1
|
Su R, Chu LT, Chen Z, Lin X, Peng M, Huang X, Xiao X, Zeng T. Identification and quantification of serum KIN17 protein based on ELISA assay and exploring its clinical diagnostic value in liver cancer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4724-4732. [PMID: 38949046 DOI: 10.1039/d4ay00793j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
It has been well-elaborated that KIN17 protein is closely related to the expression, development and prognosis of liver cancer; however, till date, there has been no study about detecting the KIN17 protein in serum, which is important to developing clinical applications. The objective of this work is to detect serum KIN17 protein by the ELISA method and to explore the diagnostic significance of the KIN17 protein in liver cancer. First, we verified the ELISA method for serum KIN17 measurement according to five aspects: accuracy, precision, specificity, stability and detection limit. Results illustrate that the recovery rate of the ELISA method can be controlled between 90% and 110%, the variation coefficient of intra-assay can be controlled within 16%, and the variation coefficient of inter-assay can be controlled within 10%. There is no non-specific reaction with common tumor markers, and the detection limit can reach 0.125 ng mL-1. The results show that the KIN17 protein can be detected by ELISA, and there is a significant rise in KIN17 concentration in a liver cancer group compared with a healthy group, whose average concentrations are 1.730 ng mL-1 and 0.3897 ng mL-1, respectively. On this basis, we hypothesize that the serum KIN17 protein can serve as a potential biomarker of liver cancer and be measurable with the verified ELISA system after specific ultrafiltration and centrifugation, which is of great significance for the diagnosis and treatment of liver cancer.
Collapse
Affiliation(s)
- Ruiqi Su
- Department of Medical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China.
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Lok Ting Chu
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Zhenkai Chen
- Department of Medical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China.
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Xiaocong Lin
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Minghui Peng
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Xueran Huang
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Xiangyan Xiao
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| | - Tao Zeng
- Department of Medical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China.
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, P. R. China
| |
Collapse
|
2
|
Zhang S, Wang L, Wang L, Yu N, Dong Y, Hu J. Combined Antibody Tagged HRP Gold Nanoparticle Probe for Effective PCV2 Screening in Pig Farms. Int J Nanomedicine 2022; 17:3361-3369. [PMID: 35937078 PMCID: PMC9346410 DOI: 10.2147/ijn.s364795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/16/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Porcine circovirus type 2 (PCV2) causes immune repression and intercurrent infections in pigs, resulting in a huge economic loss to the pig breeding industry. Additionally, the spread of PCV2 in pig farms can pollute the living environment of the residents in the farm’s vicinity, which increases the rate of infections. Therefore, rapid and sensitive detection methods are needed for disease prevention and timely environmental cleaning. Methods This research describes a highly sensitive sandwich enzyme-linked immunosorbent assay (ELISA) that utilizes gold nanoparticles (AuNPs) in a functional, specific antibody labeled probe for the detection of PCV2. Due to their high specific surface area and histocompatibility, AuNPs were used as carriers of HRP labeled anti-PCV2 antibodies to amplify the detection signal. Results Compared to conventional sandwich ELISA procedures, this method resulted in higher sensitivity (51-fold) and a shorter assay time with a limit of detection of 195 TCID50/mL. The cross-reactivity assay demonstrated that this assay was PCV2 specific. Conclusion The amplified Ab (HRP) labeled AuNPs probe provides a sensitive analytical approach for the determination of the traces of the PCV2 antigen in early diagnosis.
Collapse
Affiliation(s)
- Shouping Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, People’s Republic of China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, People’s Republic of China
- Correspondence: Lei Wang, Jianhe Hu, College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, People’s Republic of China, Tel +86-373-3040718, Email ;
| | - Lirong Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, People’s Republic of China
| | - Nan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, People’s Republic of China
| | - Yongjun Dong
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, People’s Republic of China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, People’s Republic of China
- Correspondence: Lei Wang, Jianhe Hu, College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, People’s Republic of China, Tel +86-373-3040718, Email ;
| |
Collapse
|
3
|
Mu Y, Jia C, Zheng X, Zhu H, Zhang X, Xu H, Liu B, Zhao Q, Zhou EM. A nanobody-horseradish peroxidase fusion protein-based competitive ELISA for rapid detection of antibodies against porcine circovirus type 2. J Nanobiotechnology 2021; 19:34. [PMID: 33526021 PMCID: PMC7852356 DOI: 10.1186/s12951-021-00778-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/16/2021] [Indexed: 01/08/2023] Open
Abstract
Background The widespread popularity of porcine circovirus type 2(PCV2) has seriously affected the healthy development of the pig industry and caused huge economic losses worldwide. A rapid and reliable method is required for epidemiological investigation and evaluating the effect of immunization. However, the current methods for PCV2 antibody detection are time-consuming or very expensive and rarely meet the requirements for clinical application. we have constructed the platform for expressing the nanobody(Nb)‑horseradish peroxidase(HRP) fusion protein as an ultrasensitive probe to detect antibodies against the Newcastle disease virus(NDV), previously. In the present work, an Nb-HRP fusion protein-based competitive ELISA(cELISA) for rapid and simple detection antibodies against PCV2 was developed using this platform to detect anti-PCV2 antibodies in clinical porcine serum. Results Using phage display technology, 19 anti-PCV2-Cap protein nanobodies were screened from a PCV2-Cap protein immunized Bactrian camel. With the platform, the PCV2-Nb15‑HRP fusion protein was then produced and used as a sensitive reagent for developing a cELISA to detect anti‑PCV2 antibodies. The cut‑off value of the cELISA is 20.72 %. Three hundreds and sixty porcine serum samples were tested by both newly developed cELISA and commercial kits. The sensitivity and specificity were 99.68 % and 95.92 %, respectively. The coincidence rate of the two methods was 99.17 %. When detecting 620 clinical porcine serum samples, a good consistent (kappa value = 0.954) was found between the results of the cELISA and those of commercial kits. Conclusions In brief, the newly developed cELISA based PCV2-Nb15‑HRP fusion protein is a rapid, low-cost, reliable and useful nanobody-based tool for the serological evaluation of current PCV2 vaccine efficacy and the indirect diagnosis of PCV2 infection.
Collapse
Affiliation(s)
- Yang Mu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China. .,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Cunyu Jia
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Xu Zheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Haipeng Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Xin Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Haoran Xu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China. .,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Zhang S, Hu B, Xia X, Xu Y, Hang B, Jiang J, Hu J. Highly Sensitive Detection of PCV2 Based on Tyramide Signals and GNPL Amplification. Molecules 2019; 24:molecules24234364. [PMID: 31795334 PMCID: PMC6930645 DOI: 10.3390/molecules24234364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/16/2019] [Accepted: 11/27/2019] [Indexed: 01/25/2023] Open
Abstract
The frequent emergence of secondary infection and immunosuppression after porcine circovirus type 2 (PCV2) infection highlights the need to develop sensitive detection methods. A dual-signal amplification enzyme-linked immunosorbent assay (ELISA) based on a microplate coated with gold nanoparticle layers (GNPL) and tyramide signal amplification (TSA) was established. Results confirmed that the microplates coated with GNPL have a strong binding ability to the antibody without affecting the biological activity of the antibody. The microplates coated with GNPL have strong binding ability to the antibody, and the amplification of the tyramide signal is combined to further improve the sensitivity of PCV2. The PCV2 antibody does not crossreact with other viruses, demonstrating that the method has good specificity. A dual-signal amplification strategy is developed using microplates modified with GNPL and TSA to sensitively detect PCV2.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianhe Hu
- Correspondence: ; Tel.: +86-0373-3040718
| |
Collapse
|
5
|
Shrivastava N, Shrivastava A, Ninawe SM, Sharma S, Kumar JS, Alam SI, Kanani A, Sharma SK, Dash PK. Development of Multispecies Recombinant Nucleoprotein-Based Indirect ELISA for High-Throughput Screening of Crimean-Congo Hemorrhagic Fever Virus-Specific Antibodies. Front Microbiol 2019; 10:1822. [PMID: 31507540 PMCID: PMC6716110 DOI: 10.3389/fmicb.2019.01822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/24/2019] [Indexed: 12/16/2022] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a re-emerging zoonotic viral disease prevalent in many parts of Asia, Europe, and Africa. The causative agent, Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV), is transmitted through hard ticks. Tick vectors especially belonging to the Hyalomma species serve as the reservoir and amplifying host. The vertebrate animals including sheep, goat, and bovine act as a short-lasting bridge linking the virus and ticks. CCHFV causes fatal hemorrhagic fever in humans. Humans are usually infected with CCHFV either through the bite of infected ticks or by close contact with infected animals. Immunological assays, primarily enzyme-linked immunosorbent assay (ELISA) using whole viral antigen, are widely used for serosurveillance in animals. However, the whole virus antigen poses a high biohazard risk and can only be produced in biosafety level 4 laboratories. The present study focuses on the development and evaluation of safe, sensitive, and specific IgG indirect enzyme-linked immunosorbent assay (iELISA) using recombinant nucleoprotein (NP) of CCHF virus as an antigen. The codon-optimized NP gene sequence was synthesized, cloned, and expressed in pET28a+ vector. The recombinant NP was purified to homogeneity by affinity chromatography and characterized through Western blot and MALDI-TOF/MS analysis. The characterized protein was used to develop an indirect IgG microplate ELISA using a panel of animal sera. The in-house ELISA was comparatively evaluated vis-à-vis a commercially available ELISA kit (Vector-Best, Russia) with 76 suspected samples that revealed a concordance of 90% with a sensitivity and specificity of 79.4 and 100%, respectively. The precision analysis revealed that the assay is robust and reproducible in different sets of conditions. Further, the assay was used for serosurveillance in ruminants from different regions of India that revealed 18% seropositivity in ruminants, indicating continued circulation of virus in the region. The findings suggest that the developed IgG iELISA employing recombinant NP is a safe and valuable tool for scalable high-throughput screening of CCHFV-specific antibodies in multiple species.
Collapse
Affiliation(s)
- Neha Shrivastava
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| | - Ambuj Shrivastava
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| | - Sandeep M. Ninawe
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| | - Shashi Sharma
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| | - Jyoti S. Kumar
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| | - Syed Imteyaz Alam
- Division of Biotechnology, Defence Research and Development Establishment, Gwalior, India
| | - Amit Kanani
- Office of Deputy Director of Animal Husbandry, FMD Typing Scheme, Ahmedabad, India
| | - Sushil Kumar Sharma
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| | - Paban Kumar Dash
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
6
|
Patmawati, Minamihata K, Tatsuke T, Lee JM, Kusakabe T, Kamiya N. Functional horseradish peroxidase-streptavidin chimeric proteins prepared using a silkworm-baculovirus expression system for diagnostic purposes. J Biotechnol 2019; 297:28-31. [PMID: 30885655 DOI: 10.1016/j.jbiotec.2019.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 01/12/2023]
Abstract
Rapid, convenient, sensitive detection methods are of the utmost importance in analytical tools. Enzyme-based signal amplification using horseradish peroxidase (HRP) is commonly implemented in clinical diagnostics kits based on enzyme-linked immunosorbent assay (ELISA), by which the limit of detection is greatly improved. Herein we report the design and preparation of recombinant fusion proteins comprising HRP and streptavidin (Stav), in which HRP was fused to either the N- or C-terminus of Stav ((HRP)4-Stav or Stav-(HRP)4, respectively) using a baculovirus-silkworm expression system. Both (HRP)4-Stav and Stav-(HRP)4 were secreted in the apo form but they were easily converted to the holo form and activated by simple incubation with hemin overnight at 4 °C. The activated (HRP)4-Stav and Stav-(HRP)4 could be combined with a commercial biotinylated anti-OVA IgG antibody to detect ovalbumin (OVA) as the antigen in ELISA. The enzymatic activity of (HRP)4-Stav was twofold higher than that of Stav-(HRP)4, and the sensitivity of (HRP)4-Stav in ELISA was higher than that of a commercial HRP-Stav chemical conjugate. The successful use of (HRP)4-Stav chimeric protein as a molecular probe in ELISA shows that the baculovirus-silkworm expression system is promising to produce enzyme-Stav conjugates to substitute for those prepared by chemical methods.
Collapse
Affiliation(s)
- Patmawati
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tsuneyuki Tatsuke
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan; Division of Biotechnology, Center for Future Chemistry, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|