1
|
Abozahra R, Shlkamy D, Abdelhamid SM. Isolation and characterization of ɸEcM-vB1 bacteriophage targeting multidrug-resistant Escherichia coli. BMC Res Notes 2025; 18:3. [PMID: 39754154 PMCID: PMC11699686 DOI: 10.1186/s13104-024-07033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
OBJECTIVES The aim of this study is to screen for, isolate and characterize a bacteriophage designated ɸEcM-vB1 with confirmed lytic activity against multidrug-resistant (MDR) E. coli. Methods done in this research are bacteriophage isolation, purification, titer determination, bacteriophage morphology, host range determination, bacteriophage latent period and burst size determination, genomic analysis by restriction enzymes, and bacteriophage total protein content determination. RESULTS ɸEcM-vB1 bacteriophage exhibited high lytic activity against different MDR E. coli isolates and showed stability over wide pH and temperature range. It belongs to the Myoviridae family of the caudovirales order according to TEM. It had a latent period of 5 min and an average burst size of 271.72 pfu/cell. Genomic analysis revealed that it is susceptible to digestion by EcoRI. Ten structural proteins were detected by SDS-PAGE. ɸEcM-vB1 is considered a promising candidate for phage therapy applications.
Collapse
Affiliation(s)
- Rania Abozahra
- Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Dina Shlkamy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.
| | - Sarah M Abdelhamid
- Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
2
|
Determination of anti-phage antibodies in calf sera following application of Escherichia coli and Mannheimia haemolytica-specific bacteriophages. J Vet Res 2022; 66:353-360. [PMID: 36349127 PMCID: PMC9597941 DOI: 10.2478/jvetres-2022-0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction The widespread occurrence of drug-resistant bacteria has increased interest in alternatives to antibiotics for combatting bacterial infections, among which bacteriophages play an important role. The ability of phage proteins to induce an anti-phage immune response can significantly limit the effectiveness of treatment, which was the basis for the study described in this article. The aim of the study was to assess the effects of bacteriophages on the induction of an anti-phage humoral response in calves. Material and Methods The study was conducted using phage components of experimental preparations and sera from calves treated and not treated with phages. Levels of G, M and A immunoglobulins were analysed by ELISA. The assay plates were coated with whole Escherichia coli and Mannheimia haemolytica phages and selected phage proteins obtained in sodium dodecyl sulphate-polyacrylamide gel electrophoresis and two-dimensional electrophoresis. Neutralisation of phages by immunoglobulins was assessed by determining phage titres using double-layer plates. Results The results confirmed an increased anti-phage response affecting all immunoglobulin classes in the calf sera. The highest significant (P ≤ 0.05) level of antibodies was observed for IgG in the sera of calves receiving phages. The phage neutralisation test showed a significant differences (P ≤ 0.05) in the reduction of phage titres in comparison to untreated calves. Conclusion Despite the induction of an anti-phage response, no significant negative effect on the antibacterial activity of phages was observed in vitro.
Collapse
|
3
|
Sjahriani T, Wasito EB, Tyasningsih W. The Analysis of OmpA and Rz/Rz1 of Lytic Bacteriophage from Surabaya, Indonesia. SCIENTIFICA 2021; 2021:7494144. [PMID: 35096434 PMCID: PMC8794686 DOI: 10.1155/2021/7494144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
A good strategy to conquer the Escherichia coli-cause food-borne disease could be bacteriophages. Porins are a type of β-barrel proteins with diffuse channels and OmpA, which has a role in hydrophilic transport, is the most frequent porin in E. coli; it was also chosen as the potential receptor of the phage. And the Rz/Rz1 was engaged in the breakup of the host bacterial external membrane. This study aimed to analyze the amino acid of OmpA and Rz/Rz1 of lytic bacteriophage from Surabaya, Indonesia. This study employed a sample of 8 bacteriophages from the previous study. The OmpA analysis method was mass spectrometry. Rz/Rz1 was analyzed using PCR, DNA sequencing, Expasy Translation, and Expasy ProtParam. The result obtained 10% to 29% sequence coverage of OmpA, carrying the ligand-binding site. The Rz/Rz1 gene shares a high percentage of 97.04% to 98.89% identities with the Siphoviridae isolate ctTwQ4, partial genome, and Myoviridae isolate cthRA4, partial genome. The Mann-Whitney statistical tests indicate the significant differences between Alanine, Aspartate, Glycine, Proline, Serine (p=0.011), Asparagine, Cysteine (p=0.009), Isoleucine (p=0.043), Lysine (p=0.034), Methionine (p=0.001), Threonine (p=0.018), and Tryptophan (p=0.007) of OmpA and Rz/Rz1. The conclusion obtained from this study is the fact that OmpA acts as Phage 1, Phage 2, Phage 3, Phage 5, and Phage 6 receptors for its peptide composition comprising the ligand binding site, and Rz/Rz1 participates in host bacteria lysis.
Collapse
Affiliation(s)
- Tessa Sjahriani
- Doctoral Program, Faculty of Medicine, Universitas Airlangga, Dr. Moestopo Road No. 47, Surabaya 60285, Indonesia
- Department of Microbiology, Faculty of Medicine, Universitas Malahayati, Pramuka Road No. 27, Bandar Lampung 35158, Indonesia
| | - Eddy Bagus Wasito
- Department of Microbiology, Faculty of Medicine, Universitas Airlangga, Dr. Moestopo Road No. 47, Surabaya 60285, Indonesia
| | - Wiwiek Tyasningsih
- Department of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, C Campus, Mulyorejo Road, Surabaya 60115, Indonesia
| |
Collapse
|
4
|
Khan MSI, Gao X, Liang K, Mei S, Zhan J. Virulent Drexlervirial Bacteriophage MSK, Morphological and Genome Resemblance With Rtp Bacteriophage Inhibits the Multidrug-Resistant Bacteria. Front Microbiol 2021; 12:706700. [PMID: 34504479 PMCID: PMC8421802 DOI: 10.3389/fmicb.2021.706700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Phage-host interactions are likely to have the most critical aspect of phage biology. Phages are the most abundant and ubiquitous infectious acellular entities in the biosphere, where their presence remains elusive. Here, the novel Escherichia coli lytic bacteriophage, named MSK, was isolated from the lysed culture of E. coli C (phix174 host). The genome of phage MSK was sequenced, comprising 45,053 bp with 44.8% G + C composition. In total, 73 open reading frames (ORFs) were predicted, out of which 24 showed a close homology with known functional proteins, including one tRNA-arg; however, the other 49 proteins with no proven function in the genome database were called hypothetical. Electron Microscopy and genome characterization have revealed that MSK phage has a rosette-like tail tip. There were, in total, 46 ORFs which were homologous to the Rtp genome. Among these ORFs, the tail fiber protein with a locus tag of MSK_000019 was homologous to Rtp 43 protein, which determines the host specificity. The other protein, MSK_000046, encodes lipoprotein (cor gene); that protein resembles Rtp 45, responsible for preventing adsorption during cell lysis. Thirteen MSK structural proteins were identified by SDS-PAGE analysis. Out of these, 12 were vital structural proteins, and one was a hypothetical protein. Among these, the protein terminase large (MSK_000072) subunit, which may be involved in DNA packaging and proposed packaging strategy of MSK bacteriophage genome, takes place through headful packaging using the pac-sites. Biosafety assessment of highly stable phage MSK genome analysis has revealed that the phage did not possess virulence genes, which indicates proper phage therapy. MSK phage potentially could be used to inhibit the multidrug-resistant bacteria, including AMP, TCN, and Colistin. Further, a comparative genome and lifestyle study of MSK phage confirmed the highest similarity level (87.18% ANI). These findings suggest it to be a new lytic isolated phage species. Finally, Blast and phylogenetic analysis of the large terminase subunit and tail fiber protein put it in Rtp viruses' genus of family Drexlerviridae.
Collapse
Affiliation(s)
- Muhammad Saleem Iqbal Khan
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangzheng Gao
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, China
| | - Keying Liang
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengsheng Mei
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinbiao Zhan
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Wintachai P, Naknaen A, Thammaphet J, Pomwised R, Phaonakrop N, Roytrakul S, Smith DR. Characterization of extended-spectrum-β-lactamase producing Klebsiella pneumoniae phage KP1801 and evaluation of therapeutic efficacy in vitro and in vivo. Sci Rep 2020; 10:11803. [PMID: 32678251 PMCID: PMC7367294 DOI: 10.1038/s41598-020-68702-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Extended spectrum β lactamase-producing Klebsiella pneumoniae (ESBL-KP) is being reported with high morbidity and mortality rates and is considered as the highest priority for new antimicrobial strategies. To develop an alternative antimicrobial agent, phage KP1801 with broad lytic activity was isolated. The genome of phage KP1801 was double stranded DNA of 49,835 base pairs, with a GC content of 50.26%. There were 75 putative open reading frames. Phage KP1801 was classified as being in the order Caudovirales, belonging to the Siphoviridae family. About 323 proteins were detected by shotgun proteome analysis. The phage inhibited biofilm formation and reduced pre-formed biofilm in a dose dependent manner. Scanning electron microscopic studies demonstrated a membrane damage of bacterial cells treated with phage, resulting in cell death. Prophylactic and therapeutic efficacies of the phage were evaluated in Galleria mellonella. Administration of ESBL-KP infection with phage significantly improved the survival of G. mellonella. The number of intracellular bacteria in larvae showed a significant decrease compared with untreated control while the number of phage increased. These studies suggested that phage KP1801 has the potential for development as an alternative for antibiotics and biocontrol agents against ESBL-KP infection.
Collapse
Affiliation(s)
| | - Ampapan Naknaen
- Department of Microbiology, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Jirapath Thammaphet
- School of Science, Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Rattanaruji Pomwised
- Department of Microbiology, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Narumon Phaonakrop
- Proteomics Research Laboratory, Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Bangkok, 73170, Thailand
| |
Collapse
|
6
|
Abstract
Bacteriophages are the most abundant form of life on earth and are present everywhere. The total number of bacteriophages has been estimated to be 1032 virions. The main division of bacteriophages is based on the type of nucleic acid (DNA or RNA) and on the structure of the capsid. Due to the significant increase in the number of multi-drug-resistant bacteria, bacteriophages could be a useful tool as an alternative to antibiotics in experimental therapies to prevent and to control bacterial infections in people and animals. The aim of this review was to discuss the history of phage therapy as a replacement for antibiotics, in response to EU regulations prohibiting the use of antibiotics in livestock, and to present current examples and results of experimental phage treatments in comparison to antibiotics. The use of bacteriophages to control human infections has had a high success rate, especially in mixed infections caused mainly by Staphylococcus, Pseudomonas, Enterobacter, and Enterococcus. Bacteriophages have also proven to be an effective tool in experimental treatments for combating diseases in livestock.
Collapse
|