. We retrieved 817 Rocahepevirus sequences from the GenBank database through October 31, 2023, categorizing them according to research, sample collection area and date, genotype, host, and sequence length. Subsequently, we conducted descriptive epidemiological, phylogenetic evolutionary, and protein polymorphism (in length and identity) analyses on these sequences. Rocahepevirus genomes were identified across twenty-eight countries, predominantly in Asia (71.73%, 586/817) and Europe (26.44%, 216/817). The HEV-C1 dominates Rocahepevirus (77.2%, 631/817), while newly discovered Rocahepevirus genotypes (C3/C4/C5 and other unclassified genotypes) were primarily identified in Europe (25/120) and China (91/120). Muridae animals (72.5%, 592/817) serve as the primary hosts for Rocahepevirus, with other hosts encompassing species from the families Soricidae, Hominidae, Mustelidae, and Cricetidae. Additionally, Rocahepevirus genomes (C1 genotype) were identified in sewage samples recently. The phylogenetic evolution of Rocahepevirus exhibits considerable variation. Specifically, HEV-C1 can be classified into at least six genetic groups (G1 to G6), with human HEV-C1 distributed across multiple evolutionary clades. The overall ORF1 and ORF2 amino acid sequence lengths were significantly different (P < 0.001) across Rocahepevirus genotypes. HEV-C1/C2/C3 and HEV-C4/C5 displayed substantial differences in amino acid sequence identity (58.4%-59.6%). The identification of Rocahepevirus genomes has expanded across numerous countries, particularly in European and Asian countries, coinciding with an expanding host range and emergence of new genotypes. The evolutionary path of Rocahepevirus is intricate, where the HEV-C1 dominates globally and internally forms multiple evolutionary groups (G1 to G6), exhibiting diverse genetic variation within human HEV-C1. Significant differences exist in the protein polymorphism (in length and identity) across Rocahepevirus genotypes. Given Rocahepevirus's shift from an animal virus to a zoonotic pathogen, worldwide cooperation in monitoring Rocahepevirus genomes is vital.
Collapse
Affiliation(s)
- Han Wu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China
| | - Lu Zhou
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China
| | - Fengge Wang
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China
| | - Zixiang Chen
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China
| | - Yihan Lu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|