1
|
Su J, Teng H(H, Wan X, Zhang J, Liu CQ. Direct Air Capture of CO 2 through Carbonate Alkalinity Generated by Phytoplankton Nitrate Assimilation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:550. [PMID: 36612873 PMCID: PMC9820007 DOI: 10.3390/ijerph20010550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/10/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Despite the consensus that keeping global temperature rise within 1.5 °C above pre-industrial level by 2100 reduces the chance for climate change to reach the point of no return, the newest Intergovernmental Panel on Climate Change (IPCC) report warns that the existing commitment of greenhouse gas emission reduction is only enough to contain the warming to 3-4 °C by 2100. The harsh reality not only calls for speedier deployment of existing CO2 reduction technologies but demands development of more cost-efficient carbon removal strategies. Here we report an ocean alkalinity-based CO2 sequestration scheme, taking advantage of proton consumption during nitrate assimilation by marine photosynthetic microbes, and the ensuing enhancement of seawater CO2 absorption. Benchtop experiments using a native marine phytoplankton community confirmed pH elevation from ~8.2 to ~10.2 in seawater, within 3-5 days of microbial culture in nitrate-containing media. The alkaline condition was able to sustain at continued nutrient supply but reverted to normalcy (pH ~8.2-8.4) once the biomass was removed. Measurements of δ13C in the dissolved inorganic carbon revealed a significant atmospheric CO2 contribution to the carbonate alkalinity in the experimental seawater, confirming the occurrence of direct carbon dioxide capture from the air. Thermodynamic calculation shows a theoretical carbon removal rate of ~0.13 mol CO2/L seawater, if the seawater pH is allowed to decrease from 10.2 to 8.2. A cost analysis (using a standard bioreactor wastewater treatment plant as a template for CO2 trapping, and a modified moving-bed biofilm reactor for nitrate recycling) indicated that a 1 Mt CO2/year operation is able to perform at a cost of ~$40/tCO2, 2.5-5.5 times cheaper than that offered by any of the currently available direct air capture technologies, and more in line with the price of $25-30/tCO2 suggested for rapid deployment of large-scale CCS systems.
Collapse
Affiliation(s)
- Jing Su
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Hui (Henry) Teng
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xiang Wan
- Key Laboratory of Horticultural Plant Biology, The Ministry of Education, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Geological Survey, Wuhan 430034, China
| | - Jianchao Zhang
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Cong-Qiang Liu
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Burut-Archanai S, Ubertino D, Chumtong P, Mhuantong W, Powtongsook S, Piyapattanakorn S. Dynamics of Microbial Community During Nitrification Biofilter Acclimation with Low and High Ammonia. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:671-681. [PMID: 34414527 DOI: 10.1007/s10126-021-10056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
The acclimation of a nitrifying biofilter is a crucial and time-consuming task for setting up a recirculating aquaculture system (RAS). Gaining a better understanding of the dynamics of the microbial community during the acclimation period in the system could be useful for the development of mature nitrifying biofilters. In this study, high-throughput DNA sequencing was applied to monitor the microbial communities on a biofilter during the acclimation period (7 weeks) in high (100 mg N/L) and low (5 mg N/L) total ammonia nitrogen (TAN) treatments. Both treatments were successful for developing a mature nitrifying biofilter, dominated by Proteobacteria, Bacteroidetes, and Nitrospirae. Complete nitrification was found after 7 days of biofilter acclimation as indicated by decreasing TAN concentration, increasing nitrate concentration, and high abundances of the nitrifying bacteria, Nitrosomonadaceae and Nitrospiraceae. The beta diversity analysis of microbial communities showed different clustering of the samples between high and low TAN treatment groups. A greater abundance of nitrifying bacteria was found in the high TAN treatments (27-51%) than in the low TAN treatment (15-29%). The bacterial diversity in biofilters acclimated at high TAN concentration (Shannon's index 5.40-6.15) were lower than those found at low TAN treatment levels (Shannon's index 6.40-7.01). The higher diversity in biofilters acclimated at low TAN concentrations, consisting of Planctomycetes and Archaea, might benefit the nutrient recycling in the system. Although nitrification activity was observed from the first week of the acclimation period, the acclimation period should be taken as at least 6 weeks for full development of nitrifying biofilm. Moreover, the reduction of potentially pathogenic Vibrio on biofilters was found at that period.
Collapse
Affiliation(s)
- Surachet Burut-Archanai
- Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Déborah Ubertino
- University of Clermont Auvergne, 49 bd Francois Mitterrand, 63000, Clermont-Ferrand, France
| | - Parichat Chumtong
- Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wuttichai Mhuantong
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, 12120, Khlong Luang, Pathum Thani, Thailand
| | - Sorawit Powtongsook
- Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sanit Piyapattanakorn
- Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Foysal MJ, Fotedar R, Tay CY, Gupta SK. Biological filters regulate water quality, modulate health status, immune indices and gut microbiota of freshwater crayfish, marron (Cherax cainii, Austin, 2002). CHEMOSPHERE 2020; 247:125821. [PMID: 31972484 DOI: 10.1016/j.chemosphere.2020.125821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Water quality has significant impacts on the health and immune responses of aquaculture species. This study aimed to analyse and compare the effects of two biological filters namely, gravel and, Bio-Ball with a recently developed filter called Water-cleanser on regulation of water quality parameters, health and immune response of marron reared in plastic tanks for 60 days. Results showed that addition of Bio-Ball significantly (P < 0.05) reduced the concentration of ammonia, nitrate and phosphate while Water-cleanser showed the ability to reduce ammonia and nitrate from water in aquaculture tanks. Although the biological filters had no significant effect on marron growth but inclusion of Bio-Ball and Water-cleanser positively influenced the biochemical composition of tail muscle and some haemolymph parameters of marron. The next generation sequence data demonstrated higher bacterial diversity in the hindgut of marron with Water-cleanser, followed by Bio-Ball and gravel, respectively. In addition, the predicted metabolic pathways revealed a significantly higher bacterial activity and gene function correlated to metabolism and biosynthesis of protein, energy and secondary metabolites in Bio-Ball and Water-cleanser. Bio-Ball and Water-cleanser were also associated with up-regulation of innate immune responsive genes of marron gut. Overall, Bio-Ball and Water-cleanser proved to have higher water remediation and immune response modulation capabilities, and therefore could be used as preferred filters for growth of beneficial bacteria in crayfish culture.
Collapse
Affiliation(s)
- Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia; Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
| | - Ravi Fotedar
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Chin-Yen Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Sanjay K Gupta
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| |
Collapse
|
4
|
Chang BV, Chang YT, Chao WL, Yeh SL, Kuo DL, Yang CW. Effects of sulfamethoxazole and sulfamethoxazole-degrading bacteria on water quality and microbial communities in milkfish ponds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:305-316. [PMID: 31158659 DOI: 10.1016/j.envpol.2019.05.136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
Intensive farming practices are typically used for aquaculture. To prevent disease outbreaks, antibiotics are often used to reduce pathogenic bacteria in aquaculture animals. However, the effects of antibiotics on water quality and microbial communities in euryhaline fish culture ponds are largely unknown. The aim of this study was to investigate the interactions between sulfamethoxazole (SMX), water quality and microbial communities in milkfish (Chanos chanos) culture ponds. The results of small-scale milkfish pond experiments indicated that the addition of SMX decreased the abundance of ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB) and photosynthetic bacteria. Consequently, the levels of ammonia and total phosphorus in the fish pond water increased, causing algal and cyanobacterial blooms to occur. In contrast, the addition of the SMX-degrading bacterial strains A12 and L effectively degraded SMX and reduced the levels of ammonia and total phosphorus in fish pond water. Furthermore, the abundances of AOB, NOB and photosynthetic bacteria were restored, and algal and cyanobacterial blooms were inhibited. This study demonstrate the influences of SMX on water quality and microbial community composition in milkfish culture ponds. Moreover, the use of the bacterial strains A12 and L as dual function (bioaugmentation and water quality maintenance) beneficial bacteria was shown to provide an effective approach for the bioremediation of SMX-contaminated euryhaline milkfish culture ponds.
Collapse
Affiliation(s)
- Bea-Ven Chang
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Yi-Tang Chang
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Wei-Liang Chao
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Shinn-Lih Yeh
- Mariculture Research Center, Council of Agriculture, Tainan City, Taiwan
| | - Dong-Lin Kuo
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Chu-Wen Yang
- Department of Microbiology, Soochow University, Taipei, Taiwan.
| |
Collapse
|
5
|
Kamira B, Shi LL, Fan LM, Zhang C, Zheng Y, Song C, Meng SL, Hu GD, Bing XW, Chen ZJ, Xu P. Methane-generating ammonia oxidizing nitrifiers within bio-filters in aquaculture tanks. AMB Express 2018; 8:140. [PMID: 30155810 PMCID: PMC6113197 DOI: 10.1186/s13568-018-0668-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/17/2018] [Indexed: 11/10/2022] Open
Abstract
The discovery of aerobic and anammox bacteria capable of generating methane in bio-filters in freshwater aquaculture systems is generating interest in studies to understand the activity, diversity, distribution and roles of these environmental bacteria. In this study, we used microbial enrichment of bio-filters to assess their effect on water quality. Profiles of ammonia-oxidizing bacterial communities generated using nested PCR methods and DGGE were used to assess the expression of 16S rRNA genes using DNA sequencing. Five dominant ammonia-oxidizing bacterial strains-clones; KB.13, KB.15, KB.16, KB.17 and KB.18-were isolated and identified by phylogenetic analysis as environmental samples closely related to genera Methylobacillus, Stanieria, Nitrosomonas, and Heliorestis. The methyl ammonia-oxidizing microbes thereby found suggest a biochemical pathway involving electron donors and carbon sources, and all strains were functional in freshwater aquaculture systems. Environmental parameters including TN (2.69-20.43); COD (9.34-31.47); NH4+-N (0.44-11.78); NO2-N (0.00-3.67); NO3-N (0.05-1.82), mg/L and DO (1.47-10.31 µg/L) assessed varied in the ranges in the different tanks. Principal component analysis revealed that these water quality parameters significantly influenced the ammonia oxidizing microbial community composition. Temperature rises to about 40 °C significantly affected environmental characteristics-especially DO, TN and NH4+-N-and directly or indirectly affected the microbial communities. Although the nested PCR design was preferred due to its high sensitivity for amplifying specific DNA regions, a more concise method is recommended, as an equimolar mixture of degenerate PCR primer pairs, CTO189f-GC and CTO654r, never amplified only 16S rRNA of ammonia-oxidizing bacteria.
Collapse
Affiliation(s)
- Barry Kamira
- Nanjing Agricultural University, 1 Weigang, Nanjing, 210095 Jiangsu People’s Republic of China
- Wuxi Fisheries College, 9 East Shan Shui Road, Binhu District, Wuxi, 214081 Jiangsu People’s Republic of China
- Present Address: Freshwater Fisheries Resources Center (FFRC), Chinese Academy of Fisheries Sciences (CAFs), Wuxi, People’s Republic of China
| | - Lei Lei Shi
- Nanjing Agricultural University, 1 Weigang, Nanjing, 210095 Jiangsu People’s Republic of China
- Wuxi Fisheries College, 9 East Shan Shui Road, Binhu District, Wuxi, 214081 Jiangsu People’s Republic of China
| | - Li Min Fan
- Wuxi Fisheries College, 9 East Shan Shui Road, Binhu District, Wuxi, 214081 Jiangsu People’s Republic of China
- Key Laboratory of Freshwater Fisheries Eco-Environment Monitoring Center of Lower Reaches of Yantze River, Ministry of Agriculture; Fishery Environmental Protection Department, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu People’s Republic of China
| | - Cong Zhang
- Wuxi Fisheries College, 9 East Shan Shui Road, Binhu District, Wuxi, 214081 Jiangsu People’s Republic of China
- Key Laboratory of Freshwater Fisheries Eco-Environment Monitoring Center of Lower Reaches of Yantze River, Ministry of Agriculture; Fishery Environmental Protection Department, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu People’s Republic of China
| | - Yao Zheng
- Wuxi Fisheries College, 9 East Shan Shui Road, Binhu District, Wuxi, 214081 Jiangsu People’s Republic of China
- Key Laboratory of Freshwater Fisheries Eco-Environment Monitoring Center of Lower Reaches of Yantze River, Ministry of Agriculture; Fishery Environmental Protection Department, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu People’s Republic of China
| | - Chao Song
- Wuxi Fisheries College, 9 East Shan Shui Road, Binhu District, Wuxi, 214081 Jiangsu People’s Republic of China
- Key Laboratory of Freshwater Fisheries Eco-Environment Monitoring Center of Lower Reaches of Yantze River, Ministry of Agriculture; Fishery Environmental Protection Department, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu People’s Republic of China
| | - Shun Long Meng
- Nanjing Agricultural University, 1 Weigang, Nanjing, 210095 Jiangsu People’s Republic of China
- Wuxi Fisheries College, 9 East Shan Shui Road, Binhu District, Wuxi, 214081 Jiangsu People’s Republic of China
- Key Laboratory of Freshwater Fisheries Eco-Environment Monitoring Center of Lower Reaches of Yantze River, Ministry of Agriculture; Fishery Environmental Protection Department, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu People’s Republic of China
| | - Geng Dong Hu
- Wuxi Fisheries College, 9 East Shan Shui Road, Binhu District, Wuxi, 214081 Jiangsu People’s Republic of China
- Key Laboratory of Freshwater Fisheries Eco-Environment Monitoring Center of Lower Reaches of Yantze River, Ministry of Agriculture; Fishery Environmental Protection Department, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu People’s Republic of China
| | - Xu Wen Bing
- Nanjing Agricultural University, 1 Weigang, Nanjing, 210095 Jiangsu People’s Republic of China
- Wuxi Fisheries College, 9 East Shan Shui Road, Binhu District, Wuxi, 214081 Jiangsu People’s Republic of China
- Key Laboratory of Freshwater Fisheries Eco-Environment Monitoring Center of Lower Reaches of Yantze River, Ministry of Agriculture; Fishery Environmental Protection Department, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu People’s Republic of China
| | - Zhang Jia Chen
- Nanjing Agricultural University, 1 Weigang, Nanjing, 210095 Jiangsu People’s Republic of China
- Wuxi Fisheries College, 9 East Shan Shui Road, Binhu District, Wuxi, 214081 Jiangsu People’s Republic of China
- Key Laboratory of Freshwater Fisheries Eco-Environment Monitoring Center of Lower Reaches of Yantze River, Ministry of Agriculture; Fishery Environmental Protection Department, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu People’s Republic of China
| | - Pao Xu
- Nanjing Agricultural University, 1 Weigang, Nanjing, 210095 Jiangsu People’s Republic of China
- Wuxi Fisheries College, 9 East Shan Shui Road, Binhu District, Wuxi, 214081 Jiangsu People’s Republic of China
- Key Laboratory of Freshwater Fisheries Eco-Environment Monitoring Center of Lower Reaches of Yantze River, Ministry of Agriculture; Fishery Environmental Protection Department, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu People’s Republic of China
| |
Collapse
|