1
|
Boban A, Vrhovsek U, Masuero D, Milanović V, Budić-Leto I. Effect of Indigenous Non- Saccharomyces Yeasts on Lipid Compositions of Maraština Wine. Foods 2025; 14:269. [PMID: 39856934 PMCID: PMC11765114 DOI: 10.3390/foods14020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
This study is the first to investigate the impact of indigenous non-Saccharomyces yeasts, including Hypopichia pseudoburtonii, Metschnikowia sinensis/shanxiensis, Metschnikowia chrysoperlae, Metschnikowia pulcherrima, Lachancea thermotolerans, Hanseniaspora uvarum, Hanseniaspora guilliermondii, Hanseniaspora pseudoguilliermondii, Pichia kluyveri, and Starmerella apicola on the lipid composition of sterile Maraština grape juice and wines using the UHPLC-MS/MS method. Yeasts were tested in monoculture and sequential fermentations alongside commercial Saccharomyces cerevisiae. Indigenous non-Saccharomyces yeasts showed the potential to improve fermentation performance and enable the development of new wine styles through the biosynthesis of an unsaturated fatty acid pathway, which was identified as the most significant pathway. In monoculture fermentations, L. thermotolerans, H. uvarum, H. guilliermondii, H. pseudoguilliermondii, and P. kluyveri significantly reduced lignoceric acid, potentially influencing wine aroma through the formation of esters and higher alcohols. Hyp. pseudoburtonii, M. chrysoperlae, M. pulcherrima, P. kluyveri, and S. apicola increased the demand for lipids, such as stearic acid, which may help preserve membrane permeability by integrating into the membrane in response to ethanol shock. The most significant impact on free fatty esters was observed in fermentations with H. pseudoguilliermondii. Furthermore, L. thermotolerans in sequential fermentations significantly reduced arachidic, stearic, and palmitic acid. P. kluyveri reduced the content of erucic and linoleic acid.
Collapse
Affiliation(s)
- Ana Boban
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia;
| | - Urska Vrhovsek
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (U.V.); (D.M.)
| | - Domenico Masuero
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (U.V.); (D.M.)
| | - Vesna Milanović
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy;
| | - Irena Budić-Leto
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia;
| |
Collapse
|
2
|
Monnin L, Nidelet T, Noble J, Galeote V. Insights into intraspecific diversity of central carbon metabolites in Saccharomyces cerevisiae during wine fermentation. Food Microbiol 2024; 121:104513. [PMID: 38637075 DOI: 10.1016/j.fm.2024.104513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/20/2024]
Abstract
Saccharomyces cerevisiae is a major actor in winemaking that converts sugars from the grape must into ethanol and CO2 with outstanding efficiency. Primary metabolites produced during fermentation have a great importance in wine. While ethanol content contributes to the overall profile, other metabolites like glycerol, succinate, acetate or lactate also have significant impacts, even when present in lower concentrations. S. cerevisiae is known for its great genetic diversity that is related to its natural or technological environment. However, the variation range of metabolic diversity which can be exploited to enhance wine quality depends on the pathway considered. Our experiment assessed the diversity of primary metabolites production in a set of 51 S. cerevisiae strains from various genetic backgrounds. Results pointed out great yield differences depending on the metabolite considered, with ethanol having the lowest variation. A negative correlation between ethanol and glycerol was observed, confirming glycerol synthesis as a suitable lever to reduce ethanol yield. Genetic groups were linked to specific yields, such as the wine group and high α-ketoglutarate and low acetate yields. This research highlights the potential of using natural yeast diversity in winemaking. It also provides a detailed data set on production of well known (ethanol, glycerol, acetate) or little-known (lactate) primary metabolites.
Collapse
Affiliation(s)
- Ludovic Monnin
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France; Lallemand Oenology, Blagnac, France
| | - Thibault Nidelet
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.
| | | | - Virginie Galeote
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
3
|
Contreras‐Ruiz A, Minebois R, Alonso‐del‐Real J, Barrio E, Querol A. Differences in metabolism among Saccharomyces species and their hybrids during wine fermentation. Microb Biotechnol 2024; 17:e14476. [PMID: 38801338 PMCID: PMC11129674 DOI: 10.1111/1751-7915.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
This study aimed to investigate how parental genomes contribute to yeast hybrid metabolism using a metabolomic approach. Previous studies have explored central carbon and nitrogen metabolism in Saccharomyces species during wine fermentation, but this study analyses the metabolomes of Saccharomyces hybrids for the first time. We evaluated the oenological performance and intra- and extracellular metabolomes, and we compared the strains according to nutrient consumption and production of the main fermentative by-products. Surprisingly, no common pattern was observed for hybrid genome influence; each strain behaved differently during wine fermentation. However, this study suggests that the genome of the S. cerevisiae species may play a more relevant role in fermentative metabolism. Variations in biomass/nitrogen ratios were also noted, potentially linked to S. kudriavzevii and S. uvarum genome contributions. These results open up possibilities for further research using different "omics" approaches to comprehend better metabolic regulation in hybrid strains with genomes from different species.
Collapse
Affiliation(s)
- Alba Contreras‐Ruiz
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValènciaSpain
| | - Romain Minebois
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValènciaSpain
| | - Javier Alonso‐del‐Real
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValènciaSpain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValènciaSpain
- Departament de GenèticaUniversitat de ValènciaValènciaSpain
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSICValènciaSpain
| |
Collapse
|
4
|
Piva GG, Casalta E, Legras JL, Sanchez I, Pradal M, Macna F, Ferreira D, Ortiz-Julien A, Galeote V, Mouret JR. Unveiling the power of adding sterols in wine: Optimizing alcoholic fermentation with strategic management. Int J Food Microbiol 2023; 406:110350. [PMID: 37659280 DOI: 10.1016/j.ijfoodmicro.2023.110350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/21/2023] [Accepted: 07/30/2023] [Indexed: 09/04/2023]
Affiliation(s)
- Giovana Girardi Piva
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, 34000 Montpellier, France; Lallemand SAS, 31702 Blagnac, France
| | - Erick Casalta
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, 34000 Montpellier, France
| | - Jean-Luc Legras
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, 34000 Montpellier, France
| | - Isabelle Sanchez
- MISTEA, INRAE, Institut Agro Montpellier, 34000 Montpellier, France
| | - Martine Pradal
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, 34000 Montpellier, France
| | - Faïza Macna
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, 34000 Montpellier, France
| | | | | | - Virginie Galeote
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, 34000 Montpellier, France
| | - Jean-Roch Mouret
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, 34000 Montpellier, France.
| |
Collapse
|
5
|
Evers MS, Ramousse L, Morge C, Sparrow C, Gobert A, Roullier-Gall C, Alexandre H. To be or not to be required: Yeast vitaminic requirements in winemaking. Food Microbiol 2023; 115:104330. [PMID: 37567622 DOI: 10.1016/j.fm.2023.104330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/15/2023] [Accepted: 06/24/2023] [Indexed: 08/13/2023]
Abstract
Although vitamins are prime actors in yeast metabolism, the nature and the extent of their requirement in Saccharomyces cerevisiae in winemaking remains little understood. To fill this gap, the evolution of 8 water-soluble vitamins and their diverse vitamers during its alcoholic fermentation in a synthetic must medium was monitored, providing the first evidence of the consumption of vitamers by five commercial S. cerevisiae strains, and highlighting the existence of preferential vitameric sources for its nutrition. The vitamins required by the yeast, B1, B5, and B8, were then identified, and the nature of their requirement characterized, strongly asserting the required trait of B1 for fermentation, B8 for growth, and B5 for both processes. The extent of the requirement for B5, that with the most impact of the three vitamins, was then quantified in three S. cerevisiae strains, resulting in the conclusion that 750 μg.L-1 should prove sufficient to cover the yeast's requirements. This investigation offers the first insight into S. cerevisiae vitaminic requirements for winemaking.
Collapse
Affiliation(s)
- Marie Sarah Evers
- UMR PAM A 02.102, Université de Bourgogne Franche-Comté, Institut Agro, Rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| | - Louise Ramousse
- UMR PAM A 02.102, Université de Bourgogne Franche-Comté, Institut Agro, Rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| | - Christophe Morge
- Sofralab SAS, 79 Avenue A.A, Av. Alfred Anatole Thévenet, Magenta, 51530, France
| | - Celine Sparrow
- Sofralab SAS, 79 Avenue A.A, Av. Alfred Anatole Thévenet, Magenta, 51530, France
| | - Antoine Gobert
- Sofralab SAS, 79 Avenue A.A, Av. Alfred Anatole Thévenet, Magenta, 51530, France
| | - Chloé Roullier-Gall
- UMR PAM A 02.102, Université de Bourgogne Franche-Comté, Institut Agro, Rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| | - Hervé Alexandre
- UMR PAM A 02.102, Université de Bourgogne Franche-Comté, Institut Agro, Rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France.
| |
Collapse
|
6
|
Untargeted lipidomic profiling of grapes highlights the importance of modified lipid species beyond the traditional compound classes. Food Chem 2023; 410:135360. [PMID: 36628919 DOI: 10.1016/j.foodchem.2022.135360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
The aim of this paper is to provide a detailed characterisation of grape lipidome. To achieve this objective, it starts by describing a pipeline implemented in R software to allow the semi-automatic annotation of the detected lipid species. It also provides an extensive description of the different properties of each molecule (such as retention time dependencies, mass accuracy, adduct formation and fragmentation patterns), which allowed the annotations to be made more accurately. Most annotated lipids in the grape samples were (lyso)glycerophospholipids and glycerolipids, although a few free fatty acids, hydroxyceramides and sitosterol esters were also observed. The proposed pipeline also allowed the identification of a series of methylated glycerophosphates never previously observed in grapes. The current results highlight the importance of expanding chemical analyses beyond the classical lipid categories.
Collapse
|
7
|
Guittin C, Maçna F, Barreau A, Poitou X, Sablayrolles JM, Mouret JR, Farines V. The aromatic profile of wine distillates from Ugni blanc grape musts is influenced by the nitrogen nutrition (organic vs. inorganic) of Saccharomyces cerevisiae. Food Microbiol 2023; 111:104193. [PMID: 36681397 DOI: 10.1016/j.fm.2022.104193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Although the impact of nitrogen nutrition on the production of fermentative aromas in oenological fermentation is well known today, one may wonder whether the effects studied are the same when winemaking takes place at high turbidities, specifically for the production of wines intended for cognac distillation. To that effect, a fermentation robot was used to analyze 30 different fermentation conditions at two turbidity levels with several factors tested: (i) initial addition of nitrogen either organic (with a mixture of amino acids - MixAA) or inorganic with di-ammonium phosphate (DAP) at different concentrations, (ii) variation of the ratio of inorganic/organic nitrogen (MixAA and DAP) and (iii) addition of different single amino acids (alanine, arginine, aspartic acid and glutamic acid). A metabolomic analysis was carried out on all resulting wines to have a global vision of the impact of nitrogen on more than sixty aromatic molecules of various families. Then, at the end of the alcoholic fermentation, the wines were micro-distilled. A first interesting observation was that the aroma profiles of both wines and distillates were close, indicating that the concentration factor is rather similar for the different aromas studied. Secondly, the fermentation kinetics and aroma results have shown that the nitrogen concentration effect prevailed over the nature of nitrogen. Although the lipid concentration was in excess, an interaction between the assimilable nitrogen and lipid contents was still observed in wines or in micro-distillates. Alanine is involved in the synthesis of acetaldehyde, isobutanol, isoamyl alcohol and isoamyl acetate. Finally, it was demonstrated that modifying the ratio of assimilable nitrogen in musts is not an interesting technological response to improve the aromatic profile of wines and brandies. Indeed, unbalance the physiological ratio of the must by adding a single source of assimilable nitrogen (organic or inorganic) has been shown to deregulate the synthesis of most of the fermentation aromas produced by the yeast. Wine metabolomic analysis confirmed the results that had been observed in micro-distillates but also in the other aromatic families, especially on terpenes. The contribution of solid particles, but also yeast biosynthesis (via sterol management in must) to wine terpenes is discussed. Indeed, the synthesis of terpenes in this oenological context seems to be favored, especially since the concentration of assimilable nitrogen (in addition to the lipid content) favor their accumulation in the medium. A non-negligible vintage effect on the terpene profile was also demonstrated with variations in their distribution depending on the years. Thus, the present study focuses on the metabolism of wine yeasts under different environmental conditions (nitrogen and lipid content) and on the impact of distillation on the fate of flavor compounds. The results highlight once again the complexity of metabolic fluxes and of the impact of nitrogen source (nature and amount) and of lipids. Furthermore, this study demonstrates that beyond the varietal origin of terpenes, the part resulting from the de novo synthesis by the yeast during the fermentation cannot be neglected in the context of cognac winemaking with high levels of turbidity.
Collapse
Affiliation(s)
- Charlie Guittin
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.
| | - Faïza Maçna
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.
| | | | | | | | - Jean-Roch Mouret
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.
| | - Vincent Farines
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
8
|
Sherman E, Yvon M, Grab F, Zarate E, Green S, Bang KW, Pinu FR. Total Lipids and Fatty Acids in Major New Zealand Grape Varieties during Ripening, Prolonged Pomace Contacts and Ethanolic Extractions Mimicking Fermentation. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Despite the important roles of lipids in winemaking, changes in lipids during grape ripening are largely unknown for New Zealand (NZ) varieties. Therefore, we aimed to determine the fatty acid profiles and total lipid content in two of NZ’s major grape varieties. Using gas chromatography–mass spectrometry, absolute quantification of 45 fatty acids was determined in Sauvignon blanc (SB) and Pinot noir (PN) grapes harvested at two different stages of ripeness. Lipid concentrations were as high as 0.4 g/g in seeds of both varieties, while pulp contained the least amount. Many unsaturated fatty acids were present, particularly in grape seeds, while skin contained relatively higher amounts of saturated fatty acids that increased throughout ripening. For both varieties, a significant increase in lipid concentration was observed in grapes harvested at the later stage of ripeness, indicating an association between lipids and grape maturity, and providing a novel insight about the use of total lipids as another parameter of grape ripeness. A variety-specific trend in the development and extraction of grape lipids was found from the analysis of the must and ethanolic extracts. Lipid extraction increased linearly with the ethanol concentration and with the extended pomace contact time. More lipids were extracted from the SB pomace to the must than PN within 144 h, suggesting a must matrix effect on lipid extraction. The knowledge generated here is relevant to both industry and academia and can be used to develop lipid diversification strategies to produce different wine styles.
Collapse
Affiliation(s)
- Emma Sherman
- Biological Chemistry and Bioactives Group, The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Muriel Yvon
- Viticulture and Oenology Group, The New Zealand Institute for Plant and Food Research Limited, Blenheim 7201, New Zealand
| | - Franzi Grab
- Viticulture and Oenology Group, The New Zealand Institute for Plant and Food Research Limited, Blenheim 7201, New Zealand
| | - Erica Zarate
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Saras Green
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Kyung Whan Bang
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Farhana R. Pinu
- Biological Chemistry and Bioactives Group, The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| |
Collapse
|
9
|
Duncan JD, Setati ME, Divol B. Redox cofactor metabolism in Saccharomyces cerevisiae and its impact on the production of alcoholic fermentation end-products. Food Res Int 2023; 163:112276. [PMID: 36596186 DOI: 10.1016/j.foodres.2022.112276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
The alcoholic fermentation of organic carbon sources by Saccharomyces cerevisiae produces many by-products, with the most abundant originating from central carbon metabolism. The production of these metabolites involves redox reactions and largely depends on the maintenance of redox homeostasis. Despite the metabolic pathways being mostly conserved across strains of S. cerevisiae, their production of various amounts of metabolic products suggests that their intracellular concentration of redox cofactors and/or redox balance differ. This study explored the redox status dynamics and NAD(H) and NADP(H) cofactor ratios throughout alcoholic fermentation in four S. cerevisiae strains that exhibit different carbon metabolic fluxes. This study focussed on the molecular end-products of fermentation, redox cofactor ratios and the impact thereof on redox homeostasis. Strain-dependent differences were identified in the redox cofactor levels, with NADP(H) ratios and levels remaining stable while NAD(H) levels decreased drastically as the fermentation progressed. Changes in the NAD+/NADH ratio were also observed. Total levels of NAD(H) decreased drastically as the fermentation progressed despite the cells remaining viable until the end of fermentation. NAD+ was found to be favoured initially while NADH was favoured towards the end of the fermentation. The change in the NAD+/NADH redox cofactor ratio during fermentation was linked with the production of end-products. The findings in this study could steer further research in the selection of S. cerevisiae wine strains for desirable aroma contributions based on their intracellular redox balance management.
Collapse
Affiliation(s)
- James D Duncan
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Mathabatha E Setati
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Benoit Divol
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
10
|
Girardi-Piva G, Casalta E, Legras JL, Nidelet T, Pradal M, Macna F, Ferreira D, Ortiz-Julien A, Tesnière C, Galeote V, Mouret JR. Influence of ergosterol and phytosterols on wine alcoholic fermentation with Saccharomyces cerevisiae strains. Front Microbiol 2022; 13:966245. [PMID: 36160262 PMCID: PMC9493300 DOI: 10.3389/fmicb.2022.966245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
Sterols are a fraction of the eukaryotic lipidome that is essential for the maintenance of cell membrane integrity and its good functionality. During alcoholic fermentation, they enhance yeast growth, metabolism and viability, as well as resistance to high sugar content and ethanol stress. Grape musts clarified in excess lead to the loss of solid particles rich in sterols, resulting in sluggish and stuck fermentations. Two sterol sources can help Saccharomyces cerevisiae yeasts to adapt to fermentation stress conditions: ergosterol (synthesized by yeast under aerobic conditions) and phytosterols (plant sterols imported by yeast cells from grape musts under anaerobiosis). Little is known about the physiological impact of phytosterols assimilation in comparison with ergosterol and the influence of sterol type on fermentation kinetics parameters. Moreover, studies to date have analyzed a limited number of yeast strains. Thus, the aim of this work was to compare the performances of a set of Saccharomyces cerevisiae wine strains that represent the diversity of industrial wine yeast, fermenting with phytosterols or ergosterol under two conditions: sterol limitation (sterol starvation) and high sugar content (the most common stress during fermentation). Results indicated that yeast cell viability was negatively impacted by both stressful conditions, resulting in sluggish and stuck fermentations. This study revealed the huge phenotype diversity of the S. cerevisiae strains tested, in particular in terms of cell viability. Indeed, strains with better viability maintenance completed fermentation earlier. Interestingly, we showed for the first time that sterol type differently affects a wide variety of phenotype, such as viability, biomass, fermentation kinetics parameters and biosynthesis of carbon central metabolism (CCM) metabolites. Ergosterol allowed preserving more viable cells at the end of fermentation and, as a consequence, a better completion of fermentation in both conditions tested, even if phytosterols also enabled the completion of alcoholic fermentation for almost all strains. These results highlighted the essential role of sterols during wine alcoholic fermentation to ensure yeast growth and avoid sluggish or stuck fermentations. Finally, this study emphasizes the importance of taking into account sterol types available during wine fermentation.
Collapse
Affiliation(s)
| | - Erick Casalta
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Jean-Luc Legras
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Thibault Nidelet
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Martine Pradal
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Faïza Macna
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | | | | | - Catherine Tesnière
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Virginie Galeote
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Jean-Roch Mouret
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
- *Correspondence: Jean-Roch Mouret,
| |
Collapse
|
11
|
Mbuyane LL, Bauer FF, Bloem A, Camarasa C, Ortiz-Julien A, Divol B. Species-Dependent Metabolic Response to Lipid Mixtures in Wine Yeasts. Front Microbiol 2022; 13:823581. [PMID: 35677913 PMCID: PMC9168537 DOI: 10.3389/fmicb.2022.823581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Lipids are essential energy storage compounds and are the core structural elements of all biological membranes. During wine alcoholic fermentation, the ability of yeasts to adjust the lipid composition of the plasma membrane partly determines their ability to cope with various fermentation-related stresses, including elevated levels of ethanol and the presence of weak acids. In addition, the lipid composition of grape juice also impacts the production of many wine-relevant aromatic compounds. Several studies have evaluated the impact of lipids and of their metabolism on fermentation performance and aroma production in the dominant wine yeast Saccharomyces cerevisiae, but limited information is available on other yeast species. Thus, the aim of this study was to evaluate the influence of specific fatty acid and sterol mixtures on various non-Saccharomyces yeast fermentation rates and the production of primary fermentation metabolites. The data show that the response to different lipid mixtures is species-dependent. For Metschnikowia pulcherrima, a slight increase in carbon dioxide production was observed in media enriched with unsaturated fatty acids whereas Kluyveromyces marxianus fermented significantly better in synthetic media containing a higher concentration of polyunsaturated fatty acids than monounsaturated fatty acids. Torulaspora delbrueckii fermentation rate increased in media supplemented with lipids present at an equimolar concentration. The data indicate that these different responses may be linked to variations in the lipid profile of these yeasts and divergent metabolic activities, in particular the regulation of acetyl-CoA metabolism. Finally, the results suggest that the yeast metabolic footprint and ultimately the wine organoleptic properties could be optimized via species-specific lipid adjustments.
Collapse
Affiliation(s)
- Lethiwe L Mbuyane
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa
| | - Florian F Bauer
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa
| | - Audrey Bloem
- UMR SPO, INRA, SupAgroM, Université de Montpellier, Montpellier, France
| | - Carole Camarasa
- UMR SPO, INRA, SupAgroM, Université de Montpellier, Montpellier, France
| | | | - Benoit Divol
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
12
|
Wang X, Capone DL, Kang W, Roland A, Jeffery DW. Impact of accentuated cut edges (ACE) technique on volatile and sensory profiles of Shiraz wines. Food Chem 2022; 372:131222. [PMID: 34638059 DOI: 10.1016/j.foodchem.2021.131222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022]
Abstract
Varietal thiols are important wine aroma compounds that are generally less abundant in red wines. Accentuated cut edges (ACE), known for accelerating phenolic extraction, was applied to Shiraz winemaking and compared with conventional crushing (NOACE) to examine the effects on varietal thiol precursor extraction and thiol formation. Water addition to grape must and skin contact time (SCT) during fermentation were also assessed. Although there was no difference for precursors in the must, ACE significantly decreased 3-S-glutathionylhexan-1-ol concentration during fermentation. 3-Sulfanylhexan-1-ol and ethyl esters were significantly influenced by crushing method and/or SCT, with NOACE or shorter SCT yielding higher concentrations. Acetates, higher alcohols, fatty acids, and isoprenoids differed according to the interaction of crushing method and SCT, with ACE and shorter SCT significantly enhancing all groups except acetates. Volatiles in Sauvignon blanc and Pinot noir wines produced at commercial scale with ACE were briefly evaluated, suggesting an impact of grape variety.
Collapse
Affiliation(s)
- Xingchen Wang
- Department of Wine Science and Waite Research Institute, The University of Adelaide (UA), PMB 1, Glen Osmond, SA 5064, Australia
| | - Dimitra L Capone
- Department of Wine Science and Waite Research Institute, The University of Adelaide (UA), PMB 1, Glen Osmond, SA 5064, Australia; Australian Research Council Training Centre for Innovative Wine Production, UA, PMB 1, Glen Osmond, SA 5064, Australia
| | - Wenyu Kang
- Department of Wine Science and Waite Research Institute, The University of Adelaide (UA), PMB 1, Glen Osmond, SA 5064, Australia
| | - Aurélie Roland
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - David W Jeffery
- Department of Wine Science and Waite Research Institute, The University of Adelaide (UA), PMB 1, Glen Osmond, SA 5064, Australia; Australian Research Council Training Centre for Innovative Wine Production, UA, PMB 1, Glen Osmond, SA 5064, Australia.
| |
Collapse
|
13
|
Characterization and Role of Sterols in Saccharomyces cerevisiae during White Wine Alcoholic Fermentation. FERMENTATION 2022. [DOI: 10.3390/fermentation8020090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Responsible for plasma membrane structure maintenance in eukaryotic organisms, sterols are essential for yeast development. The role of two sterol sources in Saccharomyces cerevisiae during wine fermentation is highlighted in this review: ergosterol (yeast sterol produced by yeast cells under aerobic conditions) and phytosterols (plant sterols imported by yeast cells from grape musts in the absence of oxygen). These compounds are responsible for the maintenance of yeast cell viability during white wine fermentation under stress conditions, such as ethanol stress and sterol starvation, to avoid sluggish and stuck fermentations.
Collapse
|
14
|
The Impact of Must Nutrients and Yeast Strain on the Aromatic Quality of Wines for Cognac Distillation. FERMENTATION 2022. [DOI: 10.3390/fermentation8020051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In order to understand the influence of nitrogen and lipid nutrition on the aromatic quality of wines for cognac distillation, we developed a transdisciplinary approach that combined statistical modeling (experimental central composite design and response surface modeling) with metabolomic analysis. Three Saccharomyces cerevisiae strains that met the requirements of cognac appellation were tested at a laboratory scale (1 L) and a statistical analysis of covariance was performed to highlight the organoleptic profile (fermentative aromas, terpenes, alcohols and aldehydes) of each strain. The results showed that nitrogen and lipid nutrients had an impact on the aromatic quality of cognac wines: high lipid concentrations favored the production of organic acids, 1-octen-3-ol and terpenes and inhibited the synthesis of esters. Beyond this trend, each yeast strain displayed its own organoleptic characteristics but had identical responses to different nutritional conditions.
Collapse
|
15
|
Grape Lipidomics: An Extensive Profiling thorough UHPLC-MS/MS Method. Metabolites 2021; 11:metabo11120827. [PMID: 34940585 PMCID: PMC8706896 DOI: 10.3390/metabo11120827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Lipids play many essential roles in living organisms, which accounts for the great diversity of these amphiphilic molecules within the individual lipid classes, while their composition depends on intrinsic and extrinsic factors. Recent developments in mass spectrometric methods have significantly contributed to the widespread application of the liquid chromatography-mass spectrometry (LC-MS) approach to the analysis of plant lipids. However, only a few investigators have studied the extensive composition of grape lipids. The present work describes the development of an ultrahigh performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method that includes 8098 MRM; the method has been validated using a reference sample of grapes at maturity with a successful analysis and semi-quantification of 412 compounds. The aforementioned method was subsequently applied also to the analysis of the lipid profile variation during the Ribolla Gialla cv. grape maturation process. The partial least squares (PLS) regression model fitted to our experimental data showed that a higher proportion of certain glycerophospholipids (i.e., glycerophosphoethanolamines, PE and glycerophosphoglycerols, PG) and of some hydrolysates from those groups (i.e., lyso-glycerophosphocholines, LPC and lyso-glycerophosphoethanolamines, LPE) can be positively associated with the increasing °Brix rate, while a negative association was found for ceramides (CER) and galactolipids digalactosyldiacylglycerols (DGDG). The validated method has proven to be robust and informative for profiling grape lipids, with the possibility of application to other studies and matrices.
Collapse
|
16
|
Impact of high lipid contents on the production of fermentative aromas during white wine fermentation. Appl Microbiol Biotechnol 2021; 105:6435-6449. [PMID: 34423410 DOI: 10.1007/s00253-021-11479-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
In Cognac, the musts are rich in grape solids and fermentations are usually run with turbidities ranging between 500 and 1500 NTU (nephelometric turbidity unit). These conditions, considered favourable for generating the desired organoleptic profiles of the final Eaux-de-vies, are unusual in winemaking, and, consequently, their impact on yeast metabolism is poorly understood. This study aims to better describe and understand the synthesis of fermentative aromas in such lipid-excess conditions, while integrating the effect of two other very important parameters: the initial concentration of assimilable nitrogen and the temperature of fermentation. To reach this objective, a Box-Behnken design was implemented to describe and model the simple effects of these factors as well as their interactions. Although the lipid concentration was very high, impacts on the production of fermentative aromas were observed. Indeed, high lipid levels promoted the synthesis of higher alcohols. Observing this effect was surprising because there is no metabolic connection between the anabolic pathways of production of these alcohols and the lipid pathway. This effect may be partly explained by impairment in the activity of alcohol acetyl transferases in the presence of lipids, which catalyse the conversion of higher alcohols into the corresponding esters. Therefore, in this study, the negative impact of turbidity was very significant on acetate esters related to the production of acetyl-CoA, which was the main molecule disturbed by the strong presence of lipids. Finally, and more surprisingly, lipid intake did not impact the synthesis of ethyl esters, which depended on the concentration of exogenous lipids. KEY POINTS: • Innovative work on the fermentation of white wine musts with very high lipid contents. • Precise fermentation management and monitoring in Cognac-making conditions. • Experimental design to study the impact of lipids, assimilable nitrogen and temperature on fermentative aroma synthesis.
Collapse
|
17
|
Tesnière C, Pradal M, Legras JL. Sterol uptake analysis in Saccharomyces and non-Saccharomyces wine yeast species. FEMS Yeast Res 2021; 21:6225805. [PMID: 33852000 DOI: 10.1093/femsyr/foab020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/09/2021] [Indexed: 01/18/2023] Open
Abstract
Sterols are essential components of the yeast membrane and their synthesis requires oxygen. Yet, Saccharomyces cerevisiae has developed the ability to take up sterols from the medium under anaerobiosis. Here we investigated sterol uptake efficiency and the expression of genes related to sterol import in Saccharomyces and non-Saccharomyces wine yeast species fermenting under anaerobic conditions. The sterol uptake efficiency of 39 strains was evaluated by flow cytometry (with 25-NBD Cholesterol, a fluorescent cholesterol probe introduced in the medium) and we found an important discrepancy between Saccharomyces and non-Saccharomyces wine yeast species that we correlated to a lower final cell population and a lower fermentation rate. A high uptake of sterol was observed in the various Saccharomyces strains. Spot tests performed on 13 of these strains confirmed the differences between Saccharomyces and non-Saccharomyces strains, suggesting that the presence of the sterol uptake transporters AUS1 and PDR11 could cause these discrepancies. Indeed, we could not find any homologue to these genes in the genome of Hanseniaspora uvarum, H. guillermondii, Lachancea thermotolerans, Torulaspora delbreueckii, Metschnikowia pulcherrima, or Starmarella bacillaris species. The specialization of sterol import function for post genome-duplication species may have favored growth under anaerobiosis.
Collapse
Affiliation(s)
- Catherine Tesnière
- SPO, Univ Montpellier, INRAE, Institut Agro, 2, place Pierre Viala, 34060 Montpellier, France
| | - Martine Pradal
- SPO, Univ Montpellier, INRAE, Institut Agro, 2, place Pierre Viala, 34060 Montpellier, France
| | - Jean-Luc Legras
- SPO, Univ Montpellier, INRAE, Institut Agro, 2, place Pierre Viala, 34060 Montpellier, France.,CIRM-Levures, SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
18
|
Mbuyane LL, Bauer FF, Divol B. The metabolism of lipids in yeasts and applications in oenology. Food Res Int 2021; 141:110142. [PMID: 33642009 DOI: 10.1016/j.foodres.2021.110142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022]
Abstract
Lipids are valuable compounds present in all living organisms, which display an array of functions related to compartmentalization, energy storage and enzyme activation. Furthermore, these compounds are an integral part of the plasma membrane which is responsible for maintaining structure, facilitating the transport of solutes in and out of the cell and cellular signalling necessary for cell survival. The lipid composition of the yeast Saccharomyces cerevisiae has been extensively investigated and the impact of lipids on S. cerevisiae cellular functions during wine alcoholic fermentation is well documented. Although other yeast species are currently used in various industries and are receiving increasing attention in winemaking, little is known about their lipid metabolism. This review article provides an extensive and critical evaluation of our knowledge on the biosynthesis, accumulation, metabolism and regulation of fatty acids and sterols in yeasts. The implications of the yeast lipid content on stress resistance as well as performance during alcoholic fermentation are discussed and a particular emphasis is given on non-Saccharomyces yeasts. Understanding lipid requirements and metabolism in non-Saccharomyces yeasts may lead to a better management of these yeast to enhance their contributions to wine properties.
Collapse
Affiliation(s)
- Lethiwe Lynett Mbuyane
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Florian Franz Bauer
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Benoit Divol
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
19
|
Large-Scale Screening of Thiol and Fermentative Aroma Production during Wine Alcoholic Fermentation: Exploring the Effects of Assimilable Nitrogen and Peptides. FERMENTATION 2020. [DOI: 10.3390/fermentation6040098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In alcoholic fermentation, under oenological conditions, the environmental parameters impacting fermentation kinetics and aroma production have been widely studied. The nitrogen content of grape must was found to be one of the most important parameters for both of these aspects of fermentation. Many studies have been performed on the effect of mineral nitrogen addition. However, it has increasingly been observed that the nature of the nitrogen added leads to different results. Our work focused on the effects of peptide addition on both fermentation kinetics and aroma production. Peptides are one of the less well understood sources of assimilable nitrogen, as their incorporation by yeast remains unclear. In this study, we compared the effect of the addition of a “classic” assimilable nitrogen source (ammonium + amino acids) with that of peptide addition in both white and red must fermentation by screening 18 Saccharomyces cerevisiae strains in total. Our data show that peptide addition enhances fermentation kinetics and leads to specific changes in the production of fermentative aromas. The impact of peptides on thiol synthesis is rather limited.
Collapse
|
20
|
Wang X, Chen L, Capone DL, Roland A, Jeffery DW. Evolution and Correlation of cis-2-Methyl-4-propyl-1,3-oxathiane, Varietal Thiols, and Acetaldehyde during Fermentation of Sauvignon blanc Juice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8676-8687. [PMID: 32786724 DOI: 10.1021/acs.jafc.0c03183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
cis-2-Methyl-4-propyl-1,3-oxathiane (cis-2-MPO) was recently identified in wine and proposed to arise from the reaction of 3-sulfanylhexan-1-ol (3-SH) and acetaldehyde. However, the evolution profile of cis-2-MPO during alcoholic fermentation (AF) and storage and its relationship with varietal thiols and acetaldehyde production were unknown. These aspects were investigated by fermenting Sauvignon blanc juice with J7 and/or VIN13 yeast strains and assessing the stability of cis-2-MPO during wine storage. Moderate to strong Pearson correlations verified similar evolution trends between acetaldehyde, 3-sulfanylhexyl acetate, and cis-2-MPO, with initial increases and a peak during the early to middle stages of AF before consecutive decreases until the end. Contrarily, 3-SH correlated moderately only at the end of AF. A consistent decrease observed for cis-2-MPO when spiked into Sauvignon blanc wine and assessed during 1-year storage revealed its general instability, but acetaldehyde addition (100 mg/L), pH 3.0, and storage at 4 °C all appeared to retain cis-2-MPO. These results have implications for wine aroma and the potential for cis-2-MPO to act as a sink (or source) for 3-SH in wine over time.
Collapse
Affiliation(s)
- Xingchen Wang
- Department of Wine and Food Science, and Waite Research Institute, The University of Adelaide (UA), PMB 1, Glen Osmond, SA 5064, Australia
| | - Liang Chen
- Department of Wine and Food Science, and Waite Research Institute, The University of Adelaide (UA), PMB 1, Glen Osmond, SA 5064, Australia
| | - Dimitra L Capone
- Department of Wine and Food Science, and Waite Research Institute, The University of Adelaide (UA), PMB 1, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide (UA), PMB 1, Glen Osmond, SA 5064, Australia
| | - Aurélie Roland
- SPO, Institut Agro-Montpellier SupAgro, INRAE, Univ Montpellier, 2 Place Pierre Viala, 34060 Montpellier, France
| | - David W Jeffery
- Department of Wine and Food Science, and Waite Research Institute, The University of Adelaide (UA), PMB 1, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide (UA), PMB 1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
21
|
Seguinot P, Ortiz-Julien A, Camarasa C. Impact of Nutrient Availability on the Fermentation and Production of Aroma Compounds Under Sequential Inoculation With M. pulcherrima and S. cerevisiae. Front Microbiol 2020; 11:305. [PMID: 32184771 PMCID: PMC7058555 DOI: 10.3389/fmicb.2020.00305] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Non-Saccharomyces yeasts are currently widely used in winemaking to enhance aroma profile diversity among wines. The use of Metschnikowia pulcherrima in sequential inoculation with S. cerevisiae was compared to the inoculation of a pure culture of S. cerevisiae. Moreover, various concentrations of sugar, nitrogen and lipids were tested in synthetic must to assess their impact on fermentation and its outcomes using a Box-Behnken design. Due to its phenotypic specificities, early inoculation with M. pulcherrima led to important modifications, first altering the fermentation kinetics. This may relate, at least in part, to the depletion of some nitrogen sources by M. pulcherrima during the first part of fermentation. Beyond these negative interactions on fermentation performance, comparisons between pure cultures and sequentially inoculated cultures revealed changes in the distribution of carbon fluxes during fermentation in presence of M. pulcherrima, resulting in a positive impact on the production of central carbon metabolites and aromas. Furthermore, the expression of varietal thiols was strongly increased as a consequence of positive interactions between the two species. The mechanism of this release still needs to be investigated. Significant differences in the final concentrations of fermentative and varietal aromas depending on the initial must composition were obtained under both inoculation strategies. Interestingly, the response to changes in nutrient availability varied according to the inoculation modality. In particular, a greater incidence of lipids on the production of fatty acids and their ethyl esters derivatives was found during sequential fermentation compared with pure culture, to be viewed in combination with the metabolic characteristics of M. pulcherrima regarding the production of volatile compounds from acetyl-CoA. Overall, the importance of managing nutrient availability under M. pulcherrima/S. cerevisiae sequential inoculation in order to derive the maximum benefit from the potentialities of the non-Saccharomyces species while carrying out fermentation to dryness was highlighted.
Collapse
Affiliation(s)
- Pauline Seguinot
- SPO, INRAE, Univ Montpellier, Montpellier SupAgro, Montpellier, France.,Lallemand S.A.S, Blagnac, France
| | | | - Carole Camarasa
- SPO, INRAE, Univ Montpellier, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
22
|
Tesnière C. Importance and role of lipids in wine yeast fermentation. Appl Microbiol Biotechnol 2019; 103:8293-8300. [PMID: 31402425 DOI: 10.1007/s00253-019-10029-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 01/14/2023]
Abstract
This review summarizes the current knowledge on the importance and role of lipids in wine yeast fermentation. Lipids play an important role in membrane structure, adaptation to stress, or as signaling molecules. They are also essential nutrients whose availability can vary depending on winemaking technology, with major effects on yeast alcoholic fermentation. Moreover, lipid supplementation can greatly stimulate the formation of yeast volatile metabolites.
Collapse
Affiliation(s)
- Catherine Tesnière
- UMR SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France.
| |
Collapse
|
23
|
Inactivating Mutations in Irc7p Are Common in Wine Yeasts, Attenuating Carbon-Sulfur β-Lyase Activity and Volatile Sulfur Compound Production. Appl Environ Microbiol 2019; 85:AEM.02684-18. [PMID: 30658969 DOI: 10.1128/aem.02684-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/11/2019] [Indexed: 01/19/2023] Open
Abstract
During alcoholic fermentation of grape sugars, wine yeasts produce a range of secondary metabolites that play an important role in the aroma profile of wines. In this study, we have explored the ability of a large number of wine yeast strains to modulate wine aroma composition, focusing on the release of the "fruity" thiols 3-mercaptohexan-1-ol (3-MH) and 4-mercapto-4-methylpentan-2-one (4-MMP) from their respective cysteinylated nonvolatile precursors. The role of the yeast gene IRC7 in thiol release has been well established, and it has been shown that a 38-bp deletion found in many wine strains cause them to express a truncated version of Irc7p that does not possess cysteine-S-conjugate β-lyase activity. In our data, we find that IRC7 allele length alone does not fully explain the capacity of a strain to release thiols. Screening of a large number of strains coupled with analysis of genomic sequence data allowed us to identify several previously undescribed single-nucleotide polymorphisms (SNPs) in IRC7 that, when coupled with allele length, more robustly explain the ability of a particular yeast strain to release thiols from their cysteinylated precursors. We also demonstrate that allelic variation of IRC7 not only affects the release of thiols but modulates the formation of negative volatile sulfur compounds from the amino acid cysteine. The results of this study provide winemakers with an improved understanding of the genetic determinants that affect wine aroma and flavor, which can be used to guide the choice of yeast strains that are fit for purpose.IMPORTANCE Volatile sulfur compounds contribute to wine aromas that may be considered pleasant, such as "tropical," "passionfruit," and "guava," as well as aromas that are considered undesirable, such as "rotten eggs," "onions," and "sewer." During fermentation, wine yeasts release some of these compounds from odorless precursor molecules, a process that is most efficient when performed by yeasts that express active forms of the protein Irc7p. We show that most wine yeasts carry mutations that reduce activity of this protein, affecting the formation of volatile sulfur compounds that impart both pleasant and unpleasant aromas. The results provide winemakers with guidance on the choice of yeasts that can emphasize or deemphasize this particular contribution to wine quality.
Collapse
|