1
|
Nawab S, Zhang Y, Ullah MW, Lodhi AF, Shah SB, Rahman MU, Yong YC. Microbial host engineering for sustainable isobutanol production from renewable resources. Appl Microbiol Biotechnol 2024; 108:33. [PMID: 38175234 DOI: 10.1007/s00253-023-12821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Due to the limited resources and environmental problems associated with fossil fuels, there is a growing interest in utilizing renewable resources for the production of biofuels through microbial fermentation. Isobutanol is a promising biofuel that could potentially replace gasoline. However, its production efficiency is currently limited by the use of naturally isolated microorganisms. These naturally isolated microorganisms often encounter problems such as a limited range of substrates, low tolerance to solvents or inhibitors, feedback inhibition, and an imbalanced redox state. This makes it difficult to improve their production efficiency through traditional process optimization methods. Fortunately, recent advancements in genetic engineering technologies have made it possible to enhance microbial hosts for the increased production of isobutanol from renewable resources. This review provides a summary of the strategies and synthetic biology approaches that have been employed in the past few years to improve naturally isolated or non-natural microbial hosts for the enhanced production of isobutanol by utilizing different renewable resources. Furthermore, it also discusses the challenges that are faced by engineered microbial hosts and presents future perspectives to enhancing isobutanol production. KEY POINTS: • Promising potential of isobutanol to replace gasoline • Engineering of native and non-native microbial host for isobutanol production • Challenges and opportunities for enhanced isobutanol production.
Collapse
Affiliation(s)
- Said Nawab
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - YaFei Zhang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Adil Farooq Lodhi
- Department of Microbiology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Syed Bilal Shah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
2
|
Gu P, Zhao S, Niu H, Li C, Jiang S, Zhou H, Li Q. Synthesis of isobutanol using acetate as sole carbon source in Escherichia coli. Microb Cell Fact 2023; 22:196. [PMID: 37759284 PMCID: PMC10537434 DOI: 10.1186/s12934-023-02197-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND With concerns about depletion of fossil fuel and environmental pollution, synthesis of biofuels such as isobutanol from low-cost substrate by microbial cell factories has attracted more and more attention. As one of the most promising carbon sources instead of food resources, acetate can be utilized by versatile microbes and converted into numerous valuable chemicals. RESULTS An isobutanol synthetic pathway using acetate as sole carbon source was constructed in E. coli. Pyruvate was designed to be generated via acetyl-CoA by pyruvate-ferredoxin oxidoreductase YdbK or anaplerotic pathway. Overexpression of transhydrogenase and NAD kinase increased the isobutanol titer of recombinant E. coli from 121.21 mg/L to 131.5 mg/L under batch cultivation. Further optimization of acetate supplement concentration achieved 157.05 mg/L isobutanol accumulation in WY002, representing the highest isobutanol titer by using acetate as sole carbon source. CONCLUSIONS The utilization of acetate as carbon source for microbial production of valuable chemicals such as isobutanol could reduce the consumption of food-based substrates and save production cost. Engineering strategies applied in this study will provide a useful reference for microbial production of pyruvate derived chemical compounds from acetate.
Collapse
Affiliation(s)
- Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Shuo Zhao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Hao Niu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Chengwei Li
- RZBC GROUP CO., LTD, Rizhao, 276800, Shandong, China
| | | | - Hao Zhou
- RZBC GROUP CO., LTD, Rizhao, 276800, Shandong, China
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| |
Collapse
|
3
|
Carranza-Saavedra D, Torres-Bacete J, Blázquez B, Sánchez Henao CP, Zapata Montoya JE, Nogales J. System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock. Front Bioeng Biotechnol 2023; 11:1176445. [PMID: 37152640 PMCID: PMC10158823 DOI: 10.3389/fbioe.2023.1176445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Replacing traditional substrates in industrial bioprocesses to advance the sustainable production of chemicals is an urgent need in the context of the circular economy. However, since the limited degradability of non-conventional carbon sources often returns lower yields, effective exploitation of such substrates requires a multi-layer optimization which includes not only the provision of a suitable feedstock but the use of highly robust and metabolically versatile microbial biocatalysts. We tackled this challenge by means of systems metabolic engineering and validated Escherichia coli W as a promising cell factory for the production of the key building block chemical 2-ketoisovalerate (2-KIV) using whey as carbon source, a widely available and low-cost agro-industrial waste. First, we assessed the growth performance of Escherichia coli W on mono and disaccharides and demonstrated that using whey as carbon source enhances it significantly. Second, we searched the available literature and used metabolic modeling approaches to scrutinize the metabolic space of E. coli and explore its potential for overproduction of 2-KIV identifying as basic strategies the block of pyruvate depletion and the modulation of NAD/NADP ratio. We then used our model predictions to construct a suitable microbial chassis capable of overproducing 2-KIV with minimal genetic perturbations, i.e., deleting the pyruvate dehydrogenase and malate dehydrogenase. Finally, we used modular cloning to construct a synthetic 2-KIV pathway that was not sensitive to negative feedback, which effectively resulted in a rerouting of pyruvate towards 2-KIV. The resulting strain shows titers of up to 3.22 ± 0.07 g/L of 2-KIV and 1.40 ± 0.04 g/L of L-valine in 24 h using whey in batch cultures. Additionally, we obtained yields of up to 0.81 g 2-KIV/g substrate. The optimal microbial chassis we present here has minimal genetic modifications and is free of nutritional autotrophies to deliver high 2-KIV production rates using whey as a non-conventional substrate.
Collapse
Affiliation(s)
- Darwin Carranza-Saavedra
- Faculty of Pharmaceutical and Food Sciences, Nutrition and Food Technology Group, University of Antioquia, Medellín, Colombia
- Department of Systems Biology, National Centre for Biotechnology (CSIC), Systems Biotechnology Group, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
| | - Jesús Torres-Bacete
- Department of Systems Biology, National Centre for Biotechnology (CSIC), Systems Biotechnology Group, Madrid, Spain
| | - Blas Blázquez
- Department of Systems Biology, National Centre for Biotechnology (CSIC), Systems Biotechnology Group, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
| | - Claudia Patricia Sánchez Henao
- Faculty of Pharmaceutical and Food Sciences, Nutrition and Food Technology Group, University of Antioquia, Medellín, Colombia
| | - José Edgar Zapata Montoya
- Faculty of Pharmaceutical and Food Sciences, Nutrition and Food Technology Group, University of Antioquia, Medellín, Colombia
| | - Juan Nogales
- Department of Systems Biology, National Centre for Biotechnology (CSIC), Systems Biotechnology Group, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC), Madrid, Spain
| |
Collapse
|
4
|
Torres‐Bacete J, Luís García J, Nogales J. A portable library of phosphate-depletion based synthetic promoters for customable and automata control of gene expression in bacteria. Microb Biotechnol 2021; 14:2643-2658. [PMID: 33783967 PMCID: PMC8601176 DOI: 10.1111/1751-7915.13808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/14/2021] [Indexed: 12/14/2022] Open
Abstract
Industrial biotechnology gene expression systems relay on constitutive promoters compromising cellular growth from the start of the bioprocess, or on inducible devices, which require manual addition of cognate inducers. To overcome this shortcoming, we engineered an automata regulatory system based on cell-stress mechanisms. Specifically, we engineered a synthetic and highly portable phosphate-depletion library of promoters inspired by bacterial PHO starvation system (Pliar promoters). Furthermore, we fully characterized 10 synthetic promoters within the background of two well-known bacterial workhorses such as E. coli W and P. putida KT2440. The promoters displayed an interesting host-dependent performance and a wide strength spectrum ranging from 0.4- to 1.3-fold when compared to the wild-type phosphatase alkaline promoter (PphoA). By comparing with available gene expression systems, we proved the suitability of this new library for the automata and effective decoupling of growth from production in P. putida. Growth phase-dependent expression of these promoters could therefore be activated by fine tuning the initial concentration of phosphate in the medium. Finally, the Pliar library was implemented in the SEVA platform in a ready-to-use mode allowing its broad use by the scientific community.
Collapse
Affiliation(s)
- Jesús Torres‐Bacete
- Department of Systems BiologyCentro Nacional de Biotecnología (CSIC)Madrid28049Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC)MadridSpain
| | - José Luís García
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC)MadridSpain
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas (CIB)Centro Nacional de Biotecnología (CSIC)MadridSpain
| | - Juan Nogales
- Department of Systems BiologyCentro Nacional de Biotecnología (CSIC)Madrid28049Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC)MadridSpain
| |
Collapse
|
5
|
Metabolic engineering of Escherichia coli for the production of isobutanol: a review. World J Microbiol Biotechnol 2021; 37:168. [PMID: 34487256 DOI: 10.1007/s11274-021-03140-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
With the ongoing depletion of fossil fuel resources and emerging environmental issues, increasing research effort is being dedicated to producing biofuels from renewable substrates. With its advantages over ethanol in terms of energy density, octane number, and hygroscopicity, isobutanol is considered a potential alternative to traditional gasoline. However, as wild-type microorganisms cannot achieve the production of isobutanol with high titers and yields, rational genetic engineering has been employed to enhance its production. Herein, we review the latest developments in the metabolic engineering of Escherichia coli for the production of isobutanol, including those related to the utilization of diverse carbon sources, balancing the redox state, improving isobutanol tolerance, and application of synthetic biology circuits and tools.
Collapse
|
6
|
Qaseem MF, Shaheen H, Wu AM. Cell wall hemicellulose for sustainable industrial utilization. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2021; 144:110996. [DOI: 10.1016/j.rser.2021.110996] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Acedos MG, de la Torre I, Santos VE, García-Ochoa F, García JL, Galán B. Modulating redox metabolism to improve isobutanol production in Shimwellia blattae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:8. [PMID: 33407735 PMCID: PMC7789792 DOI: 10.1186/s13068-020-01862-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/17/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Isobutanol is a candidate to replace gasoline from fossil resources. This higher alcohol can be produced from sugars using genetically modified microorganisms. Shimwellia blattae (p424IbPSO) is a robust strain resistant to high concentration of isobutanol that can achieve a high production rate of this alcohol. Nevertheless, this strain, like most strains developed for isobutanol production, has some limitations in its metabolic pathway. Isobutanol production under anaerobic conditions leads to a depletion of NADPH, which is necessary for two enzymes in the metabolic pathway. In this work, two independent approaches have been studied to mitigate the co-substrates imbalance: (i) using a NADH-dependent alcohol dehydrogenase to reduce the NADPH dependence of the pathway and (ii) using a transhydrogenase to increase NADPH level. RESULTS The addition of the NADH-dependent alcohol dehydrogenase from Lactococcus lactis (AdhA) to S. blattae (p424IbPSO) resulted in a 19.3% higher isobutanol production. The recombinant strain S. blattae (p424IbPSO, pIZpntAB) harboring the PntAB transhydrogenase produced 39.0% more isobutanol than the original strain, reaching 5.98 g L-1 of isobutanol. In both strains, we observed a significant decrease in the yields of by-products such as lactic acid or ethanol. CONCLUSIONS The isobutanol biosynthesis pathway in S. blattae (p424IbPSO) uses the endogenous NADPH-dependent alcohol dehydrogenase YqhD to complete the pathway. The addition of NADH-dependent AdhA leads to a reduction in the consumption of NADPH that is a bottleneck of the pathway. The higher consumption of NADH by AdhA reduces the availability of NADH required for the transformation of pyruvate into lactic acid and ethanol. On the other hand, the expression of PntAB from E. coli increases the availability of NADPH for IlvC and YqhD and at the same time reduces the availability of NADH and thus, the production of lactic acid and ethanol. In this work it is shown how the expression of AdhA and PntAB enzymes in Shimwellia blattae increases yield from 11.9% to 14.4% and 16.4%, respectively.
Collapse
Affiliation(s)
- Miguel G Acedos
- Chemical and Materials Engineering Department, Chemical Sciences School, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Isabel de la Torre
- Chemical and Materials Engineering Department, Chemical Sciences School, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Victoria E Santos
- Chemical and Materials Engineering Department, Chemical Sciences School, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Félix García-Ochoa
- Chemical and Materials Engineering Department, Chemical Sciences School, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - José L García
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Beatriz Galán
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain.
| |
Collapse
|
8
|
Novak K, Baar J, Freitag P, Pflügl S. Metabolic engineering of Escherichia coli W for isobutanol production on chemically defined medium and cheese whey as alternative raw material. J Ind Microbiol Biotechnol 2020; 47:1117-1132. [PMID: 33068182 PMCID: PMC7728641 DOI: 10.1007/s10295-020-02319-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/03/2020] [Indexed: 11/28/2022]
Abstract
The aim of this study was to establish isobutanol production on chemically defined medium in Escherichia coli. By individually expressing each gene of the pathway, we constructed a plasmid library for isobutanol production. Strain screening on chemically defined medium showed successful production in the robust E. coli W strain, and expression vector IB 4 was selected as the most promising construct due to its high isobutanol yields and efficient substrate uptake. The investigation of different aeration strategies in combination with strain improvement and the implementation of a pulsed fed-batch were key for the development of an efficient production process. E. coli W ΔldhA ΔadhE Δpta ΔfrdA enabled aerobic isobutanol production at 38% of the theoretical maximum. Use of cheese whey as raw material resulted in longer process stability, which allowed production of 20 g l−1 isobutanol. Demonstrating isobutanol production on both chemically defined medium and a residual waste stream, this study provides valuable information for further development of industrially relevant isobutanol production processes.
Collapse
Affiliation(s)
- Katharina Novak
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Juliane Baar
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Philipp Freitag
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Stefan Pflügl
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| |
Collapse
|
9
|
Effects of fluid-dynamic conditions in Shimwellia blattae (p424IbPSO) cultures in stirred tank bioreactors: Hydrodynamic stress and change of metabolic routes by oxygen availability. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Acedos MG, de la Torre I, Santos VE, Garcia-Ochoa F. Kinetic Modeling of the Isobutanol Production from Glucose Using Shimwellia blattae (p424IbPSO) Strain: Effect of Initial Substrate Concentration. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miguel G. Acedos
- Chemical & Materials Engineering Department, Universidad Complutense, 28040 Madrid, Spain
| | - Isabel de la Torre
- Chemical & Materials Engineering Department, Universidad Complutense, 28040 Madrid, Spain
| | - Victoria E. Santos
- Chemical & Materials Engineering Department, Universidad Complutense, 28040 Madrid, Spain
| | - Felix Garcia-Ochoa
- Chemical & Materials Engineering Department, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
11
|
Microbial conversion of xylose into useful bioproducts. Appl Microbiol Biotechnol 2018; 102:9015-9036. [PMID: 30141085 DOI: 10.1007/s00253-018-9294-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
Microorganisms can produce a number of different bioproducts from the sugars in plant biomass. One challenge is devising processes that utilize all of the sugars in lignocellulosic hydrolysates. D-xylose is the second most abundant sugar in these hydrolysates. The microbial conversion of D-xylose to ethanol has been studied extensively; only recently, however, has conversion to bioproducts other than ethanol been explored. Moreover, in the case of yeast, D-xylose may provide a better feedstock for the production of bioproducts other than ethanol, because the relevant pathways are not subject to glucose-dependent repression. In this review, we discuss how different microorganisms are being used to produce novel bioproducts from D-xylose. We also discuss how D-xylose could be potentially used instead of glucose for the production of value-added bioproducts.
Collapse
|
12
|
Acedos MG, Ramon A, de la Morena S, Santos VE, Garcia-Ochoa F. Isobutanol production by a recombinant biocatalyst Shimwellia blattae (p424IbPSO): Study of the operational conditions. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Rational design of a synthetic Entner-Doudoroff pathway for enhancing glucose transformation to isobutanol in Escherichia coli. J Ind Microbiol Biotechnol 2018; 45:187-199. [PMID: 29380153 DOI: 10.1007/s10295-018-2017-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/23/2018] [Indexed: 01/18/2023]
Abstract
Isobutanol as a more desirable biofuel has attracted much attention. In our previous work, an isobutanol-producing strain Escherichia coli LA09 had been obtained by rational redox status improvement under guidance of the genome-scale metabolic model. However, the low transformation from sugar to isobutanol is a limiting factor for isobutanol production by E. coli LA09. In this study, the intracellular metabolic profiles of the isobutanol-producing E. coli LA09 with different initial glucose concentrations were investigated and the metabolic reaction of fructose 6-phosphate to 1, 6-diphosphate fructose in glycolytic pathway was identified as the rate-limiting step of glucose transformation. Thus, redesigned carbon catabolism was implemented by altering flux of sugar metabolism. Here, the heterologous Entner-Doudoroff (ED) pathway from Zymomonas mobilis was constructed, and the adaptation of upper and lower parts of ED pathway was further improved with artificial promoters to alleviate the accumulation of toxic intermediate metabolite 2-keto-3-deoxy-6-phospho-gluconate (KDPG). Finally, the best isobutanol-producing E. coli ED02 with higher glucose transformation and isobutanol production was obtained. In the fermentation of strain E. coli ED02 with 45 g/L initial glucose, the isobutanol titer, yield and average producing rate were, respectively, increased by 56.8, 47.4 and 88.1% to 13.67 g/L, 0.50 C-mol/C-mol and 0.456 g/(L × h) in a shorter time of 30 h, compared with that of the starting strain E. coli LA09.
Collapse
|
14
|
Molina-García L, Moreno-Del Álamo M, Botias P, Martín-Moldes Z, Fernández M, Sánchez-Gorostiaga A, Alonso-Del Valle A, Nogales J, García-Cantalejo J, Giraldo R. Outlining Core Pathways of Amyloid Toxicity in Bacteria with the RepA-WH1 Prionoid. Front Microbiol 2017; 8:539. [PMID: 28421043 PMCID: PMC5378768 DOI: 10.3389/fmicb.2017.00539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022] Open
Abstract
The synthetic bacterial prionoid RepA-WH1 causes a vertically transmissible amyloid proteinopathy in Escherichia coli that inhibits growth and eventually kills the cells. Recent in vitro studies show that RepA-WH1 builds pores through model lipid membranes, suggesting a possible mechanism for bacterial cell death. By comparing acutely (A31V) and mildly (ΔN37) cytotoxic mutant variants of the protein, we report here that RepA-WH1(A31V) expression decreases the intracellular osmotic pressure and compromise bacterial viability under either aerobic or anaerobic conditions. Both are effects expected from threatening membrane integrity and are in agreement with findings on the impairment by RepA-WH1(A31V) of the proton motive force (PMF)-dependent transport of ions (Fe3+) and ATP synthesis. Systems approaches reveal that, in aerobiosis, the PMF-independent respiratory dehydrogenase NdhII is induced in response to the reduction in intracellular levels of iron. While NdhII is known to generate H2O2 as a by-product of the autoxidation of its FAD cofactor, key proteins in the defense against oxidative stress (OxyR, KatE), together with other stress-resistance factors, are sequestered by co-aggregation with the RepA-WH1(A31V) amyloid. Our findings suggest a route for RepA-WH1 toxicity in bacteria: a primary hit of damage to the membrane, compromising bionergetics, triggers a stroke of oxidative stress, which is exacerbated due to the aggregation-dependent inactivation of enzymes and transcription factors that enable the cellular response to such injury. The proteinopathy caused by the prion-like protein RepA-WH1 in bacteria recapitulates some of the core hallmarks of human amyloid diseases.
Collapse
Affiliation(s)
- Laura Molina-García
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - María Moreno-Del Álamo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Pedro Botias
- Genomics Unit, Complutense UniversityMadrid, Spain
| | - Zaira Martín-Moldes
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - María Fernández
- Proteomics Facility, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Alicia Sánchez-Gorostiaga
- Department of Microbial Biotechnology, National Centre for Biotechnology, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Aída Alonso-Del Valle
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Juan Nogales
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | | | - Rafael Giraldo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|