1
|
Mwandira W, Mavroulidou M, Timmermans M, Gunn MJ, Gray C, Pantoja-Muñoz L, Purchase D. A study of bacteria producing carbonic anhydrase enzyme for CaCO 3 precipitation and soil biocementation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45818-45833. [PMID: 38976195 PMCID: PMC11269399 DOI: 10.1007/s11356-024-34077-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024]
Abstract
We study the carbonic anhydrase (CA) pathway using autochthonous CA-producing bacteria as a means of inducing calcite precipitation, which acts as a biocement to improve the engineering soil properties. Forty different microbial strains producing CA were isolated from the foundation soil of a railway embankment in Prickwillow, UK. Three of the best CA-producing strains were selected and identified by DNA sequencing as Bacillus licheniformis, Bacillus toyonensis and Bacillus pumilus with CA activity values respectively of 1.79 U/ml, 1.42 U/ml and 1.55 U/ml. To optimise the treatments, we investigated the effect of pH, temperature, zinc co-factor and cementation solution molarity on the growth and CA activity and bioprecipitates, with CO2 added in the form of bicarbonate. Scanning electron microscope (SEM) analysis of the bioprecipitates showed that these had characteristic morphologies of calcite and vaterite crystals. The formation of calcite was further corroborated by FT-IR and Raman analysis of bioprecipitates. The precultured bacteria were injected into the fine-grained soil together with cementation solution. Unconfined compressive strength in treated soil increased up to 1 MPa, and its calcium carbonate content increased by 2.78%. This, as well as the stability of the treated soil upon water immersion, proved the biocementation of the fine-grained soil. These findings suggest the potential of employing the CA biocementation route for soil stabilisation pending further development of the technique.
Collapse
Affiliation(s)
- Wilson Mwandira
- Division of CIBSE, School of the Built Environment and Architecture, London South Bank University, London, UK
| | - Maria Mavroulidou
- Division of CIBSE, School of the Built Environment and Architecture, London South Bank University, London, UK.
| | - Martijn Timmermans
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, UK
| | - Michael John Gunn
- Division of CIBSE, School of the Built Environment and Architecture, London South Bank University, London, UK
| | - Christopher Gray
- Division of CIBSE, School of the Built Environment and Architecture, London South Bank University, London, UK
| | - Leonardo Pantoja-Muñoz
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, UK
| | - Diane Purchase
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, UK
| |
Collapse
|
2
|
Dhami NK, Greenwood PF, Poropat SF, Tripp M, Elson A, Vijay H, Brosnan L, Holman AI, Campbell M, Hopper P, Smith L, Jian A, Grice K. Microbially mediated fossil concretions and their characterization by the latest methodologies: a review. Front Microbiol 2023; 14:1225411. [PMID: 37840715 PMCID: PMC10576451 DOI: 10.3389/fmicb.2023.1225411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/14/2023] [Indexed: 10/17/2023] Open
Abstract
The study of well-preserved organic matter (OM) within mineral concretions has provided key insights into depositional and environmental conditions in deep time. Concretions of varied compositions, including carbonate, phosphate, and iron-based minerals, have been found to host exceptionally preserved fossils. Organic geochemical characterization of concretion-encapsulated OM promises valuable new information of fossil preservation, paleoenvironments, and even direct taxonomic information to further illuminate the evolutionary dynamics of our planet and its biota. Full exploitation of this largely untapped geochemical archive, however, requires a sophisticated understanding of the prevalence, formation controls and OM sequestration properties of mineral concretions. Past research has led to the proposal of different models of concretion formation and OM preservation. Nevertheless, the formation mechanisms and controls on OM preservation in concretions remain poorly understood. Here we provide a detailed review of the main types of concretions and formation pathways with a focus on the role of microbes and their metabolic activities. In addition, we provide a comprehensive account of organic geochemical, and complimentary inorganic geochemical, morphological, microbial and paleontological, analytical methods, including recent advancements, relevant to the characterization of concretions and sequestered OM. The application and outcome of several early organic geochemical studies of concretion-impregnated OM are included to demonstrate how this underexploited geo-biological record can provide new insights into the Earth's evolutionary record. This paper also attempts to shed light on the current status of this research and major challenges that lie ahead in the further application of geo-paleo-microbial and organic geochemical research of concretions and their host fossils. Recent efforts to bridge the knowledge and communication gaps in this multidisciplinary research area are also discussed, with particular emphasis on research with significance for interpreting the molecular record in extraordinarily preserved fossils.
Collapse
Affiliation(s)
- Navdeep K. Dhami
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Paul F. Greenwood
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Stephen F. Poropat
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Madison Tripp
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Amy Elson
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Hridya Vijay
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Luke Brosnan
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Alex I. Holman
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Matthew Campbell
- The Trace and Environmental DNA lab (trEND), School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Peter Hopper
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Lisa Smith
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Andrew Jian
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Kliti Grice
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| |
Collapse
|
3
|
Castillo J, Alom J, Gomez-Arias A, Cebekhulu S, Matu A, Cason E, Valverde A. Bacterial communities shift and influence in an acid mine drainage treatment using barium carbonate disperse alkaline substrate system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163526. [PMID: 37116802 DOI: 10.1016/j.scitotenv.2023.163526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/12/2023]
Abstract
Chemical passive treatment systems used to remediate acid mine drainage has been evaluated based mainly on the reactivity of the chemical alkaline reagents, overlooking the activity of the microorganisms that proliferate in these artificial ecosystems. In this study, the bacterial communities of a unique passive treatment system known as BDAS (Barium carbonate Dispersed Alkaline Substrate) were investigated using 16S rRNA gene metagenomic sequencing combined with hydrochemical characterization of the AMD and phenotypic characterization of biogenic precipitates. According to the hydrochemical characterization, the water quality improved as the water progressed through the system, with a drastic increase in the pH (up to alkaline conditions) and total organic carbon, as well as the removal of main contaminants such as Ca2+, SO42-, Fe3+, Al3+, and Mn2+. These environmental changes resulted in an increase in bacterial diversity (richness) after the inlet and in the shift of the bacterial communities from chemoautotrophs (e.g., Ferrovum and Acidiphilum) to chemoheterotrophs (e.g., Brevundimonas and Geobacter). Some of these taxa harbour potential to immobilize metals, aiding in the treatment of the water. One of the mechanisms involved in the immobilization of metals is microbially induced calcium carbonate precipitation, which seems to occur spontaneously in BDAS. The production of biofilm was also observed in most parts of the system, except in the inlet, helping with the removal of metals. However, in the long run, the build-up of biofilm and precipitation of metals could clog (i.e., biofouling) the pores of the matrix, reducing the treatment efficiency. Potential human pathogens (e.g. Legionella) were also detected in BDAS indicating the need for a treatment step at the end of the system to remove pathogenic microorganisms. These findings present a new perspective of the bacterial communities and their effects (both positively and negatively) in a chemical passive treatment system.
Collapse
Affiliation(s)
- J Castillo
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.
| | - J Alom
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - A Gomez-Arias
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - S Cebekhulu
- Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| | - A Matu
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - E Cason
- Department of Animal Sciences, University of the Free State, Bloemfontein, South Africa
| | - A Valverde
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| |
Collapse
|
4
|
Hu XM, Liu JD, Feng Y, Zhao YY, Wang XW, Liu WH, Zhang M, Liu Y. Application of urease-producing microbial community in seawater to dust suppression in desert. ENVIRONMENTAL RESEARCH 2023; 219:115121. [PMID: 36549485 DOI: 10.1016/j.envres.2022.115121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/08/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
In order to solve the dust problem caused by sandstorms, this paper aims to propose a new method of enriching urease-producing microbial communities in seawater in a non-sterile environment. Besides, the difference of dust suppression performance of enriched microorganisms under different pH conditions was also explored to adapt the dust. The Fourier-transform infrared spectrometry (FTIR) and Scanning electron microscopy (SEM) confirmed the formation of CaCO3. The X-ray diffraction (XRD) further showed that the crystal forms of CaCO3 were calcite and vaterite. When urease activity was equivalent, the alkaline environment was conducive to the transformation of CaCO3 to more stable calcite. The mineralization rate at pH = 10 reached the maximum value on the 7th day, which was 97.49 ± 1.73%. Moreover, microbial community analysis results showed that the relative abundance of microbial community structure was different under different pH enrichment. Besides, the relative abundance of Sporosarcina, a representative genus of urease-producing microbial community, increased with the increase of pH under culture conditions, which consistent with the mineralization performance results. In addition, the genus level species network diagram also showed that in the microbial community, Sporosarcina was negatively correlated with another urease-producing genus Bacillus, and had a reciprocal relationship with Atopostipes, which means that the urease-producing microbial community was structurally stable. The enrichment of urease-producing microbial communities in seawater will provide empirical support for the large-scale engineering application of MICP technology in preventing and controlling sandstorms in deserts.
Collapse
Affiliation(s)
- Xiang-Ming Hu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Jin-Di Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Yue Feng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Yan-Yun Zhao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Xu-Wei Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Wen-Hao Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Ming Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Yu Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, Shandong, China.
| |
Collapse
|
5
|
Zhang K, Tang CS, Jiang NJ, Pan XH, Liu B, Wang YJ, Shi B. Microbial‑induced carbonate precipitation (MICP) technology: a review on the fundamentals and engineering applications. ENVIRONMENTAL EARTH SCIENCES 2023; 82:229. [PMID: 37128499 PMCID: PMC10131530 DOI: 10.1007/s12665-023-10899-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
The microbial‑induced carbonate precipitation (MICP), as an emerging biomineralization technology mediated by specific bacteria, has been a popular research focus for scientists and engineers through the previous two decades as an interdisciplinary approach. It provides cutting-edge solutions for various engineering problems emerging in the context of frequent and intense human activities. This paper is aimed at reviewing the fundaments and engineering applications of the MICP technology through existing studies, covering realistic need in geotechnical engineering, construction materials, hydraulic engineering, geological engineering, and environmental engineering. It adds a new perspective on the feasibility and difficulty for field practice. Analysis and discussion within different parts are generally carried out based on specific considerations in each field. MICP may bring comprehensive improvement of static and dynamic characteristics of geomaterials, thus enhancing their bearing capacity and resisting liquefication. It helps produce eco-friendly and durable building materials. MICP is a promising and cost-efficient technology in preserving water resources and subsurface fluid leakage. Piping, internal erosion and surface erosion could also be addressed by this technology. MICP has been proved suitable for stabilizing soils and shows promise in dealing with problematic soils like bentonite and expansive soils. It is also envisaged that this technology may be used to mitigate against impacts of geological hazards such as liquefaction associated with earthquakes. Moreover, global environment issues including fugitive dust, contaminated soil and climate change problems are assumed to be palliated or even removed via the positive effects of this technology. Bioaugmentation, biostimulation, and enzymatic approach are three feasible paths for MICP. Decision makers should choose a compatible, efficient and economical way among them and develop an on-site solution based on engineering conditions. To further decrease the cost and energy consumption of the MICP technology, it is reasonable to make full use of industrial by-products or wastes and non-sterilized media. The prospective direction of this technology is to make construction more intelligent without human intervention, such as autogenous healing. To reach this destination, MICP could be coupled with other techniques like encapsulation and ductile fibers. MICP is undoubtfully a mainstream engineering technology for the future, while ecological balance, environmental impact and industrial applicability should still be cautiously treated in its real practice.
Collapse
Affiliation(s)
- Kuan Zhang
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Chao-Sheng Tang
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Ning-Jun Jiang
- Institute of Geotechnical Engineering, Southeast University, Nanjing, 211189 China
| | - Xiao-Hua Pan
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Bo Liu
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Yi-Jie Wang
- Department of Civil and Environmental Engineering, University of Hawaii, Manoa, Honolulu, HI 96822 USA
| | - Bin Shi
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| |
Collapse
|
6
|
Raza A, Khushnood RA. Bacterial Carbonate Precipitation Using Active Metabolic Pathway to Repair Mortar Cracks. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6616. [PMID: 36233956 PMCID: PMC9571396 DOI: 10.3390/ma15196616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
A study was conducted to check the efficacy of microbial pathways for calcite precipitation to heal pre-existing cracks in mortar. In this experiment, realistic cracks of varying widths were induced on a mortar sample. Different repair methods were applied to a total of 22 mortar samples. Twelve cracked mortar samples with average crack widths ranging from 0.29 to 1.08 mm were subjected to biodeposition treatment using calcium lactate as a food source. The remaining ten samples were split into two groups: five cracked mortar samples were exclusively exposed to the bacterial solution, while the remaining five samples were immersed in distilled water. Digital image processing was used to extract the crack characteristics before and after the repair application. During several repair cycles, image processing was used to track healing. Further, these repaired mortar samples underwent examination for water permeability, ultra-sonic examination, and examination for recovered compressive strength. A forensic examination of the healing product in terms of morphology and elemental composition was conducted using RAMAN, XRD, SEM-EDS, and TGA. The water permeability of the repaired mortar sample using biodeposition with Ca-lactate was dramatically reduced, but samples treated with bacterial solution and distilled water did not exhibit any significant reduction. Complete crack healing was observed when using Ca-lactate as a food source for microbial repair. The forensic analysis confirmed the presence of calcite in healing precipitates.
Collapse
Affiliation(s)
- Ali Raza
- Correspondence: (A.R.); or (R.A.K.)
| | | |
Collapse
|
7
|
Czaplicka N, Konopacka-Łyskawa D, Nowotnik A, Mielewczyk-Gryń A, Łapiński M, Bray R. Precipitation of calcium carbonate in the presence of rhamnolipids in alginate hydrogels as a model of biomineralization. Colloids Surf B Biointerfaces 2022; 218:112749. [PMID: 35932556 DOI: 10.1016/j.colsurfb.2022.112749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
This paper reports the effects of rhamnolipids presence in the alginate hydrogel and CO32- solution, on the precipitation of CaCO3 in the Ca2+ loaded alginate hydrogel. Characteristics of the formed particles are discussed. Model conditions containing alginate hydrogel and rhamnolipids were used in order to mimic the natural environment of biomineralization in biofilms. It has been shown that rhamnolipids affect the characteristics of precipitated calcium carbonate effect of using these biosurfactants depends on their concentration as well as whether they are directly present in the hydrogel matrix or the carbonate solution surrounding the hydrogel. The greatest effect compared to the control samples was found for the rhamnolipids in the form of micelles directly present in the hydrogel with the CaCl2 cross-linked solution at concentration of 0.05 M. These conditions result in the highest increase in vaterite content, specific surface area, and pore volume. The mechanism of CaCO3 precipitation in alginate hydrogel containing rhamnolipids has been proposed.
Collapse
Affiliation(s)
- Natalia Czaplicka
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Donata Konopacka-Łyskawa
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Agata Nowotnik
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Aleksandra Mielewczyk-Gryń
- Institute of Nanotechnology and Materials Engineering and Advanced Materials Center, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Marcin Łapiński
- Institute of Nanotechnology and Materials Engineering and Advanced Materials Center, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Rafał Bray
- Department of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
8
|
Jimenez-Martinez J, Nguyen J, Or D. Controlling pore-scale processes to tame subsurface biomineralization. RE/VIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2022; 21:27-52. [PMID: 35221831 PMCID: PMC8831379 DOI: 10.1007/s11157-021-09603-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Microorganisms capable of biomineralization can catalyze mineral precipitation by modifying local physical and chemical conditions. In porous media, such as soil and rock, these microorganisms live and function in highly heterogeneous physical, chemical and ecological microenvironments, with strong local gradients created by both microbial activity and the pore-scale structure of the subsurface. Here, we focus on extracellular bacterial biomineralization, which is sensitive to external heterogeneity, and review the pore-scale processes controlling microbial biomineralization in natural and engineered porous media. We discuss how individual physical, chemical and ecological factors integrate to affect the spatial and temporal control of biomineralization, and how each of these factors contributes to a quantitative understanding of biomineralization in porous media. We find that an improved understanding of microbial behavior in heterogeneous microenvironments would promote understanding of natural systems and output in diverse technological applications, including improved representation and control of fluid mixing from pore to field scales. We suggest a range of directions by which future work can build from existing tools to advance each of these areas to improve understanding and predictability of biomineralization science and technology.
Collapse
Affiliation(s)
- Joaquin Jimenez-Martinez
- Department of Water Resources and Drinking Water, Eawag, Dübendorf, Switzerland
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zürich, Switzerland
| | - Jen Nguyen
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Dani Or
- Division of Hydrologic Sciences, Desert Research Institute, Reno, NV USA
| |
Collapse
|
9
|
Muhammad T, Li L, Xiao Y, Zhou Y, Liu Z, He X, Bazai NA, Li Y. Multiple fouling dynamics, interactions and synergistic effects in brackish surface water distribution systems. CHEMOSPHERE 2022; 287:132268. [PMID: 34555585 DOI: 10.1016/j.chemosphere.2021.132268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Dissolved salts, colloidal particles, and active microorganisms in brackish surface water distribution systems (BSWD) cause multiple fouling, poses potential threat to the environmental pollution, and raising technical and economic issues as well. So far, the co-occurrence and interactions of multiple fouling remains largely unknown. Multiple fouling behaviors were assessed in agriculture BSWD under different nitrogen (N) fertilizers. X-ray diffraction, Rietveld refinement analysis, 16S rRNA, and microbial network analysis were conducted to determine the fouling characteristics. Statistical analysis was applied to reveal the relative contributions and interaction of multiple fouling. Our results demonstrated, multiple fouling of precipitates, particulates and biofoulings were co-occurred. Fouling growth was largely attributed to the strong interactions of different fouling. The binary interactions of precipitates - particulates contributed 51.1%, and ternary interactions of precipitates - particulates - biofouling contributed 25.4% to explain the decline of system performance, while the contribution of each single type fouling was minimal. Thereby indicating the significant role of calcium silica, biomineralization and bio-silicates in fouling. The lower acid N fertilizer broken the interaction of multiple fouling by increasing the precipitate crystal parameters and repulsive forces amongst particulates, as well as destroyed microbial interactions in biofouling. Overall, this study open frontier for multiple fouling in-depth profiling and antifouling guidance for effective utilization of BSWD.
Collapse
Affiliation(s)
- Tahir Muhammad
- College of Water Resources and Civil Engineering, China Agricultural University, China.
| | - Lei Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Yang Xiao
- College of Water Resources and Civil Engineering, China Agricultural University, China.
| | - Yunpeng Zhou
- College of Water Resources and Civil Engineering, China Agricultural University, China.
| | - Zeyuan Liu
- College of Water Resources and Civil Engineering, China Agricultural University, China.
| | - Xin He
- College of Water Resources and Civil Engineering, China Agricultural University, China.
| | - Nazir Ahmed Bazai
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences (CAS), Chengdu, China.
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, China.
| |
Collapse
|
10
|
Impacts of Space Restriction on the Microstructure of Calcium Silicate Hydrate. MATERIALS 2021; 14:ma14133645. [PMID: 34208865 PMCID: PMC8269597 DOI: 10.3390/ma14133645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 11/16/2022]
Abstract
The effect of hydration space on cement hydration is essential. After a few days, space restriction affects the hydration kinetics which dominate the expansion, shrinkage and creep of cement materials. The influence of space restriction on the hydration products of tricalcium silicate was studied in this paper. The microstructure, morphology and composition of calcium silicate hydrate (C-S-H) were explored from the perspective of a specific single micropore. A combination of Raman spectra, Fourier transform infrared spectra, scanning electron microscopy and energy dispersive X-ray spectroscopy were employed. The results show that space restriction affects the structure of the hydration products. The C-S-H formed in the micropores was mainly composed of Q3 silicate tetrahedra with a high degree of polymerization. The C-S-H formed under standard conditions with a water to cement ratio of 0.5 mostly existed as Q2 units. Space restriction during hydration is conducive to the formation of C-S-H with silica tetrahedra of a high polymerization degree, while the amount of water filling the micropore plays no obvious role on the polymeric structure of C-S-H during hydration.
Collapse
|
11
|
Song N, Li Q, Zhou Y, Sun G, Pan L, Zhao X, Dong P, Zhao Y, Yang L, Huang Y. Carbonate biomineralization differentially induced by two psychrophilic Pseudomonas psychrophila strains isolated from an alpine travertine landform. RSC Adv 2021; 11:12885-12892. [PMID: 35423815 PMCID: PMC8697359 DOI: 10.1039/d1ra00578b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/19/2021] [Indexed: 11/21/2022] Open
Abstract
Besides geography and climate, biological factors play an important role in shaping travertine landforms, but the biochemical mechanisms of microbial processes in travertine formation have been rarely studied. Two psychrophilic bacterial strains, A20-18 and B21-3 of Pseudomonas psychrophila, isolated from travertine pools of Huanglong, a typical alpine travertine landform, were investigated for their roles in calcium carbonate mineralization, including the deposition process and products. X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy were used to characterize the crystal phase and morphology of CaCO3 precipitation. The results showed that there were no significant differences between the two strains in CaCO3 deposition rate. Extracellular polymeric substances (EPS)-free cells significantly inhibited calcification, compared with a control. Irregular crystals and polyhedral structures are common to all treatments using the two strains. These complex polycrystals were the result of the synergistic effect of homogeneous nucleation and heterogeneous nucleation. EPS and cells of strain B21-3 formed ring-like structures of calcium carbonate, which was possibly from the amphiphilic polymer forming a circular arrangement in water. These results are significant for understanding the microbial factor in Huanglong travertine deposition and providing new insights into the morphological control of the biomineralization mechanism at low temperatures. Calcium carbonate crystals induced by two Pseudomonas psychrophila strains and their organic compounds were studied.![]()
Collapse
Affiliation(s)
- Na Song
- Life Science and Engineering College
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Qiongfang Li
- Life Science and Engineering College
- Southwest University of Science and Technology
- Mianyang 621010
- China
- Key Laboratory of Solid Waste Treatment and Resource Recycle
| | - Yi Zhou
- School of Agriculture, Food & Wine
- Waite Campus
- The University of Adelaide
- Urrbrae
- Australia
| | - Geng Sun
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Ling Pan
- Life Science and Engineering College
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Xiaoxia Zhao
- Life Science and Engineering College
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Pengju Dong
- Life Science and Engineering College
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Yulian Zhao
- Life Science and Engineering College
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Lijun Yang
- School of Environment and Resource
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Yunbi Huang
- School of Environment and Resource
- Southwest University of Science and Technology
- Mianyang 621010
- China
| |
Collapse
|
12
|
Chuo SC, Mohamed SF, Mohd Setapar SH, Ahmad A, Jawaid M, Wani WA, Yaqoob AA, Mohamad Ibrahim MN. Insights into the Current Trends in the Utilization of Bacteria for Microbially Induced Calcium Carbonate Precipitation. MATERIALS 2020; 13:ma13214993. [PMID: 33167607 PMCID: PMC7664203 DOI: 10.3390/ma13214993] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
Nowadays, microbially induced calcium carbonate precipitation (MICP) has received great attention for its potential in construction and geotechnical applications. This technique has been used in biocementation of sand, consolidation of soil, production of self-healing concrete or mortar, and removal of heavy metal ions from water. The products of MICP often have enhanced strength, durability, and self-healing ability. Utilization of the MICP technique can also increase sustainability, especially in the construction industry where a huge portion of the materials used is not sustainable. The presence of bacteria is essential for MICP to occur. Bacteria promote the conversion of suitable compounds into carbonate ions, change the microenvironment to favor precipitation of calcium carbonate, and act as precipitation sites for calcium carbonate crystals. Many bacteria have been discovered and tested for MICP potential. This paper reviews the bacteria used for MICP in some of the most recent studies. Bacteria that can cause MICP include ureolytic bacteria, non-ureolytic bacteria, cyanobacteria, nitrate reducing bacteria, and sulfate reducing bacteria. The most studied bacterium for MICP over the years is Sporosarcina pasteurii. Other bacteria from Bacillus species are also frequently investigated. Several factors that affect MICP performance are bacterial strain, bacterial concentration, nutrient concentration, calcium source concentration, addition of other substances, and methods to distribute bacteria. Several suggestions for future studies such as CO2 sequestration through MICP, cost reduction by using plant or animal wastes as media, and genetic modification of bacteria to enhance MICP have been put forward.
Collapse
Affiliation(s)
- Sing Chuong Chuo
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, Skudai 81310 UTM, Johor, Malaysia;
- Department of Quantity Surveying, Faculty of Built Environment, Universiti Teknologi Malaysia, Skudai 81310 UTM, Johor, Malaysia
| | - Sarajul Fikri Mohamed
- Department of Quantity Surveying, Faculty of Built Environment, Universiti Teknologi Malaysia, Skudai 81310 UTM, Johor, Malaysia
- Correspondence: (S.F.M.); (S.H.M.S.); (A.A.); (M.J.); Tel.: +60-75535496 (S.H.M.S.); Fax: +60-75581463 (S.H.M.S.)
| | - Siti Hamidah Mohd Setapar
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, Skudai 81310 UTM, Johor, Malaysia;
- Malaysia-Japan International Institute of Technology, Jalan Sultan Yahya Petra, Universiti Teknologi, Malaysia, Kuala Lumpur 54100, Malaysia
- Correspondence: (S.F.M.); (S.H.M.S.); (A.A.); (M.J.); Tel.: +60-75535496 (S.H.M.S.); Fax: +60-75581463 (S.H.M.S.)
| | - Akil Ahmad
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, Skudai 81310 UTM, Johor, Malaysia;
- Malaysia-Japan International Institute of Technology, Jalan Sultan Yahya Petra, Universiti Teknologi, Malaysia, Kuala Lumpur 54100, Malaysia
- Correspondence: (S.F.M.); (S.H.M.S.); (A.A.); (M.J.); Tel.: +60-75535496 (S.H.M.S.); Fax: +60-75581463 (S.H.M.S.)
| | - Mohammad Jawaid
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
- Correspondence: (S.F.M.); (S.H.M.S.); (A.A.); (M.J.); Tel.: +60-75535496 (S.H.M.S.); Fax: +60-75581463 (S.H.M.S.)
| | - Waseem A. Wani
- Department of Chemistry, Govt. Degree College Tral, Kashmir J&K-192123, India;
| | - Asim Ali Yaqoob
- School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (A.A.Y.); (M.N.M.I.)
| | | |
Collapse
|
13
|
Ohan JA, Saneiyan S, Lee J, Bartlow AW, Ntarlagiannis D, Burns SE, Colwell FS. Microbial and Geochemical Dynamics of an Aquifer Stimulated for Microbial Induced Calcite Precipitation (MICP). Front Microbiol 2020; 11:1327. [PMID: 32612598 PMCID: PMC7309221 DOI: 10.3389/fmicb.2020.01327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/25/2020] [Indexed: 11/28/2022] Open
Abstract
Microbially induced calcite precipitation (MICP) is an alternative to existing soil stabilization techniques for construction and erosion. As with any biologically induced process in soils or aquifers, it is important to track changes in the microbial communities that occur as a result of the treatment. Our research assessed how native microbial communities developed in response to injections of reactants (dilute molasses as a carbon source; urea as a source of nitrogen and alkalinity) that promoted MICP in a shallow aquifer. Microbial community composition (16S rRNA gene) and ureolytic potential (ureC gene copy numbers) were also measured in groundwater and artificial sediment. Aquifer geochemistry showed evidence of sulfate reduction, nitrification, denitrification, ureolysis, and iron reduction during the treatment. The observed changes in geochemistry corresponded to microbial community succession in the groundwater and this matched parallel geophysical and mineralogical evidence of calcite precipitation in the aquifer. We detected an increase in the number of ureC genes in the microbial communities at the end of the injection period, suggesting an increase in the abundance of microbes possessing this gene as needed to hydrolyze urea and stimulate MICP. We identify geochemical and biological markers that highlight the microbial community response that can be used along with geophysical and geotechnical evidence to assess progress of MICP.
Collapse
Affiliation(s)
- J A Ohan
- Department of Microbiology, Oregon State University, Corvallis, OR, United States.,Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - S Saneiyan
- Department of Earth & Environmental Sciences, Rutgers University, Newark, NJ, United States
| | - J Lee
- College of Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andrew W Bartlow
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - D Ntarlagiannis
- Department of Earth & Environmental Sciences, Rutgers University, Newark, NJ, United States
| | - S E Burns
- College of Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Frederick S Colwell
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
14
|
Using Microfluidic Set-Up to Determine the Adsorption Rate of Sporosarcina pasteurii Bacteria on Sandstone. Transp Porous Media 2020. [DOI: 10.1007/s11242-020-01391-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Ryu Y, Lee KE, Cha IT, Park W. Optimization of bacterial sporulation using economic nutrient for self-healing concrete. J Microbiol 2020; 58:288-296. [PMID: 32103443 DOI: 10.1007/s12275-020-9580-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
The use of heat- and alkali-resistant bacteria is essential for the biological repair of damaged concrete. Lysinibacillus boronitolerans YS11 was isolated from the rhizosphere of Miscanthus sacchariflorus. The increased pH in the urea-minus condition during the growth of the YS11 strain promoted calcium carbonate (CaCO3) formation. To identify the optimum medium that promoted the growth of the YS11 strain, a Plackett-Burman design was conducted for the screening process. Consequently, malt powder, rice bran, (NH4)2SO4, and corn syrup were chosen to enhance YS11 growth. The optimization of these four useful factors was carried out using a central composite design. To obtain higher survivability in mortar, the sporulation process is essential, and additional factors such as Mn2+, Fe2+, and Ca2+ were found to contribute to sporulation. A mixture of L. boronitolerans YS11 spore powder, cement, paste, sand, yeast extract, calcium lactate, and water showed a healing effect on a 0.3 mm mortar crack in 7 days. Furthermore, calcium carbonate precipitation was observed over the crack surface. Thus, we confirmed that mortar treated with YS11 spore powder was effective in healing micro-cracks in concrete.
Collapse
Affiliation(s)
- Youngung Ryu
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Sciences and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ki-Eun Lee
- National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - In-Tae Cha
- National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Sciences and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
16
|
One-Step Removal of Calcium, Magnesium, and Nickel in Desalination by Alcaligenes aquatilis via Biomineralization. CRYSTALS 2019. [DOI: 10.3390/cryst9120633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In desalination, a high level of calcium (Ca) and magnesium (Mg) ions in seawater can cause scale deposition on the reverse osmosis membranes and water treatment systems. This process can significantly affect the efficiency of desalination. In addition, heavy metals in seawater affect human health. Therefore, Alcaligenes aquatilis from seawater was used to remove Ca, Mg, and nickel (Ni) by microbial-induced carbonate precipitation (MICP). The purification system was then analyzed by ionic analysis and surface characterization. This study shows that the bacteria can utilize amino acids to produce carbonate and form precipitates with a high removal rate. MICP via A. aquatilis removed 91.8%, 68.5%, and 92.2% of the initial soluble Ca, Mg, and Ni, respectively. Furthermore, A. aquatilis can remove ammonium after the MICP process under oxygen-rich conditions. Therefore, we provide interesting insight into the use of Alcaligenes (in the absence of urea) to improve the seawater quality in the process of desalination.
Collapse
|
17
|
Lotlikar SR, Kayastha BB, Vullo D, Khanam SS, Braga RE, Murray AB, McKenna R, Supuran CT, Patrauchan MA. Pseudomonas aeruginosa β-carbonic anhydrase, psCA1, is required for calcium deposition and contributes to virulence. Cell Calcium 2019; 84:102080. [PMID: 31589941 DOI: 10.1016/j.ceca.2019.102080] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/16/2019] [Accepted: 09/07/2019] [Indexed: 01/07/2023]
Abstract
Calcification of soft tissue leads to serious diseases and has been associated with bacterial chronic infections. However, the origin and the molecular mechanisms of calcification remain unclear. Here we hypothesized that a human pathogen Pseudomonas aeruginosa deposits extracellular calcium, a process requiring carbonic anhydrases (CAs). Transmission electron microscopy confirmed the formation of 0.1-0.2 μm deposits by P. aeruginosa PAO1 growing at 5 mM CaCl2, and X-ray elemental analysis confirmed they contain calcium. Quantitative analysis of deposited calcium showed that PAO1 deposits 0.35 and 0.75 mM calcium/mg protein when grown at 5 mM and 10 mM CaCl2, correspondingly. Fluorescent microscopy indicated that deposition initiates at the cell surface. We have previously characterized three PAO1 β-class CAs: psCA1, psCA2, and psCA3 that hydrate CO2 to HCO3-, among which psCA1 showed the highest catalytic activity (Lotlikar et. al. 2013). According to immunoblot and RT-qPCR, growth at elevated calcium levels increases the expression of psCA1. Analyses of the deletion mutants lacking one, two or all three psCA genes, determined that psCA1 plays a major role in calcium deposition and contributes to the pathogen's virulence. In-silico modeling of the PAO1 β-class CAs identified four amino acids that differ in psCA1 compared to psCA2, and psCA3 (T59, A61A, A101, and A108), and these differences may play a role in catalytic rate and thus calcium deposition. A series of inhibitors were tested against the recombinant psCA1, among which aminobenzene sulfonamide (ABS) and acetazolamide (AAZ), which inhibited psCA1 catalytic activity with KIs of 19 nM and 37 nM, correspondingly. The addition of ABS and AAZ to growing PAO1 reduced calcium deposition by 41 and 78, respectively. Hence, for the first time, we showed that the β-CA psCA1 in P. aeruginosa contributes to virulence likely by enabling calcium salt deposition, which can be partially controlled by inhibiting its catalytic activity.
Collapse
Affiliation(s)
- Shalaka R Lotlikar
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Biraj B Kayastha
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Daniela Vullo
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Sharmily S Khanam
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Reygan E Braga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Akilah B Murray
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Polo Scientifico, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
18
|
Osinubi KJ, Eberemu AO, Gadzama EW, Ijimdiya TS. Plasticity characteristics of lateritic soil treated with Sporosarcina pasteurii in microbial-induced calcite precipitation application. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0868-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
19
|
Tepe M, Arslan Ş, Koralay T, Mercan Doğan N. Precipitation and characterization of CaCO3 of Bacillus amyloliquefaciens U17 strain producing urease and carbonic anhydrase. ACTA ACUST UNITED AC 2019; 43:198-208. [PMID: 31320818 PMCID: PMC6620036 DOI: 10.3906/biy-1901-56] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the present study, the properties of calcium carbonate mineralization and urease and carbonic anhydrase activities of Bacillus amyloliquefaciens U17 isolated from calcareous soil of Denizli (Turkey) were analyzed. CaCO3 was produced in all growth phases. Strain U17 showed 0.615 ± 0.092 µmol/min/mg urease enzyme activity in calcium mineralization medium and 1.315 ± 0.021 µmol/min/mg urease enzyme activity in Luria-Bertani medium supplemented with urea, whereas it showed 36.03 ± 5.48 nmol/min/mg carbonic anhydrase enzyme activity in CaCO3 precipitation medium and 28.82 ± 3.31 nmol/min/mg carbonic anhydrase enzyme activity in Luria-Bertani medium supplemented with urea. The urease B protein expression level of strain U17 was detected by western blotting for the first time. The produced CaCO3 crystals were analyzed by X-ray diffraction, X-ray fluorescence, confocal RAMAN spectrophotometer, scanning electron microscopy, and electron probe microanalyzer for the evaluation of their morphological and elemental properties. Rhombohedral vaterite and layered calcite crystals were clearly detected and verified by mineralogical analyses. All these results showed that strain U17 can be used in many engineering and geological applications due to its CaCO3 precipitation ability.
Collapse
Affiliation(s)
- Merve Tepe
- Department of Biology, Faculty of Science and Arts, Pamukkale University, Denizli, Turkey
| | - Şevki Arslan
- Department of Biology, Faculty of Science and Arts, Pamukkale University, Denizli, Turkey
| | - Tamer Koralay
- Department of Geology, Faculty of Engineering, Pamukkale University, Denizli, Turkey
| | - Nazime Mercan Doğan
- Department of Biology, Faculty of Science and Arts, Pamukkale University, Denizli, Turkey
| |
Collapse
|
20
|
Lee YS, Park W. Enhanced calcium carbonate-biofilm complex formation by alkali-generating Lysinibacillus boronitolerans YS11 and alkaliphilic Bacillus sp. AK13. AMB Express 2019; 9:49. [PMID: 30976947 PMCID: PMC6459448 DOI: 10.1186/s13568-019-0773-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
Microbially induced calcium carbonate (CaCO3) precipitation (MICP) is a process where microbes induce condition favorable for CaCO3 formation through metabolic activities by increasing the pH or carbonate ions when calcium is near. The molecular and ecological basis of CaCO3 precipitating (CCP) bacteria has been poorly illuminated. Here, we showed that increased pH levels by deamination of amino acids is a driving force toward MICP using alkalitolerant Lysinibacillus boronitolerans YS11 as a model species of non-ureolytic CCP bacteria. This alkaline generation also facilitates the growth of neighboring alkaliphilic Bacillus sp. AK13, which could alter characteristics of MICP by changing the size and shape of CaCO3 minerals. Furthermore, we showed CaCO3 that precipitates earlier in an experiment modifies membrane rigidity of YS11 strain via upregulation of branched chain fatty acid synthesis. This work closely examines MICP conditions by deamination and the effect of MICP on cell membrane rigidity and crystal formation for the first time.
Collapse
|
21
|
Liu T, Guo Z, Zeng Z, Guo N, Lei Y, Liu T, Sun S, Chang X, Yin Y, Wang X. Marine Bacteria Provide Lasting Anticorrosion Activity for Steel via Biofilm-Induced Mineralization. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40317-40327. [PMID: 30335931 DOI: 10.1021/acsami.8b14991] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Steel corrosion is a global problem in marine engineering. Numerous inhibitory treatments have been applied to mitigate the degradation of metallic materials; however, they typically have a high cost and are not environmental friendly. Here, we present a novel and "green" approach for the protection of steel by a marine bacterium Pseudoalteromonas lipolytica. This approach protects steel from corrosion in seawater via the formation of a biofilm followed by the formation of an organic-inorganic hybrid film. The hybrid film is composed of multiple layers of calcite and bacterial extracellular polymeric substances, exhibiting high and stable barrier protection efficiency and further providing an in situ self-healing activity. The process involving the key transition from biofilm to biomineralized film is essential for its lasting anticorrosion activity, which overcomes the instability of biofilm protection on corrosion. Therefore, this study introduces a new perspective and an option for anticorrosion control in marine environments.
Collapse
Affiliation(s)
- Tao Liu
- College of Ocean Science and Engineering, Institute of Marine Materials Science and Engineering , Shanghai Maritime University , Shanghai 201306 , China
| | - Zhangwei Guo
- College of Ocean Science and Engineering, Institute of Marine Materials Science and Engineering , Shanghai Maritime University , Shanghai 201306 , China
| | - Zhenshun Zeng
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, The South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou 510301 , China
| | - Na Guo
- College of Ocean Science and Engineering, Institute of Marine Materials Science and Engineering , Shanghai Maritime University , Shanghai 201306 , China
| | - Yanhua Lei
- College of Ocean Science and Engineering, Institute of Marine Materials Science and Engineering , Shanghai Maritime University , Shanghai 201306 , China
| | - Tong Liu
- College of Ocean Science and Engineering, Institute of Marine Materials Science and Engineering , Shanghai Maritime University , Shanghai 201306 , China
| | - Shibin Sun
- College of Ocean Science and Engineering, Institute of Marine Materials Science and Engineering , Shanghai Maritime University , Shanghai 201306 , China
| | - Xueting Chang
- College of Ocean Science and Engineering, Institute of Marine Materials Science and Engineering , Shanghai Maritime University , Shanghai 201306 , China
| | - Yansheng Yin
- College of Ocean Science and Engineering, Institute of Marine Materials Science and Engineering , Shanghai Maritime University , Shanghai 201306 , China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, The South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou 510301 , China
| |
Collapse
|
22
|
Biofouling Formation and Bacterial Community Structure in Hybrid Moving Bed Biofilm Reactor-Membrane Bioreactors: Influence of Salinity Concentration. WATER 2018. [DOI: 10.3390/w10091133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two pilot-scale hybrid moving bed biofilm reactor-membrane bioreactors were operated in parallel for the treatment of salinity-amended urban wastewater under 6 hours of hydraulic retention time and 2500 mg L−1 total solids concentration. Two salinity conditions were tested: the constant salinity of 6.5 mS cm−1 electric conductivity (3.6 g L−1 NaCl) and the tidal-like variable salinity with maximum 6.5 mS cm−1 electric conductivity. An investigation was developed on the biofouling produced on the ultrafiltration membrane surface evaluating its bacterial community structure and its potential function in the fouling processes. The results showed that biofouling was clearly affected by salinity scenarios in terms of α-diversity and β-diversity and bacterial community structure, which confirms lower bacterial diversity under variable salinity conditions with Rhodanobacter and Dyella as dominant phylotypes. Microorganisms identified as bio-mineral formers belonged to genera Bacillus, Citrobacter, and Brevibacterium. These findings will be of help for the prevention and control of biofouling in saline wastewater treatment systems.
Collapse
|
23
|
Physiological and genetic characterization of calcium phosphate precipitation by Pseudomonas species. Sci Rep 2018; 8:10156. [PMID: 29976945 PMCID: PMC6033914 DOI: 10.1038/s41598-018-28525-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/21/2018] [Indexed: 12/19/2022] Open
Abstract
Microbial biomineralization is a widespread phenomenon. The ability to induce calcium precipitation around bacterial cells has been reported in several Pseudomonas species but has not been thoroughly tested. We assayed 14 Pseudomonas strains representing five different species for the ability to precipitate calcium. Calcium phosphate precipitated adjacent to the colonies of all the Pseudomonas strains tested and also precipitated on the surface of colonies for several of the Pseudomonas strains assayed. The precipitate was commonly precipitated as amorphous calcium phosphate, however seven of the 14 Pseudomonas strains tested precipitated amorphous apatite in agar adjacent to the colonies. Out of the seven Pseudomonas strains that precipitated amorphous apatite, six are plant pathogenic. The formation of amorphous apatite was commonly observed in the area of the agar where amorphous calcium phosphate had previously formed. A transposon mutagenesis screen in Pseudomonas syringae pv. tomato DC3000 revealed genes involved in general metabolism, lipopolysaccharide and cell wall biogenesis, and in regulation of virulence play a role in calcium precipitation. These results shed light on the common ability of Pseudomonas species to perform calcium precipitation and the underlying genetic regulation involved in biomineralization.
Collapse
|
24
|
Bibi S, Oualha M, Ashfaq MY, Suleiman MT, Zouari N. Isolation, differentiation and biodiversity of ureolytic bacteria of Qatari soil and their potential in microbially induced calcite precipitation (MICP) for soil stabilization. RSC Adv 2018; 8:5854-5863. [PMID: 35539599 PMCID: PMC9078176 DOI: 10.1039/c7ra12758h] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/25/2018] [Indexed: 11/21/2022] Open
Abstract
Biomineralization plays a key role in modifying the geological properties of soil, thereby stabilizing it against wind erosion, especially in areas characterized by harsh weather and harsh soil (calcareous and arid); i.e. Arabic Gulf region. Among soil microorganisms, ureolytic bacteria are capable of modifying soil characteristics and thus, inducing biomineralization. This research investigated the occurrence and diversity of ureolytic bacteria in Qatari soils, specifically to study their acquired potential to adapt to harsh conditions exhibiting ureolytic activity. Soil samples were collected from various locations in Qatar and were used to isolate the indigenous ureolytic bacteria. It was noticed that most of the ureolytic bacteria in Qatari soil belong to the genus Bacillus mainly Bacillus cereus. Identification and differentiation of 18 ureolytic isolates were performed using MALDI-TOF MS techniques while ribotyping (16S rRNA) molecular technique was used mainly for 6 selected strains. This study not only shows the diversity of species of ureolytic bacteria in Qatari soil but also shows the diversity in their protein profiles, which confirms that bacteria have adapted well to the harsh environment. In addition, the strains were evaluated based on a newly modified screening method in this work; i.e. production of arbitrary urease activity (AUA). Thus, the strains showing the highest AUA, exhibited the highest capability to produce urease enzymes induced by urea. Analysis of calcium carbonate precipitation utilizing SEM-EDX showed that the ureolytic bacteria also play a significant role in the precipitation of minerals such as CaCO3, in the presence of urea in soil. Therefore, this research showed a high occurrence of indigenous Bacillus bacteria in Qatari soil that can perform biomineralization and thus can be helpful, if properly stimulated, in enhancing soil stabilization, and for other local applications as well, since they are adapted to these soil and weather conditions. Biomineralization plays a key role in modifying the geological properties of soil, thereby stabilizing it against wind erosion, especially in areas characterized by harsh weather and harsh soil (calcareous and arid); i.e. Arabic Gulf region.![]()
Collapse
Affiliation(s)
- Shazia Bibi
- Department of Biological and Environmental Sciences
- College of Arts and Sciences
- Qatar University
- Doha
- Qatar
| | - Meriam Oualha
- Department of Biological and Environmental Sciences
- College of Arts and Sciences
- Qatar University
- Doha
- Qatar
| | - Mohammad Yousaf Ashfaq
- Department of Biological and Environmental Sciences
- College of Arts and Sciences
- Qatar University
- Doha
- Qatar
| | | | - Nabil Zouari
- Department of Biological and Environmental Sciences
- College of Arts and Sciences
- Qatar University
- Doha
- Qatar
| |
Collapse
|
25
|
Environmental and Genetic Determinants of Biofilm Formation in Paracoccus denitrificans. mSphere 2017; 2:mSphere00350-17. [PMID: 28904996 PMCID: PMC5588039 DOI: 10.1128/mspheredirect.00350-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 01/12/2023] Open
Abstract
The bacterium Paracoccus denitrificans is a model for the process of denitrification, by which nitrate is reduced to dinitrogen during anaerobic growth. Denitrification is important for soil fertility and greenhouse gas emission and in waste and water treatment processes. The ability of bacteria to grow as a biofilm attached to a solid surface is important in many different contexts. In this paper, we report that attached growth of P. denitrificans is stimulated by nitric oxide, an intermediate in the denitrification pathway. We also show that calcium ions stimulate attached growth, and we identify a large calcium binding protein that is required for growth on a polystyrene surface. We identify components of a signaling pathway through which nitric oxide may regulate biofilm formation. Our results point to an intimate link between metabolic processes and the ability of P. denitrificans to grow attached to a surface. The genome of the denitrifying bacterium Paracoccus denitrificans predicts the expression of a small heme-containing nitric oxide (NO) binding protein, H-NOX. The genome organization and prior work in other bacteria suggest that H-NOX interacts with a diguanylate cyclase that cyclizes GTP to make cyclic di-GMP (cdGMP). Since cdGMP frequently regulates attached growth as a biofilm, we first established conditions for biofilm development by P. denitrificans. We found that adhesion to a polystyrene surface is strongly stimulated by the addition of 10 mM Ca2+ to rich media. The genome encodes at least 11 repeats-in-toxin family proteins that are predicted to be secreted by the type I secretion system (TISS). We deleted the genes encoding the TISS and found that the mutant is almost completely deficient for attached growth. Adjacent to the TISS genes there is a potential open reading frame encoding a 2,211-residue protein with 891 Asp-Ala repeats. This protein is also predicted to bind calcium and to be a TISS substrate, and a mutant specifically lacking this protein is deficient in biofilm formation. By analysis of mutants and promoter reporter fusions, we show that biofilm formation is stimulated by NO generated endogenously by the respiratory reduction of nitrite. A mutant lacking both predicted diguanylate cyclases encoded in the genome overproduces biofilm, implying that cdGMP is a negative regulator of attached growth. Our data are consistent with a model in which there are H-NOX-dependent and -independent pathways by which NO stimulates biofilm formation. IMPORTANCE The bacterium Paracoccus denitrificans is a model for the process of denitrification, by which nitrate is reduced to dinitrogen during anaerobic growth. Denitrification is important for soil fertility and greenhouse gas emission and in waste and water treatment processes. The ability of bacteria to grow as a biofilm attached to a solid surface is important in many different contexts. In this paper, we report that attached growth of P. denitrificans is stimulated by nitric oxide, an intermediate in the denitrification pathway. We also show that calcium ions stimulate attached growth, and we identify a large calcium binding protein that is required for growth on a polystyrene surface. We identify components of a signaling pathway through which nitric oxide may regulate biofilm formation. Our results point to an intimate link between metabolic processes and the ability of P. denitrificans to grow attached to a surface.
Collapse
|
26
|
Modulation of calcium carbonate precipitation by exopolysaccharide in Bacillus sp. JH7. Appl Microbiol Biotechnol 2017. [DOI: 10.1007/s00253-017-8372-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|