1
|
Salazar-Alekseyeva K, Herndl GJ, Baltar F. Influence of Salinity on the Extracellular Enzymatic Activities of Marine Pelagic Fungi. J Fungi (Basel) 2024; 10:152. [PMID: 38392824 PMCID: PMC10890631 DOI: 10.3390/jof10020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 02/24/2024] Open
Abstract
Even though fungi are ubiquitous in the biosphere, the ecological knowledge of marine fungi remains rather rudimentary. Also, little is known about their tolerance to salinity and how it influences their activities. Extracellular enzymatic activities (EEAs) are widely used to determine heterotrophic microbes' enzymatic capabilities and substrate preferences. Five marine fungal species belonging to the most abundant pelagic phyla (Ascomycota and Basidiomycota) were grown under non-saline and saline conditions (0 g/L and 35 g/L, respectively). Due to their sensitivity and specificity, fluorogenic substrate analogues were used to determine hydrolytic activity on carbohydrates (β-glucosidase, β-xylosidase, and N-acetyl-β-D-glucosaminidase); peptides (leucine aminopeptidase and trypsin); lipids (lipase); organic phosphorus (alkaline phosphatase), and sulfur compounds (sulfatase). Afterwards, kinetic parameters such as maximum velocity (Vmax) and half-saturation constant (Km) were calculated. All fungal species investigated cleaved these substrates, but some species were more efficient than others. Moreover, most enzymatic activities were reduced in the saline medium, with some exceptions like sulfatase. In non-saline conditions, the average Vmax ranged between 208.5 to 0.02 μmol/g biomass/h, and in saline conditions, 88.4 to 0.02 μmol/g biomass/h. The average Km ranged between 1553.2 and 0.02 μM with no clear influence of salinity. Taken together, our results highlight a potential tolerance of marine fungi to freshwater conditions and indicate that changes in salinity (due to freshwater input or evaporation) might impact their enzymatic activities spectrum and, therefore, their contribution to the oceanic elemental cycles.
Collapse
Affiliation(s)
- Katherine Salazar-Alekseyeva
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria
- Bioprocess Engineering Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research, 6708 WG Wageningen, The Netherlands
| | - Gerhard J Herndl
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), University of Utrecht, 1790 AB Texel, The Netherlands
| | - Federico Baltar
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
2
|
Mohamed H, Ebrahim W, El-Neketi M, Awad MF, Zhang H, Zhang Y, Song Y. In Vitro Phytobiological Investigation of Bioactive Secondary Metabolites from the Malus domestica-Derived Endophytic Fungus Aspergillus tubingensis Strain AN103. Molecules 2022; 27:3762. [PMID: 35744888 PMCID: PMC9228098 DOI: 10.3390/molecules27123762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Endophytic fungi including black aspergilli have the potential to synthesize multiple bioactive secondary metabolites. Therefore, the search for active metabolites from endophytic fungi against pathogenic microbes has become a necessity for alternative and promising strategies. In this study, 25 endophytic fungal isolates associated with Malus domestica were isolated, grown, and fermented on a solid rice medium. Subsequently, their ethyl acetate crude extracts were pretested for biological activity. One endophytic fungal isolate demonstrated the highest activity and was chosen for further investigation. Based on its phenotypic, ITS ribosomal gene sequences, and phylogenetic characterization, this isolate was identified as Aspergillus tubingensis strain AN103 with the accession number (KR184138). Chemical investigations of its fermented cultures yielded four compounds: Pyranonigrin A (1), Fonsecin (2), TMC 256 A1 (3), and Asperazine (4). Furthermore, 1H-NMR, HPLC, and LC-MS were performed for the identification and structure elucidation of these metabolites. The isolated pure compounds showed moderate-to-potent antibacterial activities against Pseudomonas aeruginosa and Escherichia coli (MIC value ranged from 31 and 121 to 14.5 and 58.3 μg/mL), respectively; in addition, the time−kill kinetics for the highly sensitive bacteria against isolated compounds was also investigated. The antifungal activity results show that (3) and (4) had the maximum effect against Fusarium solani and A. niger with inhibition zones of 16.40 ± 0.55 and 16.20 ± 0.20 mm, respectively, and (2) had the best effect against Candida albicans, with an inhibition zone of 17.8 ± 1.35 mm. Moreover, in a cytotoxicity assay against mouse lymphoma cell line L5178Y, (4) exhibited moderate cytotoxicity (49% inhibition), whereas (1−3) reported weak cytotoxicity (15, 26, and 19% inhibition), respectively. Our results reveal that these compounds might be useful to develop potential cytotoxic and antimicrobial drugs and an alternative source for various medical and pharmaceutical fields.
Collapse
Affiliation(s)
- Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (H.Z.); (Y.Z.)
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt;
| | - Weaam Ebrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (W.E.); (M.E.-N.)
| | - Mona El-Neketi
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (W.E.); (M.E.-N.)
| | - Mohamed F. Awad
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt;
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Huaiyuan Zhang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (H.Z.); (Y.Z.)
| | - Yao Zhang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (H.Z.); (Y.Z.)
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (H.Z.); (Y.Z.)
| |
Collapse
|
3
|
Extracellular Enzymatic Activities of Oceanic Pelagic Fungal Strains and the Influence of Temperature. J Fungi (Basel) 2022; 8:jof8060571. [PMID: 35736054 PMCID: PMC9225461 DOI: 10.3390/jof8060571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Although terrestrial and aquatic fungi are well-known decomposers of organic matter, the role of marine fungi remains largely unknown. Recent studies based on omics suggest that marine fungi potentially play a major role in elemental cycles. However, there is very limited information on the diversity of extracellular enzymatic activities performed by pelagic fungi in the ocean and how these might be affected by community composition and/or critical environmental parameters such as temperature. In order to obtain information on the potential metabolic activity of marine fungi, extracellular enzymatic activities (EEA) were investigated. Five marine fungal species belonging to the most abundant pelagic phyla (Ascomycota and Basidiomycota) were grown at 5 °C and 20 °C, and fluorogenic enzymatic assays were performed using six substrate analogues for the hydrolysis of carbohydrates (β-glucosidase, β-xylosidase, and N-acetyl-β-D-glucosaminidase), amino acids (leucine aminopeptidase), and of organic phosphorus (alkaline phosphatase) and sulfur compounds (sulfatase). Remarkably, all fungal strains were capable of hydrolyzing all the offered substrates. However, the hydrolysis rate (Vmax) and half-saturation constant (Km) varied among the fungal strains depending on the enzyme type. Temperature had a strong impact on the EEAs, resulting in Q10 values of up to 6.1 and was species and substrate dependent. The observed impact of temperature on fungal EEA suggests that warming of the global ocean might alter the contribution of pelagic fungi in marine biogeochemical cycles.
Collapse
|
4
|
Noorjahan A, Mahesh S, Aiyamperumal B, Anantharaman P. Exploring Marine Fungal Diversity and Their Applications in Agriculture. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Rastogi M, Shrivastava S, Shukla P. Bioprospecting of xylanase producing fungal strains: Multilocus phylogenetic analysis and enzyme activity profiling. J Basic Microbiol 2021; 62:150-161. [PMID: 34783043 DOI: 10.1002/jobm.202100408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/23/2021] [Accepted: 10/31/2021] [Indexed: 11/07/2022]
Abstract
The study aims to explore potential xylanase-producing indigenous fungi isolated from soil and vegetable wastes containing plant degraded matter, reporting multilocus phylogenetic analysis and xylanase enzyme activity from selective strains. Four potential xylanolytic fungi were identified through distinct primary and secondary screening of 294 isolates obtained from the samples. Morphological characterization and multigene analysis (ITS rDNA, 18S rDNA, LSU rDNA, β-tubulin, and actin gene) confirmed them as Aspergillus sp. AUMS56, Aspergillus tubingensis AUMS60 and AUMS64, and Aspergillus fumigatus AUKEMS24; achieving crude xylanase activities (through submerged fermentation using corn cobs) of 18.9, 32.29, 30.68, and 15.82 U ml-1 , respectively. AUMS60 and AUMS64 (forming lineage with A. tubingensis and Aspergillus niger in the same phylogroup with 100% Bayesian posterior probability support) secreted single xylanase (Xyn60; 36 kDa) and multiple xylanases (Xyn64A and Xyn64B; 33.4 and 19.8 kDa) respectively, having pH optima of 6.0 and exhibiting maximal activity at 60°C. These enzymes were highly stable at 40°C (120 h) and retained more than 70% activity at 50°C and at pH 5-6 (upon 72 h incubation). Our analysis suggested these enzymes to be endoxylanases demonstrating substrate hydrolysis within 15 min of reaction and maximum efficiency of xylanases from AUMS60 and AUMS64 achieving 51.1% (13 h) and 52.2% (24 h) saccharification, respectively. They also showed enhanced catalytic activity with various cations. Based on our investigation on xylan hydrolysis, we believe that these xylanases may find significant industrial applications as they have a real potential of working as a bio-catalytic cocktail (patent file number: IN E1/38213/2020-DEL) for the enhanced saccharification of lignocelluloses.
Collapse
Affiliation(s)
- Meenal Rastogi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Smriti Shrivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Pratyoosh Shukla
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.,Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
6
|
Ivaldi C, Daou M, Vallon L, Bisotto A, Haon M, Garajova S, Bertrand E, Faulds CB, Sciara G, Jacotot A, Marchand C, Hugoni M, Rakotoarivonina H, Rosso MN, Rémond C, Luis P, Record E. Screening New Xylanase Biocatalysts from the Mangrove Soil Diversity. Microorganisms 2021; 9:microorganisms9071484. [PMID: 34361919 PMCID: PMC8306085 DOI: 10.3390/microorganisms9071484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Mangrove sediments from New Caledonia were screened for xylanase sequences. One enzyme was selected and characterized both biochemically and for its industrial potential. Using a specific cDNA amplification method coupled with a MiSeq sequencing approach, the diversity of expressed genes encoding GH11 xylanases was investigated beneath Avicenia marina and Rhizophora stylosa trees during the wet and dry seasons and at two different sediment depths. GH11 xylanase diversity varied more according to tree species and season, than with respect to depth. One complete cDNA was selected (OFU29) and expressed in Pichia pastoris. The corresponding enzyme (called Xyn11-29) was biochemically characterized, revealing an optimal activity at 40–50 °C and at a pH of 5.5. Xyn11-29 was stable for 48 h at 35 °C, with a half-life of 1 h at 40 °C and in the pH range of 5.5–6. Xyn11-29 exhibited a high hydrolysis capacity on destarched wheat bran, with 40% and 16% of xylose and arabinose released after 24 h hydrolysis. Its activity on wheat straw was lower, with a release of 2.8% and 6.9% of xylose and arabinose, respectively. As the protein was isolated from mangrove sediments, the effect of sea salt on its activity was studied and discussed.
Collapse
Affiliation(s)
- Corinne Ivaldi
- INRAE, FARE, UMR A 614, Chaire AFERE, Université de Reims Champagne Ardenne, 51097 Reims, France; (C.I.); (H.R.); (C.R.)
| | - Mariane Daou
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (S.G.); (E.B.); (C.B.F.); (G.S.); (M.-N.R.)
- Department of Chemistry, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Laurent Vallon
- CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Université Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France; (L.V.); (M.H.); (P.L.)
| | - Alexandra Bisotto
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (S.G.); (E.B.); (C.B.F.); (G.S.); (M.-N.R.)
| | - Mireille Haon
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (S.G.); (E.B.); (C.B.F.); (G.S.); (M.-N.R.)
| | - Sona Garajova
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (S.G.); (E.B.); (C.B.F.); (G.S.); (M.-N.R.)
| | - Emmanuel Bertrand
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (S.G.); (E.B.); (C.B.F.); (G.S.); (M.-N.R.)
| | - Craig B. Faulds
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (S.G.); (E.B.); (C.B.F.); (G.S.); (M.-N.R.)
| | - Giuliano Sciara
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (S.G.); (E.B.); (C.B.F.); (G.S.); (M.-N.R.)
| | - Adrien Jacotot
- Institut de Recherche pour le Développement (IRD), IMPMC, UPMC, CNRS, MNHN, 98851 Noumea, New Caledonia, France; (A.J.); (C.M.)
- ISEA, Université de la Nouvelle-Calédonie, EA 7484, 8 BPR4, 98851 Noumea, New Caledonia, France
- CNRS, BRGM, ISTO, UMR 7327, Université d’Orléans, 45071 Orléans, France
| | - Cyril Marchand
- Institut de Recherche pour le Développement (IRD), IMPMC, UPMC, CNRS, MNHN, 98851 Noumea, New Caledonia, France; (A.J.); (C.M.)
- ISEA, Université de la Nouvelle-Calédonie, EA 7484, 8 BPR4, 98851 Noumea, New Caledonia, France
| | - Mylène Hugoni
- CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Université Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France; (L.V.); (M.H.); (P.L.)
| | - Harivony Rakotoarivonina
- INRAE, FARE, UMR A 614, Chaire AFERE, Université de Reims Champagne Ardenne, 51097 Reims, France; (C.I.); (H.R.); (C.R.)
| | - Marie-Noëlle Rosso
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (S.G.); (E.B.); (C.B.F.); (G.S.); (M.-N.R.)
| | - Caroline Rémond
- INRAE, FARE, UMR A 614, Chaire AFERE, Université de Reims Champagne Ardenne, 51097 Reims, France; (C.I.); (H.R.); (C.R.)
| | - Patricia Luis
- CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Université Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France; (L.V.); (M.H.); (P.L.)
| | - Eric Record
- INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (S.G.); (E.B.); (C.B.F.); (G.S.); (M.-N.R.)
- Correspondence:
| |
Collapse
|
7
|
de Oliveira BFR, Carr CM, Dobson ADW, Laport MS. Harnessing the sponge microbiome for industrial biocatalysts. Appl Microbiol Biotechnol 2020; 104:8131-8154. [PMID: 32827049 DOI: 10.1007/s00253-020-10817-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022]
Abstract
Within the marine sphere, host-associated microbiomes are receiving growing attention as prolific sources of novel biocatalysts. Given the known biocatalytic potential of poriferan microbial inhabitants, this review focuses on enzymes from the sponge microbiome, with special attention on their relevant properties and the wide range of their potential biotechnological applications within various industries. Cultivable bacterial and filamentous fungal isolates account for the majority of the enzymatic sources. Hydrolases, mainly glycoside hydrolases and carboxylesterases, are the predominant reported group of enzymes, with varying degrees of tolerance to alkaline pH and growing salt concentrations being common. Prospective areas for the application of these microbial enzymes include biorefinery, detergent, food and effluent treatment industries. Finally, alternative strategies to identify novel biocatalysts from the sponge microbiome are addressed, with an emphasis on modern -omics-based approaches that are currently available in the enzyme research arena. By providing this current overview of the field, we hope to not only increase the appetite of researchers to instigate forthcoming studies but also to stress how basic and applied research can pave the way for new biocatalysts from these symbiotic microbial communities in a productive fashion. KEY POINTS: • The sponge microbiome is a burgeoning source of industrial biocatalysts. • Sponge microbial enzymes have useful habitat-related traits for several industries. • Strategies are provided for the future discovery of microbial enzymes from sponges.
Collapse
Affiliation(s)
- Bruno Francesco Rodrigues de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,School of Microbiology, University College Cork, Cork, Ireland.
| | - Clodagh M Carr
- School of Microbiology, University College Cork, Cork, Ireland
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
PRACTICALLY VALUABLE METABOLITES OF MARINE MICROORGANISMS. BIOTECHNOLOGIA ACTA 2020. [DOI: 10.15407/biotech13.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Xylanases from marine microorganisms: A brief overview on scope, sources, features and potential applications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140312. [DOI: 10.1016/j.bbapap.2019.140312] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/10/2023]
|
10
|
Gill S, Kumara VMR. Detecting Neurodevelopmental Toxicity of Domoic Acid and Ochratoxin A Using Rat Fetal Neural Stem Cells. Mar Drugs 2019; 17:md17100566. [PMID: 31590222 PMCID: PMC6835907 DOI: 10.3390/md17100566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022] Open
Abstract
Currently, animal experiments in rodents are the gold standard for developmental neurotoxicity (DNT) investigations; however, testing guidelines for these experiments are insufficient in terms of animal use, time, and costs. Thus, alternative reliable approaches are needed for predicting DNT. We chose rat neural stem cells (rNSC) as a model system, and used a well-known neurotoxin, domoic acid (DA), as a model test chemical to validate the assay. This assay was used to investigate the potential neurotoxic effects of Ochratoxin A (OTA), of which the main target organ is the kidney. However, limited information is available regarding its neurotoxic effects. The effects of DA and OTA on the cytotoxicity and on the degree of differentiation of rat rNSC into astrocytes, neurons, and oligodendrocytes were monitored using cell-specific immunofluorescence staining for undifferentiated rNSC (nestin), neurospheres (nestin and A2B5), neurons (MAP2 clone M13, MAP2 clone AP18, and Doublecortin), astrocytes (GFAP), and oligodendrocytes (A2B5 and mGalc). In the absence of any chemical exposure, approximately 46% of rNSC differentiated into astrocytes and neurons, while 40% of the rNSC differentiated into oligodendrocytes. Both non-cytotoxic and cytotoxic concentrations of DA and OTA reduced the differentiation of rNSC into astrocytes, neurons, and oligodendrocytes. Furthermore, a non-cytotoxic nanomolar (0.05 µM) concentration of DA and 0.2 µM of OTA reduced the percentage differentiation of rNSC into astrocytes and neurons. Morphometric analysis showed that the highest concentration (10 μM) of DA reduced axonal length. These indicate that low, non-cytotoxic concentrations of DA and OTA can interfere with the differentiation of rNSC.
Collapse
Affiliation(s)
- S Gill
- Regulatory Toxicology Research Division, Health Products and Food Branch, Tunney's Pasture, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada.
| | - V M Ruvin Kumara
- Regulatory Toxicology Research Division, Health Products and Food Branch, Tunney's Pasture, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada.
| |
Collapse
|
11
|
Greco G, Di Piazza S, Gallus L, Amaroli A, Pozzolini M, Ferrando S, Bertolino M, Scarfì S, Zotti M. First identification of a fatal fungal infection of the marine sponge Chondrosia reniformis by Aspergillus tubingensis. DISEASES OF AQUATIC ORGANISMS 2019; 135:227-239. [PMID: 31535618 DOI: 10.3354/dao03397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sponges are considered promising sources of biomolecules for both pharmaceutical and cosmetic interests as well as for the production of biomaterials suitable for tissue engineering and regenerative medicine. Accordingly, the ability to grow sponges in captivity and in healthy conditions to increase their biomass is a required goal for the development of sponge aquaculture systems. To date, little information is available about the pathogenicity of fungi associated with sponges. In our study, we identified an infection in freshly collected specimens of Chondrosia reniformis (Porifera, Demospongiae) and determined that the fungus Aspergillus tubingensis was the pathogen responsible. This is the first description of a natural infection of C. reniformis by A. tubingensis. Despite raising an inflammatory response by means of an increase in tumour necrosis factor (TNF) mRNA, the infected C. reniformis specimens were not able to control the fungal infection, leading to rotting in 15 d. Characterization of this infection shows that a widely distributed fungus can represent a potential hazard to sponge aquaculture industries and how, especially in stressed or compromised marine environments, this fungus could represent a fatal opportunistic pathogen.
Collapse
Affiliation(s)
- Giuseppe Greco
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Balabanova L, Slepchenko L, Son O, Tekutyeva L. Biotechnology Potential of Marine Fungi Degrading Plant and Algae Polymeric Substrates. Front Microbiol 2018; 9:1527. [PMID: 30050513 PMCID: PMC6052901 DOI: 10.3389/fmicb.2018.01527] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022] Open
Abstract
Filamentous fungi possess the metabolic capacity to degrade environment organic matter, much of which is the plant and algae material enriched with the cell wall carbohydrates and polyphenol complexes that frequently can be assimilated by only marine fungi. As the most renewable energy feedstock on the Earth, the plant or algae polymeric substrates induce an expression of microbial extracellular enzymes that catalyze their cleaving up to the component sugars. However, the question of what the marine fungi contributes to the plant and algae material biotransformation processes has yet to be highlighted sufficiently. In this review, we summarized the potential of marine fungi alternatively to terrestrial fungi to produce the biotechnologically valuable extracellular enzymes in response to the plant and macroalgae polymeric substrates as sources of carbon for their bioconversion used for industries and bioremediation.
Collapse
Affiliation(s)
- Larissa Balabanova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Innovative Technology Center, Far Eastern Federal University, Vladivostok, Russia
| | - Lubov Slepchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Innovative Technology Center, Far Eastern Federal University, Vladivostok, Russia
| | - Oksana Son
- Innovative Technology Center, Far Eastern Federal University, Vladivostok, Russia
| | - Liudmila Tekutyeva
- Innovative Technology Center, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
13
|
Choque E, Klopp C, Valiere S, Raynal J, Mathieu F. Whole-genome sequencing of Aspergillus tubingensis G131 and overview of its secondary metabolism potential. BMC Genomics 2018; 19:200. [PMID: 29703136 PMCID: PMC6389250 DOI: 10.1186/s12864-018-4574-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/02/2018] [Indexed: 01/01/2023] Open
Abstract
Background Black Aspergilli represent one of the most important fungal resources of primary and secondary metabolites for biotechnological industry. Having several black Aspergilli sequenced genomes should allow targeting the production of certain metabolites with bioactive properties. Results In this study, we report the draft genome of a black Aspergilli, A. tubingensis G131, isolated from a French Mediterranean vineyard. This 35 Mb genome includes 10,994 predicted genes. A genomic-based discovery identifies 80 secondary metabolites biosynthetic gene clusters. Genomic sequences of these clusters were blasted on 3 chosen black Aspergilli genomes: A. tubingensis CBS 134.48, A. niger CBS 513.88 and A. kawachii IFO 4308. This comparison highlights different levels of clusters conservation between the four strains. It also allows identifying seven unique clusters in A. tubingensis G131. Moreover, the putative secondary metabolites clusters for asperazine and naphtho-gamma-pyrones production were proposed based on this genomic analysis. Key biosynthetic genes required for the production of 2 mycotoxins, ochratoxin A and fumonisin, are absent from this draft genome. Even if intergenic sequences of these mycotoxins biosynthetic pathways are present, this could not lead to the production of those mycotoxins by A. tubingensis G131. Conclusions Functional and bioinformatics analyses of A. tubingensis G131 genome highlight its potential for metabolites production in particular for TAN-1612, asperazine and naphtho-gamma-pyrones presenting antioxidant, anticancer or antibiotic properties. Electronic supplementary material The online version of this article (10.1186/s12864-018-4574-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elodie Choque
- Université de Toulouse, Laboratoire de Génie Chimique, UMR 5503 CNRS/INPT/UPS, INP-ENSAT, 1, avenue de l'Agrobiopôle, 31326, Castanet-Tolosan, France.,Present address: Unité de Recherche Biologie des Plantes et Innovation (BIOPI-EA 3900), Université de Picardie Jules Verne, 33 rue Saint Leu, 80039, Amiens Cedex, France
| | - Christophe Klopp
- Plate-forme Genotoul Bioinfo, UR875 Biométrie et Intelligence Artificielle, Institut National de la Recherche Agronomique, Castanet-Tolosan, France
| | - Sophie Valiere
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - José Raynal
- Université de Toulouse, Laboratoire de Génie Chimique, UMR 5503 CNRS/INPT/UPS, INP-ENSAT, 1, avenue de l'Agrobiopôle, 31326, Castanet-Tolosan, France
| | - Florence Mathieu
- Université de Toulouse, Laboratoire de Génie Chimique, UMR 5503 CNRS/INPT/UPS, INP-ENSAT, 1, avenue de l'Agrobiopôle, 31326, Castanet-Tolosan, France.
| |
Collapse
|
14
|
Korkmaz MN, Ozdemir SC, Uzel A. Xylanase production from marine derived Trichoderma pleuroticola 08ÇK001 strain isolated from Mediterranean coastal sediments. J Basic Microbiol 2017; 57:839-851. [PMID: 28758291 DOI: 10.1002/jobm.201700135] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/23/2017] [Accepted: 07/07/2017] [Indexed: 11/11/2022]
Abstract
Xylanases constitutes one the most important enzymes with diverse applications in different industries such as bioethanol production, animal feedstock production, production of xylo-oligosaccharides, baking industry, paper and pulp industry, xylitol production, fruit juice, and beer finishing, degumming, and agriculture. Currently, industrial xylanases are mainly produced by Aspergillus and Trichoderma members. Since the marine environments are less studied compared to terrestrial environments and harbors great microbial diversity we aimed to investigate the xylanase production of 88 marine-derived filamentous fungal strains. These strains are semi-quantitatively screened for their extracellular xylanase production and Trichoderma pleuroticola 08ÇK001 xylanase activity was further characterized. Optimum pH and temperature was determined as 5.0 and 50 °C, respectively. The enzyme preparation retained 53% of its activity at pH 5.0 after 1 h and have found resistant against several ions and compounds such as K+ , Ba2+ , Na+ , β-mercaptoethanol, Triton X-100 and toluene. This study demonstrates that marine-derived fungal strains are prolific sources for xylanase production and presents the first report about the production and characterization of xylanase from a marine derived T. pleuroticola strain. The characteristics of T. pleuroticola 08ÇK001 xylanase activity indicate possible employment in some industrial processes such as animal feed, juice and wine industries or paper pulping applications.
Collapse
Affiliation(s)
- Melih N Korkmaz
- Faculty of Science, Department of Biology, Basic and Industrial Microbiology Section, Ege University, Bornova, İzmir, Turkey
| | | | - Ataç Uzel
- Faculty of Science, Department of Biology, Basic and Industrial Microbiology Section, Ege University, Bornova, İzmir, Turkey
| |
Collapse
|