1
|
Schmiemann D, Bicks F, Bartels I, Cordes A, Jäger M, Gutmann JS, Hoffmann-Jacobsen K. Enzymatic degradability of diclofenac ozonation products: A mechanistic analysis. CHEMOSPHERE 2024; 358:142112. [PMID: 38677613 DOI: 10.1016/j.chemosphere.2024.142112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/21/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
The treatment of waterborne micropollutants, such as diclofenac, presents a significant challenge to wastewater treatment plants due to their incomplete removal by conventional methods. Ozonation is an effective technique for the degradation of micropollutants. However, incomplete oxidation can lead to the formation of ecotoxic by-products that require a subsequent post-treatment step. In this study, we analyze the susceptibility of micropollutant ozonation products to enzymatic digestion with laccase from Trametes versicolor to evaluate the potential of enzymatic treatment as a post-ozonation step. The omnipresent micropollutant diclofenac is used as an example, and the enzymatic degradation kinetics of all 14 detected ozonation products are analyzed by high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) and tandem mass spectrometry (MS2). The analysis shows that most of the ozonation products are responsive to chemo-enzymatic treatment but show considerable variation in enzymatic degradation kinetics and efficiencies. Mechanistic investigation of representative transformation products reveals that the hydroxylated aromatic nature of the ozonation products matches the substrate spectrum, facilitating their rapid recognition as substrates by laccase. However, after initiation by laccase, the subsequent chemical pathway of the enzymatically formed radicals determines the global degradability observed in the enzymatic process. Substrates capable of forming stable molecular oxidation products inhibit complete detoxification by oligomerization. This emphasizes that it is not the enzymatic uptake of the substrates but the channelling of the reaction of the substrate radicals towards the oligomerization of the substrate radicals that is the key step in the further development of an enzymatic treatment step for wastewater applications.
Collapse
Affiliation(s)
- Dorothee Schmiemann
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany; Institute of Physical Chemistry and CENIDE (Center for Nanointegration), University Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Florian Bicks
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
| | - Indra Bartels
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany; Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Arno Cordes
- ASA Spezialenzyme GmbH, Am Exer 19c, 38302, Wolfenbüttel, Germany
| | - Martin Jäger
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
| | - Jochen Stefan Gutmann
- Institute of Physical Chemistry and CENIDE (Center for Nanointegration), University Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany; Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, 47798, Krefeld, Germany
| | - Kerstin Hoffmann-Jacobsen
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany.
| |
Collapse
|
2
|
Mohamed MSM, Asair AA, Fetyan NAH, Elnagdy SM. Complete Biodegradation of Diclofenac by New Bacterial Strains: Postulated Pathways and Degrading Enzymes. Microorganisms 2023; 11:1445. [PMID: 37374947 DOI: 10.3390/microorganisms11061445] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The accumulation of xenobiotic compounds in different environments interrupts the natural ecosystem and induces high toxicity in non-target organisms. Diclofenac is one of the commonly used pharmaceutical drugs that persist in the environment due to its low natural degradation rate and high toxicity. Therefore, this study aimed to isolate potential diclofenac-degrading bacteria, detect the intermediate metabolites formed, and determine the enzyme involved in the degradation process. Four bacterial isolates were selected based on their ability to utilize a high concentration of diclofenac (40 mg/L) as the sole carbon source. The growth conditions for diclofenac degradation were optimized, and bacteria were identified as Pseudomonas aeruginosa (S1), Alcaligenes aquatilis (S2), Achromobacter spanius (S11), and Achromobacter piechaudii (S18). The highest percentage of degradation was recorded (97.79 ± 0.84) after six days of incubation for A. spanius S11, as analyzed by HPLC. To detect and identify biodegradation metabolites, the GC-MS technique was conducted for the most efficient bacterial strains. In all tested isolates, the initial hydroxylation of diclofenac was detected. The cleavage step of the NH bridge between the aromatic rings and the subsequent cleavage of the ring adjacent to or in between the two hydroxyl groups of polyhydroxylated derivatives might be a key step that enables the complete biodegradation of diclofenac by A. piechaudii S18, as well as P. aeruginosa S1. Additionally, the laccase, peroxidase, and dioxygenase enzyme activities of the two Achromobacter strains, as well as P. aeruginosa S1, were tested in the presence and absence of diclofenac. The obtained results from this work are expected to be a useful reference for the development of effective detoxification bioprocesses utilizing bacterial cells as biocatalysts. The complete removal of pharmaceuticals from polluted water will stimulate water reuse, meeting the growing worldwide demand for clean and safe freshwater.
Collapse
Affiliation(s)
- Mahmoud S M Mohamed
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ayan A Asair
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Nashwa A H Fetyan
- Department of Microbiology, Soil, Water and Environment Research Institute, Agriculture Research Center, Giza 12619, Egypt
| | - Sherif M Elnagdy
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
3
|
Singh AK, Iqbal HMN, Cardullo N, Muccilli V, Fern'andez-Lucas J, Schmidt JE, Jesionowski T, Bilal M. Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology-A review. Int J Biol Macromol 2023:124968. [PMID: 37217044 DOI: 10.1016/j.ijbiomac.2023.124968] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/22/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Lignin modifying enzymes (LMEs) have gained widespread recognition in depolymerization of lignin polymers by oxidative cleavage. LMEs are a robust class of biocatalysts that include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), laccase (LAC), and dye-decolorizing peroxidase (DyP). Members of the LMEs family act on phenolic, non-phenolic substrates and have been widely researched for valorization of lignin, oxidative cleavage of xenobiotics and phenolics. LMEs implementation in the biotechnological and industrial sectors has sparked significant attention, although its potential future applications remain underexploited. To understand the mechanism of LMEs in sustainable pollution mitigation, several studies have been undertaken to assess the feasibility of LMEs in correlating to diverse pollutants for binding and intermolecular interactions at the molecular level. However, further investigation is required to fully comprehend the underlying mechanism. In this review we presented the key structural and functional features of LMEs, including the computational aspects, as well as the advanced applications in biotechnology and industrial research. Furthermore, concluding remarks and a look ahead, the use of LMEs coupled with computational frameworks, built upon artificial intelligence (AI) and machine learning (ML), has been emphasized as a recent milestone in environmental research.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Jesús Fern'andez-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanizaci'on El Bosque, 28670 Villaviciosa de Od'on, Spain; Grupo de Investigaci'on en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia
| | - Jens Ejbye Schmidt
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
4
|
Liu Y, Li J, Zeng J, Yu X, Sun X, Zhou Z, Xu J, Xu L, Li L. Complete oxidative degradation of diclofenac via coupling free radicals and oxygenases of a micro/nanostructured biogenic Mn oxide composite from engineered Pseudomonas sp. MB04R-2. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131657. [PMID: 37245362 DOI: 10.1016/j.jhazmat.2023.131657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
Oxidative degradation can effectively degrade aromatic emerging contaminants (ECs). However, the degradability of lone inorganic/biogenic oxides or oxidases is typically limited when treating polycyclic ECs. Herein, we report a dual-dynamic oxidative system comprising engineered Pseudomonas and biogenic Mn oxides (BMO), which completely degrades diclofenac (DCF), a representative halogen-containing polycyclic EC. Correspondingly, recombinant Pseudomonas sp. MB04R-2 was constructed via gene deletion and chromosomal insertion of a heterologous multicopper oxidase cotA, allowing for enhanced Mn(II)-oxidizing activity and rapid formation of the BMO aggregate complex. Additionally, we characterized it as a micro/nanostructured ramsdellite (MnO2) composite using multiple-phase composition and fine structure analyses. Furthermore, using real-time quantitative polymerase chain reaction, gene knockout, and expression complementation of oxygenase genes, we demonstrated the central and associative roles of intracellular oxygenases and cytogenic/BMO-derived free radicals (FRs) in degrading DCF and determined the effects of FR excitation and quenching on the DCF degradation efficiency. Finally, after identifying the degraded intermediates of 2H-labeled DCF, we constructed the DCF metabolic pathway. In addition, we evaluated the degradation and detoxification effects of the BMO composite on DCF-containing urban lake water and on biotoxicity in zebrafish embryos. Based on our findings, we proposed a mechanism for oxidative degradation of DCF by associative oxygenases and FRs.
Collapse
Affiliation(s)
- Yongxuan Liu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaoqing Li
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Sciences, Jiaying University, Meizhou 514015, China
| | - Jie Zeng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun Yu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaowen Sun
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhicheng Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingjing Xu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangzheng Xu
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Sciences, Jiaying University, Meizhou 514015, China
| | - Lin Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Schmiemann D, Hohenschon L, Bartels I, Hermsen A, Bachmann F, Cordes A, Jäger M, Gutmann JS, Hoffmann-Jacobsen K. Enzymatic post-treatment of ozonation: laccase-mediated removal of the by-products of acetaminophen ozonation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53128-53139. [PMID: 36853537 PMCID: PMC10119220 DOI: 10.1007/s11356-023-25913-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Ozonation is a powerful technique to remove micropollutants from wastewater. As chemical oxidation of wastewater comes with the formation of varying, possibly persistent and toxic by-products, post-treatment of the ozonated effluent is routinely suggested. This study explored an enzymatic treatment of ozonation products using the laccase from Trametes versicolor. A high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) analysis revealed that the major by-products were effectively degraded by the enzymatic post-treatment. The enzymatic removal of the by-products reduced the ecotoxicity of the ozonation effluent, as monitored by the inhibition of Aliivibrio fischeri. The ecotoxicity was more effectively reduced by enzymatic post-oxidation at pH 7 than at the activity maximum of the laccase at pH 5. A mechanistic HPLC-HRMS and UV/Vis spectroscopic analysis revealed that acidic conditions favored rapid conversion of the phenolic by-products to dead-end products in the absence of nucleophiles. In contrast, the polymerization to harmless insoluble polymers was favored at neutral conditions. Hence, coupling ozonation with laccase-catalyzed post-oxidation at neutral conditions, which are present in wastewater effluents, is suggested as a new resource-efficient method to remove persistent micropollutants while excluding the emission of potentially harmful by-products.
Collapse
Affiliation(s)
- Dorothee Schmiemann
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
- Institute of Physical Chemistry and CENIDE (Center for Nanointegration), University Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Lisa Hohenschon
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
- Wfk-Cleaning Technology-Institute e.V., Campus Fichtenhain 11, 47807, Krefeld, Germany
| | - Indra Bartels
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Andrea Hermsen
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
- Institute of Theoretical Chemistry, University Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Felix Bachmann
- ASA Spezialenzyme GmbH, Am Exer 19C, 38302, Wolfenbüttel, Germany
| | - Arno Cordes
- ASA Spezialenzyme GmbH, Am Exer 19C, 38302, Wolfenbüttel, Germany
| | - Martin Jäger
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
| | - Jochen Stefan Gutmann
- Institute of Physical Chemistry and CENIDE (Center for Nanointegration), University Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
- Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, 47798, Krefeld, Germany
| | - Kerstin Hoffmann-Jacobsen
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany.
| |
Collapse
|
6
|
Athanasakoglou A, Fenner K. Toward Characterizing the Genetic Basis of Trace Organic Contaminant Biotransformation in Activated Sludge: The Role of Multicopper Oxidases as a Case Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:313-324. [PMID: 34932304 DOI: 10.1021/acs.est.1c05803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Activated sludge treatment leverages the ability of microbes to uptake and (co)-metabolize chemicals and has shown promise in eliminating trace organic contaminants (TrOCs) during wastewater treatment. However, targeted interventions to optimize the process are limited as the fundamental drivers of the observed reactions remain elusive. In this work, we present a comprehensive workflow for the identification and characterization of key enzymes involved in TrOCs biotransformation pathways in complex microbial communities. To demonstrate the applicability of the workflow, we investigated the role of the enzymatic group of multicopper oxidases (MCOs) as one putatively relevant driver of TrOCs biotransformation. To this end, we analyzed activated sludge metatranscriptomic data and selected, synthesized, and heterologously expressed three phylogenetically distinct MCO-encoding genes expressed in communities with different TrOCs oxidation potentials. Following the purification of the encoded enzymes, we screened their activities against different substrates. We saw that MCOs exhibit significant activities against selected TrOCs in the presence of the mediator compound 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid and, in some cases, also in the presence of the wastewater contaminant 4'-hydroxy-benzotriazole. In the first case, we identified oxidation products previously reported from activated sludge communities and concluded that in the presence of appropriate mediators, bacterial MCOs could contribute to the biological removal of TrOCs. Similar investigations of other key enzyme systems may significantly advance our understanding of TrOCs biodegradation and assist the rational design of biology-based water treatment strategies in the future.
Collapse
Affiliation(s)
- Anastasia Athanasakoglou
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
7
|
Sathishkumar P, Mohan K, Meena RAA, Balasubramanian M, Chitra L, Ganesan AR, Palvannan T, Brar SK, Gu FL. Hazardous impact of diclofenac on mammalian system: Mitigation strategy through green remediation approach. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126135. [PMID: 34157463 DOI: 10.1016/j.jhazmat.2021.126135] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/24/2021] [Accepted: 05/12/2021] [Indexed: 05/22/2023]
Abstract
Diclofenac is an anti-inflammatory drug used as an analgesic. It is often detected in various environmental sources around the world and is considered as one of the emerging contaminants (ECs). This paper reviews the distribution of diclofenac at high concentrations in diverse environments and its adverse ecological impact. Recent studies observed strong evidence of the hazardous effect of diclofenac on mammals, including humans. Diclofenac could cause gastrointestinal complications, neurotoxicity, cardiotoxicity, hepatotoxicity, nephrotoxicity, hematotoxicity, genotoxicity, teratogenicity, bone fractures, and skin allergy in mammals even at a low concentration. Collectively, this comprehensive review relates the mode of toxicity, level of exposure, and route of administration as a unique approach for addressing the destructive consequence of diclofenac in mammalian systems. Finally, the mitigation strategy to eradicate the diclofenac toxicity through green remediation is critically discussed. This review will undoubtedly shed light on the toxic effects of pseudo-persistent diclofenac on mammals as well as frame stringent guidelines against its common usage.
Collapse
Affiliation(s)
- Palanivel Sathishkumar
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, PR China
| | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India
| | | | - Murugesan Balasubramanian
- Department of Biotechnology, K.S. Rangasamy College of Technology, Tiruchengode 637 215, Tamil Nadu, India
| | - Loganathan Chitra
- Department of Biochemistry, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Abirami Ramu Ganesan
- Group of Fermentation and Distillation, Laimburg Research Center, Vadena (BZ), Italy
| | | | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
8
|
Mylkie K, Nowak P, Rybczynski P, Ziegler-Borowska M. Polymer-Coated Magnetite Nanoparticles for Protein Immobilization. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E248. [PMID: 33419055 PMCID: PMC7825442 DOI: 10.3390/ma14020248] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 11/20/2022]
Abstract
Since their discovery, magnetic nanoparticles (MNPs) have become materials with great potential, especially considering the applications of biomedical sciences. A series of works on the preparation, characterization, and application of MNPs has shown that the biological activity of such materials depends on their size, shape, core, and shell nature. Some of the most commonly used MNPs are those based on a magnetite core. On the other hand, synthetic biopolymers are used as a protective surface coating for these nanoparticles. This review describes the advances in the field of polymer-coated MNPs for protein immobilization over the past decade. General methods of MNP preparation and protein immobilization are presented. The most extensive section of this article discusses the latest work on the use of polymer-coated MNPs for the physical and chemical immobilization of three types of proteins: enzymes, antibodies, and serum proteins. Where possible, the effectiveness of the immobilization and the activity and use of the immobilized protein are reported. Finally, the information available in the peer-reviewed literature and the application perspectives for the MNP-immobilized protein systems are summarized as well.
Collapse
Affiliation(s)
| | | | | | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.M.); (P.N.); (P.R.)
| |
Collapse
|
9
|
Hultberg M, Ahrens L, Golovko O. Use of lignocellulosic substrate colonized by oyster mushroom (Pleurotus ostreatus) for removal of organic micropollutants from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 272:111087. [PMID: 32669250 DOI: 10.1016/j.jenvman.2020.111087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/04/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Efficient removal techniques are urgently needed to remove organic micropollutants (OMPs) from wastewater, in order to protect water resources. In this study, laccase activity of mushroom substrate colonized by Pleurotus ostreatus was evaluated as a novel wastewater treatment method for removal of OMPs, including diclofenac, bicalutamide, lamotrigine, and metformin at environmentally relevant concentrations. Laccase activity of the colonized mushroom substrate was found to be highest, 0.8 enzyme activity (U)/g mushroom substrate wet weight, immediately before initiation of fruiting body formation. The selected OMPs were treated for 5 min with suspensions of mushroom substrate with laccase activity of approximately 50 U/L. Removal of all OMPs was significant, with the highest removal for diclofenac of 90% compared with a control with uncolonized mushroom substrate. To our knowledge, direct use of colonized mushroom substrate in removing diclofenac from water has not been reported previously. Removal efficiency of bicalutamide, lamotrigine, and metformin was 43%, 73%, and 59%, respectively. This demonstrates potential for using mushroom substrate colonized by P. ostreatus for removal of OMPs from wastewater.
Collapse
Affiliation(s)
- M Hultberg
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, P.O. Box 103, SE 230 53, Alnarp, Sweden.
| | - L Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, SE 75007, Uppsala, Sweden
| | - O Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, SE 75007, Uppsala, Sweden
| |
Collapse
|
10
|
Spina F, Gea M, Bicchi C, Cordero C, Schilirò T, Varese GC. Ecofriendly laccases treatment to challenge micropollutants issue in municipal wastewaters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113579. [PMID: 31810716 DOI: 10.1016/j.envpol.2019.113579] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/10/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
In this study, a multidisciplinary approach investigated the enzymatic degradation of micropollutants in real, not modified, municipal wastewaters of a plant located in Italy. Stir Bar Sorptive Extraction combined to Gas Chromatography-Mass Spectrometric detection (SBSE-GC-MS) was applied to profile targeted pollutants in wastewaters collected after the primary sedimentation (W1) and the final effluent (W2). Fifteen compounds were detected at ng/L - μg/L, including pesticides, personal care products (PCPs) and drugs. The most abundant micropollutants were bis(2-ethylhexyl) phthalate, diethyl phthalate and ketoprofen. Laccases of Trametes pubescens MUT 2400 were very active against all the target micropollutants: except few cases, their concentration was reduced more than 60%. Chemical analysis and environmental risk do not always come together. To verify whether the treated wastewaters can represent a stressor for the aquatic ecosystem, toxicity was also evaluated. Raphidocelis subcapitata and Lepidium sativum tests showed a clear ecotoxicity reduction, even though they did not evenly respond. Two in vitro tests (E-screen test and MELN assay) were used to evaluate the estrogenic activity. Treatments already operating in the plant (e.g. activated sludge) partially reduced the estradiol equivalent concentration, and it was almost negligible after the laccases treatment. The results of this study suggest that laccases of T. pubescens are promising biocatalysts for the micropollutants transformation in wastewaters and surface waters.
Collapse
Affiliation(s)
- Federica Spina
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino, Italy
| | - Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia, 94, 10126 Torino, Italy
| | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Torino, Via P. Giuria 9, 10125 Torino, Italy
| | - Chiara Cordero
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Torino, Via P. Giuria 9, 10125 Torino, Italy
| | - Tiziana Schilirò
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia, 94, 10126 Torino, Italy
| | - Giovanna Cristina Varese
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino, Italy.
| |
Collapse
|
11
|
Cen Y, Liu Y, Xue Y, Zheng Y. Immobilization of Enzymes in/on Membranes and their Applications. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900439] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yu‐Ke Cen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou 310014 People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Yu‐Xiao Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou 310014 People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Ya‐Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou 310014 People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Yu‐Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou 310014 People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
12
|
Oxidative coupling of coumarins catalyzed by laccase. Int J Biol Macromol 2019; 135:1028-1033. [DOI: 10.1016/j.ijbiomac.2019.05.215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022]
|
13
|
Hultberg M, Bodin H, Birgersson G. Impact on Wastewater Quality of Biopellets Composed of <i>Chlorella vulgaris</i> and <i>Aspergillus niger</i> and Lipid Content in the Harvested Biomass. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/jwarp.2019.117050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|