1
|
Dong H, Chen B, Wang H, Cronan JE. The puzzle of two tandem acyl-CoA ligases of Pseudomonas putida F1. Appl Environ Microbiol 2024; 90:e0126724. [PMID: 39404437 DOI: 10.1128/aem.01267-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/10/2024] [Indexed: 11/21/2024] Open
Abstract
The Pseudomonas putida F1 genome and those of many other pseudomonads contain two tandem genes encoding acyl-CoA ligases Pput_1340 (fadD1) and Pput_1339 (fadD2) with Pput_1339 (fadD2) being the upstream gene. The fadD designation was assigned when both genes were found to complement the growth of an Escherichia coli acyl-CoA synthetase fadD deletion strain with oleic acid as sole carbon source. Site-directed mutagenesis showed that residues of the ATP/AMP domain required for function of E. coli FadD were also essential for full function of FadD1 and FadD2. Growth of the constructed ∆fadD1, ∆fadD2, and ∆fadD1∆fadD2 strains was tested in minimal medium with different chain length fatty acids as sole carbon sources. Lack of FadD1 significantly retarded growth with different chain length fatty acids and lack of both FadD1 and FadD2 further retarded growth. Derivatives of the ∆fabA∆desA unsaturated fatty acid auxotrophic strain carrying a deletion of either ∆fadD1 or ∆fadD2 were constructed. Growth of the ∆fabA∆desA∆fadD1 strain was very weak, whereas the ∆fabA∆desA∆fadD2 strain grew as well as the ∆fabA∆desA parent strain. Overexpression of either fadD1 or fadD2 restored growth of the ∆fabA∆desA∆fadD1 strain with fadD2 overexpression having a greater effect than fadD1 overexpression. The ∆fadD1 or ∆fadD2 genes are cotranscribed although the expression level of fadD1 is much higher than that of fadD2. This is attributed to a fadD1 promoter located within the upstream FadD2 coding sequence. IMPORTANCE Pseudomonas bacteria demonstrate a great deal of metabolic diversity and consequently colonize a wide range of ecological niches. A characteristic of these bacteria is a pair of genes in tandem annotated as acyl-CoA ligases involved in fatty acid degradation. The Pseudomonas putida F1 genome is annotated as having at least nine genes encoding acyl-CoA ligases which are scattered around the chromosome excepting the tandem pair. Since similar tandem pairs are found in other pseudomonads, we have constructed and characterized deletion mutants of the tandem ligases. We report that the encoded proteins are authentic acyl-CoA ligases involved in fatty acid degradation.
Collapse
Affiliation(s)
- Huijuan Dong
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Bo Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Haihong Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - John E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Guo Q, Zhong C, Dong H, Cronan JE, Wang H. Diversity in fatty acid elongation enzymes: The FabB long-chain β-ketoacyl-ACP synthase I initiates fatty acid synthesis in Pseudomonas putida F1. J Biol Chem 2024; 300:105600. [PMID: 38335573 PMCID: PMC10869286 DOI: 10.1016/j.jbc.2023.105600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 02/12/2024] Open
Abstract
The condensation of acetyl-CoA with malonyl-acyl carrier protein (ACP) by β-ketoacyl-ACP synthase III (KAS III, FabH) and decarboxylation of malonyl-ACP by malonyl-ACP decarboxylase are the two pathways that initiate bacterial fatty acid synthesis (FAS) in Escherichia coli. In addition to these two routes, we report that Pseudomonas putida F1 β-ketoacyl-ACP synthase I (FabB), in addition to playing a key role in fatty acid elongation, also initiates FAS in vivo. We report that although two P. putida F1 fabH genes (PpfabH1 and PpfabH2) both encode functional KAS III enzymes, neither is essential for growth. PpFabH1 is a canonical KAS III similar to E. coli FabH whereas PpFabH2 catalyzes condensation of malonyl-ACP with short- and medium-chain length acyl-CoAs. Since these two KAS III enzymes are not essential for FAS in P. putida F1, we sought the P. putida initiation enzyme and unexpectedly found that it was FabB, the elongation enzyme of the oxygen-independent unsaturated fatty acid pathway. P. putida FabB decarboxylates malonyl-ACP and condenses the acetyl-ACP product with malonyl-ACP for initiation of FAS. These data show that P. putida FabB, unlike the paradigm E. coli FabB, can catalyze the initiation reaction in FAS.
Collapse
Affiliation(s)
- Qiaoqiao Guo
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Canyao Zhong
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Huijuan Dong
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | - Haihong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
3
|
Pernas-Pleite C, Conejo-Martínez AM, Marín I, Abad JP. Green Extracellular Synthesis of Silver Nanoparticles by Pseudomonas alloputida, Their Growth and Biofilm-Formation Inhibitory Activities and Synergic Behavior with Three Classical Antibiotics. Molecules 2022; 27:7589. [PMID: 36364415 PMCID: PMC9656067 DOI: 10.3390/molecules27217589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/26/2023] Open
Abstract
Bacterial resistance to antibiotics is on the rise and hinders the fight against bacterial infections, which are expected to cause millions of deaths by 2050. New antibiotics are difficult to find, so alternatives are needed. One could be metal-based drugs, such as silver nanoparticles (AgNPs). In general, chemical methods for AgNPs' production are potentially toxic, and the physical ones expensive, while green approaches are not. In this paper, we present the green synthesis of AgNPs using two Pseudomonas alloputida B003 UAM culture broths, sampled from their exponential and stationary growth phases. AgNPs were physicochemically characterized by transmission electron microscopy (TEM), total reflection X-ray fluorescence (TXRF), infrared spectroscopy (FTIR), dynamic light scattering (DLS), and X-ray diffraction (XRD), showing differential characteristics depending on the synthesis method used. Antibacterial activity was tested in three assays, and we compared the growth and biofilm-formation inhibition of six test bacteria: Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. We also monitored nanoparticles' synergic behavior through the growth inhibition of E. coli and S. aureus by three classical antibiotics: ampicillin, nalidixic acid, and streptomycin. The results indicate that very good AgNP activity was obtained with particularly low MICs for the three tested strains of P. aeruginosa. A good synergistic effect on streptomycin activity was observed for all the nanoparticles. For ampicillin, a synergic effect was detected only against S. aureus. ROS production was found to be related to the AgNPs' antibacterial activity.
Collapse
Affiliation(s)
| | | | - Irma Marín
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José P. Abad
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
4
|
Phale PS, Mohapatra B, Malhotra H, Shah BA. Eco-physiological portrait of a novel Pseudomonas sp. CSV86: an ideal host/candidate for metabolic engineering and bioremediation. Environ Microbiol 2021; 24:2797-2816. [PMID: 34347343 DOI: 10.1111/1462-2920.15694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
Pseudomonas sp. CSV86, an Indian soil isolate, degrades wide range of aromatic compounds like naphthalene, benzoate and phenylpropanoids, amongst others. Isolate displays the unique and novel property of preferential utilization of aromatics over glucose and co-metabolizes them with organic acids. Interestingly, as compared to other Pseudomonads, strain CSV86 harbours only high-affinity glucokinase pathway (and absence of low-affinity oxidative route) for glucose metabolism. Such lack of gluconate loop might be responsible for the novel phenotype of preferential utilization of aromatics. The genome analysis and comparative functional mining indicated a large genome (6.79 Mb) with significant enrichment of regulators, transporters as well as presence of various secondary metabolite production clusters, suggesting its eco-physiological and metabolic versatility. Strain harbours various integrative conjugative elements (ICEs) and genomic islands, probably acquired through horizontal gene transfer events, leading to genome mosaicity and plasticity. Naphthalene degradation genes are arranged as regulonic clusters and found to be part of ICECSV86nah . Various eco-physiological properties and absence of major pathogenicity and virulence factors (risk group-1) in CSV86 suggest it to be an ideal candidate for bioremediation. Further, strain can serve as an ideal chassis for metabolic engineering to degrade various xenobiotics preferentially over simple carbon sources for efficient remediation.
Collapse
Affiliation(s)
- Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, Maharashtra, 400076, India
| | - Balaram Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, Maharashtra, 400076, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, Maharashtra, 400076, India
| | - Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, Maharashtra, 400076, India
| |
Collapse
|
5
|
Morya R, Sharma A, Kumar M, Tyagi B, Singh SS, Thakur IS. Polyhydroxyalkanoate synthesis and characterization: A proteogenomic and process optimization study for biovalorization of industrial lignin. BIORESOURCE TECHNOLOGY 2021; 320:124439. [PMID: 33246798 DOI: 10.1016/j.biortech.2020.124439] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 05/11/2023]
Abstract
The strain Burkholderia sp. ISTR5 (R5) was studied for polyhydroxyalkanoate (PHA) production on Kraft lignin (KL) and lignosulfonate (LS) as substrates. During the initial screening, the maximum PHA mass fraction in biomass produced on KL and LS was 23% and 18%, respectively, at 96 h. PHA production on KL was further optimized using the Box-Behnken Design (BBD) model of Response Surface Methodology (RSM). After optimization, a 42.5% increase in PHA production and a 32.2% increase in the total cell biomass was observed. PHA was characterized by GC-MS, TEM, FTIR, NMR, and fluorescence microscopy. It was found to be a small chain length PHA with a copolymer of poly (hydroxybutyrate-co-hydroxyvalerate) (PHBV). The degradation of PHBV was also studied using this strain; it was observed that R5 completely degraded PHBV in 120 h. Genomic and proteomic analysis of R5 revealed numerous enzymes for the metabolism of lignin degradation and PHA production.
Collapse
Affiliation(s)
- Raj Morya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Aditi Sharma
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Bhawna Tyagi
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
6
|
Weimer A, Kohlstedt M, Volke DC, Nikel PI, Wittmann C. Industrial biotechnology of Pseudomonas putida: advances and prospects. Appl Microbiol Biotechnol 2020; 104:7745-7766. [PMID: 32789744 PMCID: PMC7447670 DOI: 10.1007/s00253-020-10811-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 08/02/2020] [Indexed: 11/17/2022]
Abstract
Pseudomonas putida is a Gram-negative, rod-shaped bacterium that can be encountered in diverse ecological habitats. This ubiquity is traced to its remarkably versatile metabolism, adapted to withstand physicochemical stress, and the capacity to thrive in harsh environments. Owing to these characteristics, there is a growing interest in this microbe for industrial use, and the corresponding research has made rapid progress in recent years. Hereby, strong drivers are the exploitation of cheap renewable feedstocks and waste streams to produce value-added chemicals and the steady progress in genetic strain engineering and systems biology understanding of this bacterium. Here, we summarize the recent advances and prospects in genetic engineering, systems and synthetic biology, and applications of P. putida as a cell factory. KEY POINTS: • Pseudomonas putida advances to a global industrial cell factory. • Novel tools enable system-wide understanding and streamlined genomic engineering. • Applications of P. putida range from bioeconomy chemicals to biosynthetic drugs.
Collapse
Affiliation(s)
- Anna Weimer
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany.
| |
Collapse
|
7
|
Characterization of an intracellular poly(3-hydroxyalkanoate) depolymerase from the soil bacterium, Pseudomonas putida LS46. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Polyhydroxyalkanoate (PHA) Polymer Accumulation and pha Gene Expression in Phenazine (phz⁻) and Pyrrolnitrin (prn⁻) Defective Mutants of Pseudomonas chlororaphis PA23. Polymers (Basel) 2018; 10:polym10111203. [PMID: 30961128 PMCID: PMC6290614 DOI: 10.3390/polym10111203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas chlororaphis PA23 was isolated from the rhizosphere of soybeans and identified as a biocontrol bacterium against Sclerotinia sclerotiorum, a fungal plant pathogen. This bacterium produces a number of secondary metabolites, including phenazine-1-carboxylic acid, 2-hydroxyphenazine, pyrrolnitrin (PRN), hydrogen cyanide, proteases, lipases and siderophores. It also synthesizes and accumulates polyhydroxyalkanoate (PHA) polymers as carbon and energy storage compounds under nutrient-limited conditions. Pseudomonads like P. chlororaphis metabolize glucose via the Entner-Doudoroff and Pentose Phosphate pathways, which provide precursors for phenazine production. Mutants defective in phenazine (PHZ; PA23-63), PRN (PA23-8), or both (PA23-63-1) accumulated higher concentrations of PHAs than the wild-type strain (PA23) when cultured in Ramsay’s Minimal Medium with glucose or octanoic acid as the carbon source. Expression levels of six pha genes, phaC1, phaZ, phaC2, phaD, phaF, and phaI, were compared with wild type PA23 by quantitative real time polymerase chain reaction (qPCR). The qPCR studies indicated that there was no change in levels of transcription of the PHA synthase genes phaC1 and phaC2 in the phz- (PA23-63) and phz-prn- (PA23-63-1) mutants in glucose medium. There was a significant increase in expression of phaC2 in octanoate medium. Transcription of phaD, phaF and phaI increased significantly in the phz-prn- (PA23-63-1) mutant. Mutations in regulatory genes like gacS, rpoS, and relA/spoT, which affect PHZ and PRN production, also resulted in altered gene expression. The expression of phaC1, phaC2, phaF, and phaI genes was down-regulated significantly in gacS and rpoS mutants. Thus, it appears that PHZ, PRN, and PHA production is regulated by common mechanisms. Higher PHA production in the phz- (PA23-63), prn- (PA23-8), and phz-prn- (PA23-63-1) mutants in octanoic medium could be correlated with higher expression of phaC2. Further, the greater PHA production observed in the phz- and prn- mutants was not due to increased transcription of PHA synthase genes in glucose medium, but due to more accessibility of carbon substrates and reducing power, which were otherwise used for the synthesis of PHZ and PRN.
Collapse
|
9
|
Occhipinti A, Eyassu F, Rahman TJ, Rahman PKSM, Angione C. In silico engineering of Pseudomonas metabolism reveals new biomarkers for increased biosurfactant production. PeerJ 2018; 6:e6046. [PMID: 30588397 PMCID: PMC6301282 DOI: 10.7717/peerj.6046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/30/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Rhamnolipids, biosurfactants with a wide range of biomedical applications, are amphiphilic molecules produced on the surfaces of or excreted extracellularly by bacteria including Pseudomonas aeruginosa. However, Pseudomonas putida is a non-pathogenic model organism with greater metabolic versatility and potential for industrial applications. METHODS We investigate in silico the metabolic capabilities of P. putida for rhamnolipids biosynthesis using statistical, metabolic and synthetic engineering approaches after introducing key genes (RhlA and RhlB) from P. aeruginosa into a genome-scale model of P. putida. This pipeline combines machine learning methods with multi-omic modelling, and drives the engineered P. putida model toward an optimal production and export of rhamnolipids out of the membrane. RESULTS We identify a substantial increase in synthesis of rhamnolipids by the engineered model compared to the control model. We apply statistical and machine learning techniques on the metabolic reaction rates to identify distinct features on the structure of the variables and individual components driving the variation of growth and rhamnolipids production. We finally provide a computational framework for integrating multi-omics data and identifying latent pathways and genes for the production of rhamnolipids in P. putida. CONCLUSIONS We anticipate that our results will provide a versatile methodology for integrating multi-omics data for topological and functional analysis of P. putida toward maximization of biosurfactant production.
Collapse
Affiliation(s)
- Annalisa Occhipinti
- Department of Computer Science and Information Systems, Teesside University, Middlesbrough, UK
| | - Filmon Eyassu
- Department of Computer Science and Information Systems, Teesside University, Middlesbrough, UK
| | - Thahira J. Rahman
- Technology Futures Institute, School of Science, Engineering and Design, Teesside University, Middlesbrough, UK
| | - Pattanathu K. S. M. Rahman
- Technology Futures Institute, School of Science, Engineering and Design, Teesside University, Middlesbrough, UK
- Institute of Biological and Biomedical Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Claudio Angione
- Department of Computer Science and Information Systems, Teesside University, Middlesbrough, UK
| |
Collapse
|
10
|
Kumar M, Singhal A, Verma PK, Thakur IS. Production and Characterization of Polyhydroxyalkanoate from Lignin Derivatives by Pandoraea sp. ISTKB. ACS OMEGA 2017; 2:9156-9163. [PMID: 30023602 PMCID: PMC6045365 DOI: 10.1021/acsomega.7b01615] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 11/08/2017] [Indexed: 05/23/2023]
Abstract
The present study investigates polyhydroxyalkanoate (PHA) production from lignin and its derivatives by a previously reported lignin-degrading bacterial strain Pandoraea sp. ISTKB. PHA production was screened by fluorescence microscopy and flow cytometry using a Nile red stain. PHA and biomass accumulation, while screening, was found to be maximum on 4-hydroxybenzoic acid followed by p-coumaric acid, vanillic acid, 2,6-dimethoxyphenol, and kraft lignin after 96 h. Monomer composition was analyzed by gas chromatography-mass spectrometry (GC-MS) and was followed by Fourier transform infrared and 1H NMR analysis, indicating PHA to be a copolymer of P(hydroxybutyrate-co-hydroxyvalerate). Genomic analysis of Pandoraea sp. ISTKB also complemented the results of GC-MS and NMR, and the relevant genes responsible for the synthesis of small chain length PHA were discovered in the genome. Process parameters were optimized by response surface methodology for enhanced production of PHA and biomass on 4-hydroxybenzoate. Optimization results showed 30 and 66% increase in the biomass and PHA production, respectively. The results obtained were promising and indicated that if lignin is depolymerized into low-molecular-weight intermediates, then it can easily be utilized and converted into value-added products like PHA by microbes.
Collapse
Affiliation(s)
- Madan Kumar
- School
of Environmental Sciences, Jawaharlal Nehru
University, New Delhi 110067, India
| | - Anjali Singhal
- School
of Environmental Sciences, Jawaharlal Nehru
University, New Delhi 110067, India
| | - Praveen Kumar Verma
- National
Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Indu Shekhar Thakur
- School
of Environmental Sciences, Jawaharlal Nehru
University, New Delhi 110067, India
- E-mail: , . Phone: +91-11-26704321
(0), +91-11-26191370 (R). Fax: 011 26717586 (I.S.T.)
| |
Collapse
|
11
|
Sharma PK, Munir RI, de Kievit T, Levin DB. Synthesis of polyhydroxyalkanoates (PHAs) from vegetable oils and free fatty acids by wild-type and mutant strains of Pseudomonas chlororaphis. Can J Microbiol 2017; 63:1009-1024. [DOI: 10.1139/cjm-2017-0412] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pseudomonas chlororaphis PA23 was isolated from soybean roots as a plant-growth-promoting rhizobacterium. This strain secretes a wide range of compounds, including the antibiotics phenazine-1-carboxylic acid (PCA), pyrrolnitrin, and 2-hydroxyphenazine. We have determined that P. chlororaphis PA23 can synthesize medium-chain-length polyhydroxyalkanoate (PHA) polymers utilizing free fatty acids, such as octanoic acid and nonanoic acid, as well as vegetable oils as sole carbon sources. Genome analysis identified a pha operon containing 7 genes in P. chlororaphis PA23 that were highly conserved. A nonpigmented strain that does not synthesize PCA, P. chlororaphis PA23-63, was also studied for PHA production. Pseudomonas chlororaphis PA23-63 produced 2.42–5.14 g/L cell biomass and accumulated PHAs from 11.7% to 32.5% cdm when cultured with octanoic acid, nonanoic acid, fresh canola oil, waste canola fryer oil, or biodiesel-derived waste free fatty acids under batch culture conditions. The subunit composition of the PHAs produced from fresh canola oil, waste canola fryer oil, or biodiesel-derived free fatty acids did not differ significantly. Addition of octanoic acid and nonanoic acid to canola oil cultures increased PHA production, but addition of glucose did not. PHA production in the phz mutant, P. chlororaphis PA23-63, was greater than that in the parent strain.
Collapse
Affiliation(s)
- Parveen K. Sharma
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Riffat I. Munir
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Teresa de Kievit
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - David B. Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| |
Collapse
|
12
|
Synthesis and Physical Properties of Polyhydroxyalkanoate Polymers with Different Monomer Compositions by Recombinant Pseudomonas putida LS46 Expressing a Novel PHA SYNTHASE (PhaC116) Enzyme. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7030242] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Poblete-Castro I, Borrero-de Acuña JM, Nikel PI, Kohlstedt M, Wittmann C. Host Organism: Pseudomonas putida. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ignacio Poblete-Castro
- Universidad Andrés Bello; Center for Bioinformatics and Integrative Biology, Biosystems Engineering Laboratory, Faculty of Biological Sciences; Av. República 239 8340176 Santiago de Chile Chile
| | - José M. Borrero-de Acuña
- Universidad Andrés Bello; Center for Bioinformatics and Integrative Biology, Biosystems Engineering Laboratory, Faculty of Biological Sciences; Av. República 239 8340176 Santiago de Chile Chile
| | - Pablo I. Nikel
- Systems and Synthetic Biology Program; National Spanish Center for Biotechnology (CNB-CSIC); Calle Darwin, 3 28049 Madrid, Spain
| | - Michael Kohlstedt
- Saarland University; Institute of Systems Biology, Biosciences; Campus A1.5 66123 Saarbrücken, Germany
| | - Christoph Wittmann
- Saarland University; Institute of Systems Biology, Biosciences; Campus A1.5 66123 Saarbrücken, Germany
| |
Collapse
|
14
|
Molina L, Udaondo Z, Duque E, Fernández M, Bernal P, Roca A, de la Torre J, Ramos JL. Specific Gene Loci of Clinical Pseudomonas putida Isolates. PLoS One 2016; 11:e0147478. [PMID: 26820467 PMCID: PMC4731212 DOI: 10.1371/journal.pone.0147478] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/05/2016] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas putida are ubiquitous inhabitants of soils and clinical isolates of this species have been seldom described. Clinical isolates show significant variability in their ability to cause damage to hosts because some of them are able to modulate the host’s immune response. In the current study, comparisons between the genomes of different clinical and environmental strains of P. putida were done to identify genetic clusters shared by clinical isolates that are not present in environmental isolates. We show that in clinical strains specific genes are mostly present on transposons, and that this set of genes exhibit high identity with genes found in pathogens and opportunistic pathogens. The set of genes prevalent in P. putida clinical isolates, and absent in environmental isolates, are related with survival under oxidative stress conditions, resistance against biocides, amino acid metabolism and toxin/antitoxin (TA) systems. This set of functions have influence in colonization and survival within human tissues, since they avoid host immune response or enhance stress resistance. An in depth bioinformatic analysis was also carried out to identify genetic clusters that are exclusive to each of the clinical isolates and that correlate with phenotypical differences between them, a secretion system type III-like was found in one of these clinical strains, a determinant of pathogenicity in Gram-negative bacteria.
Collapse
Affiliation(s)
- Lázaro Molina
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- * E-mail:
| | - Zulema Udaondo
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- Abengoa Research, Campus de las Palmas Altas, Sevilla, Spain
| | - Estrella Duque
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- Abengoa Research, Campus de las Palmas Altas, Sevilla, Spain
| | - Matilde Fernández
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
| | - Patricia Bernal
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- Imperial College London, South Kensington Campus, London, United Kingdom
| | - Amalia Roca
- Bio-Iliberis R&D, C/ Capileira 7, 18210 Peligros, Granada, Spain
| | - Jesús de la Torre
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
| | - Juan Luis Ramos
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- Abengoa Research, Campus de las Palmas Altas, Sevilla, Spain
| |
Collapse
|