1
|
Arauzo-Aguilera K, Buscajoni L, Koch K, Thompson G, Robinson C, Berkemeyer M. Yields and product comparison between Escherichia coli BL21 and W3110 in industrially relevant conditions: anti-c-Met scFv as a case study. Microb Cell Fact 2023; 22:104. [PMID: 37208750 PMCID: PMC10197847 DOI: 10.1186/s12934-023-02111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/01/2023] [Indexed: 05/21/2023] Open
Abstract
INTRODUCTION In the biopharmaceutical industry, Escherichia coli is one of the preferred expression hosts for large-scale production of therapeutic proteins. Although increasing the product yield is important, product quality is a major factor in this industry because greatest productivity does not always correspond with the highest quality of the produced protein. While some post-translational modifications, such as disulphide bonds, are required to achieve the biologically active conformation, others may have a negative impact on the product's activity, effectiveness, and/or safety. Therefore, they are classified as product associated impurities, and they represent a crucial quality parameter for regulatory authorities. RESULTS In this study, fermentation conditions of two widely employed industrial E. coli strains, BL21 and W3110 are compared for recombinant protein production of a single-chain variable fragment (scFv) in an industrial setting. We found that the BL21 strain produces more soluble scFv than the W3110 strain, even though W3110 produces more recombinant protein in total. A quality assessment on the scFv recovered from the supernatant was then performed. Unexpectedly, even when our scFv is correctly disulphide bonded and cleaved from its signal peptide in both strains, the protein shows charge heterogeneity with up to seven distinguishable variants on cation exchange chromatography. Biophysical characterization confirmed the presence of altered conformations of the two main charged variants. CONCLUSIONS The findings indicated that BL21 is more productive for this specific scFv than W3110. When assessing product quality, a distinctive profile of the protein was found which was independent of the E. coli strain. This suggests that alterations are present in the recovered product although the exact nature of them could not be determined. This similarity between the two strains' generated products also serves as a sign of their interchangeability. This study encourages the development of innovative, fast, and inexpensive techniques for the detection of heterogeneity while also provoking a debate about whether intact mass spectrometry-based analysis of the protein of interest is sufficient to detect heterogeneity in a product.
Collapse
Affiliation(s)
| | - Luisa Buscajoni
- Biopharma Austria, Process Science, Boehringer-Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria
| | - Karin Koch
- Biopharma Austria, Process Science, Boehringer-Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria
| | - Gary Thompson
- Wellcome Trust Biological NMR Facility, School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Colin Robinson
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Matthias Berkemeyer
- Biopharma Austria, Process Science, Boehringer-Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria
| |
Collapse
|
3
|
Tetanus Toxin Fragment C: Structure, Drug Discovery Research and Production. Pharmaceuticals (Basel) 2022; 15:ph15060756. [PMID: 35745675 PMCID: PMC9227095 DOI: 10.3390/ph15060756] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/05/2022] Open
Abstract
Tetanus toxoid (TTd) plays an important role in the pharmaceutical world, especially in vaccines. The toxoid is obtained after formaldehyde treatment of the tetanus toxin. In parallel, current emphasis in the drug discovery field is put on producing well-defined and safer drugs, explaining the interest in finding new alternative proteins. The tetanus toxin fragment C (TTFC) has been extensively studied both as a neuroprotective agent for central nervous system disorders owing to its neuronal properties and as a carrier protein in vaccines. Indeed, it is derived from a part of the tetanus toxin and, as such, retains its immunogenic properties without being toxic. Moreover, this fragment has been well characterized, and its entire structure is known. Here, we propose a systematic review of TTFC by providing information about its structural features, its properties and its methods of production. We also describe the large uses of TTFC in the field of drug discovery. TTFC can therefore be considered as an attractive alternative to TTd and remarkably offers a wide range of uses, including as a carrier, delivery vector, conjugate, booster, inducer, and neuroprotector.
Collapse
|
5
|
Kshirsagar PG, Gulati M, Junker WM, Aithal A, Spagnol G, Das S, Mallya K, Gautam SK, Kumar S, Sorgen P, Pandey KK, Batra SK, Jain M. Characterization of recombinant β subunit of human MUC4 mucin (rMUC4β). Sci Rep 2021; 11:23730. [PMID: 34887447 PMCID: PMC8660890 DOI: 10.1038/s41598-021-02860-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/03/2021] [Indexed: 12/30/2022] Open
Abstract
MUC4 is a transmembrane mucin expressed on various epithelial surfaces, including respiratory and gastrointestinal tracts, and helps in their lubrication and protection. MUC4 is also aberrantly overexpressed in various epithelial malignancies and functionally contributes to cancer development and progression. MUC4 is putatively cleaved at the GDPH site into a mucin-like α-subunit and a membrane-tethered growth factor-like β-subunit. Due to the presence of several functional domains, the characterization of MUC4β is critical for understanding MUC4 biology. We developed a method to produce and purify multi-milligram amounts of recombinant MUC4β (rMUC4β). Purified rMUC4β was characterized by Far-UV CD and I-TASSER-based protein structure prediction analyses, and its ability to interact with cellular proteins was determined by the affinity pull-down assay. Two of the three EGF-like domains exhibited typical β-fold, while the third EGF-like domain and vWD domain were predominantly random coils. We observed that rMUC4β physically interacts with Ezrin and EGFR family members. Overall, this study describes an efficient and simple strategy for the purification of biologically-active rMUC4β that can serve as a valuable reagent for a variety of biochemical and functional studies to elucidate MUC4 function and generating domain-specific antibodies and vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Prakash G Kshirsagar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Wade M Junker
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA.,Sanguine Diagnostics and Therapeutics, Omaha, NE, USA
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Gaelle Spagnol
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Srustidhar Das
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Paul Sorgen
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Krishan K Pandey
- Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, St. Louis, MO, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA. .,Sanguine Diagnostics and Therapeutics, Omaha, NE, USA. .,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA. .,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA. .,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
6
|
Kasemiire A, Avohou HT, De Bleye C, Sacre PY, Dumont E, Hubert P, Ziemons E. Design of experiments and design space approaches in the pharmaceutical bioprocess optimization. Eur J Pharm Biopharm 2021; 166:144-154. [PMID: 34147574 DOI: 10.1016/j.ejpb.2021.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 01/04/2023]
Abstract
The optimization of pharmaceutical bioprocesses suffers from several challenges like complexity, upscaling costs, regulatory approval, leading to the risk of delivering substandard drugs to patients. Bioprocess is very complex and requires the evaluation of multiple components that need to be monitored and controlled in order to attain the desired state when the process ends. Statistical design of experiments (DoE) is a powerful tool for optimizing bioprocesses because it plays a critical role in the quality by design strategy as it is useful in exploring the experimental domain and providing statistics of interest that enable scientists to understand the impact of critical process parameters on the critical quality attributes. This review summarizes selected publications in which DoE methodology was used to optimize bioprocess. The main objective of the critical review was to clearly demonstrate potential benefits of using the DoE and design space methodologies in bioprocess optimization.
Collapse
Affiliation(s)
- Alice Kasemiire
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000 Liege, Belgium.
| | - Hermane T Avohou
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Charlotte De Bleye
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Pierre-Yves Sacre
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Elodie Dumont
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Philippe Hubert
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Eric Ziemons
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000 Liege, Belgium
| |
Collapse
|