1
|
Wei X, Li W, Song Z, Wang S, Geng S, Jiang H, Wang Z, Tian P, Wu Z, Yang M. Straw Incorporation with Exogenous Degrading Bacteria (ZJW-6): An Integrated Greener Approach to Enhance Straw Degradation and Improve Rice Growth. Int J Mol Sci 2024; 25:7835. [PMID: 39063077 PMCID: PMC11276935 DOI: 10.3390/ijms25147835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Rice straw is an agricultural waste, the disposal of which through open burning is an emerging challenge for ecology. Green manufacturing using straw returning provides a more avant-garde technique that is not only an effective management measure to improve soil fertility in agricultural ecosystems but also nurtures environmental stewardship by reducing waste and the carbon footprint. However, fresh straw that is returned to the field cannot be quickly decomposed, and screening microorganisms with the capacity to degrade straw and understanding their mechanism of action is an efficient approach to solve such problems. This study aimed to reveal the potential mechanism of influence exerted by exogenous degradative bacteria (ZJW-6) on the degradation of straw, growth of plants, and soil bacterial community during the process of returning rice straw to the soil. The inoculation with ZJW-6 enhanced the driving force of cellulose degradation. The acceleration of the rate of decomposition of straw releases nutrients that are easily absorbed by rice (Oryza sativa L.), providing favorable conditions for its growth and promoting its growth and development; prolongs the photosynthetic functioning period of leaves; and lays the material foundation for high yields of rice. ZJW-6 not only directly participates in cellulose degradation as degrading bacteria but also induces positive interactions between bacteria and fungi and enriches the microbial taxa that were related to straw degradation, enhancing the rate of rice straw degradation. Taken together, ZJW-6 has important biological potential and should be further studied, which will provide new insights and strategies for the appropriate treatment of rice straw. In the future, this degrading bacteria may provide a better opportunity to manage straw in an ecofriendly manner.
Collapse
Affiliation(s)
- Xiaoshuang Wei
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (X.W.); (W.L.); (Z.S.); (S.W.); (S.G.); (H.J.); (Z.W.); (P.T.)
| | - Wanchun Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (X.W.); (W.L.); (Z.S.); (S.W.); (S.G.); (H.J.); (Z.W.); (P.T.)
| | - Ze Song
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (X.W.); (W.L.); (Z.S.); (S.W.); (S.G.); (H.J.); (Z.W.); (P.T.)
| | - Shiwen Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (X.W.); (W.L.); (Z.S.); (S.W.); (S.G.); (H.J.); (Z.W.); (P.T.)
| | - Shujuan Geng
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (X.W.); (W.L.); (Z.S.); (S.W.); (S.G.); (H.J.); (Z.W.); (P.T.)
| | - Hao Jiang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (X.W.); (W.L.); (Z.S.); (S.W.); (S.G.); (H.J.); (Z.W.); (P.T.)
| | - Zhenhui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (X.W.); (W.L.); (Z.S.); (S.W.); (S.G.); (H.J.); (Z.W.); (P.T.)
| | - Ping Tian
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (X.W.); (W.L.); (Z.S.); (S.W.); (S.G.); (H.J.); (Z.W.); (P.T.)
| | - Zhihai Wu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (X.W.); (W.L.); (Z.S.); (S.W.); (S.G.); (H.J.); (Z.W.); (P.T.)
- National Crop Variety Approval and Characterization Station, Jilin Agricultural University, Changchun 130118, China
| | - Meiying Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
2
|
Fu Y, Chen S, Wang X, Wang L, Wang Z, Cheng Y, Liu Y, Zhang L, Liu S, Kang J, Li C. Insights into the Correlation between Microbial Community Succession and Pericarp Degradation during Pepper ( Piper nigrum L.) Peeling Process via Retting. Foods 2024; 13:1615. [PMID: 38890844 PMCID: PMC11172340 DOI: 10.3390/foods13111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 06/20/2024] Open
Abstract
White pepper, used both as a seasoning in people's daily diets and as a medicinal herb, is typically produced by removing the pericarp of green pepper through the retting process. However, the mechanism of the retting process for peeling remains unclear. Therefore, this study aimed to investigate the changes in physicochemical factors, microbial community succession effects, and metabolites of the pepper pericarp during the pepper peeling process. The findings indicated that pre-treatment involving physical friction before the retting process effectively reduced the production time of white pepper. During the retting process, the pectinase activity increased, leading to a decrease in the pectin content in the pepper pericarp. There was a significant correlation observed between the changes in pH, pectin content, and peeling rate and the Shannon diversity index of bacteria and fungi. Prevotella, Lactococcus, and Candida were the dominant microbial genera during the retting. The functional predictions suggested that the monosaccharides degraded from the pepper pericarp could have been utilized by microbes through sugar metabolism pathways. Metabolomic analysis showed that the metabolic pathways of carbohydrates and amino acids were the main pathways altered during the pepper peeling process. The verification experiment demonstrated that the degradation of pectin into galacturonic acid by polygalacturonase was identified as the key enzyme in shortening the pepper peeling time. The structure of the pepper pericarp collapsed after losing the support of pectin, as revealed by scanning electron microscopy. These results suggest that the decomposition of the pepper pericarp was driven by key microbiota. The succession of microbial communities was influenced by the metabolites of the pepper pericarp during retting. These findings provide new insights into the retting process and serve as an important reference for the industrial production of white pepper.
Collapse
Affiliation(s)
- Yuting Fu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Y.F.); (X.W.); (Y.L.)
| | - Shuai Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Y.F.); (X.W.); (Y.L.)
| | - Xinjun Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Y.F.); (X.W.); (Y.L.)
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Y.F.); (X.W.); (Y.L.)
| | - Zexin Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Y.F.); (X.W.); (Y.L.)
| | - Yanfei Cheng
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Y.F.); (X.W.); (Y.L.)
| | - Yuyi Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Y.F.); (X.W.); (Y.L.)
| | - Lin Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Y.F.); (X.W.); (Y.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Sixin Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Y.F.); (X.W.); (Y.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Jiamu Kang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Y.F.); (X.W.); (Y.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Y.F.); (X.W.); (Y.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| |
Collapse
|
3
|
Zhang S, Han S, Gao J, Yu X, Hu S. Low-temperature corn straw-degrading bacterial agent and moisture effects on indigenous microbes. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12644-8. [PMID: 37392246 PMCID: PMC10386949 DOI: 10.1007/s00253-023-12644-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/05/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023]
Abstract
While the in situ return of corn straw can improve soil fertility and farmland ecology, additional bacterial agents are required in low-temperature areas of northern China to accelerate straw degradation. Moisture is an important factor affecting microbial activity; however, owing to a lack of bacterial agents adapted to low-temperature complex soil environments, the effects of soil moisture on the interaction between exogenous bacterial agents and indigenous soil microorganisms remain unclear. To this end, we explored the effect of the compound bacterial agent CFF constructed using Pseudomonas putida and Acinetobacter lwoffii, developed to degrade corn straw in low-temperature soils (15 °C), on indigenous bacterial and fungal communities under dry (10% moisture content), slightly wet (20%), and wet (30%) soil-moisture conditions. The results showed that CFF application significantly affected the α-diversity of bacterial communities and changed both bacterial and fungal community structures, enhancing the correlation between microbial communities and soil-moisture content. CFF application also changed the network structure and the species of key microbial taxa, promoting more linkages among microbial genera. Notably, with an increase in soil moisture, CFF enhanced the rate of corn straw degradation by inducing positive interactions between bacterial and fungal genera and enriching straw degradation-related microbial taxa. Overall, our study demonstrates the alteration of indigenous microbial communities using bacterial agents (CFF) to overcome the limitations of indigenous microorganisms for in situ straw-return agriculture in low-temperature areas. KEY POINTS: • Low-temperature and variable moisture conditions (10-30%) were compared • Soil microbial network structure and linkages between genera were altered • CFF improves straw degradation via positive interactions between soil microbes.
Collapse
Affiliation(s)
- Sainan Zhang
- College of Agriculture, Inner Mongolia Agricultural University, 306 Zhaowunda Road, Saihan District, Inner Mongolia Autonomous Region, 010000, Hohhot, People's Republic of China
| | - Shengcai Han
- Key Laboratory of Crop Cultivation and Genetic Improvement, Inner Mongolia Autonomous Region, 010000, Hohhot, People's Republic of China
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010000, People's Republic of China
| | - Julin Gao
- College of Agriculture, Inner Mongolia Agricultural University, 306 Zhaowunda Road, Saihan District, Inner Mongolia Autonomous Region, 010000, Hohhot, People's Republic of China.
- Key Laboratory of Crop Cultivation and Genetic Improvement, Inner Mongolia Autonomous Region, 010000, Hohhot, People's Republic of China.
| | - Xiaofang Yu
- College of Agriculture, Inner Mongolia Agricultural University, 306 Zhaowunda Road, Saihan District, Inner Mongolia Autonomous Region, 010000, Hohhot, People's Republic of China.
- Key Laboratory of Crop Cultivation and Genetic Improvement, Inner Mongolia Autonomous Region, 010000, Hohhot, People's Republic of China.
| | - Shuping Hu
- College of Agriculture, Inner Mongolia Agricultural University, 306 Zhaowunda Road, Saihan District, Inner Mongolia Autonomous Region, 010000, Hohhot, People's Republic of China
- Key Laboratory of Crop Cultivation and Genetic Improvement, Inner Mongolia Autonomous Region, 010000, Hohhot, People's Republic of China
| |
Collapse
|
4
|
Metasecretome and biochemical analysis of consortium PM-06 during the degradation of nixtamalized maize pericarp. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
5
|
Vázquez‐Villegas P, Sánchez M, Heredia‐Olea E, Pérez‐Carrillo E. Explorative Study of Reactive Extrusion Over Nixtamalization‐Maize Pericarp Residue: Effect on Dietary Fibre, Resistant Starch, and Nixtamalized Corn Flour Tortillas. STARCH-STARKE 2022. [DOI: 10.1002/star.202200097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Patricia Vázquez‐Villegas
- School of Engineering and Sciences Tecnologico de Monterrey Av. Eugenio Garza Sada 2501, Nuevo Leon Monterrey 64849 Mexico
| | - Marli Sánchez
- School of Engineering and Sciences Tecnologico de Monterrey Av. Eugenio Garza Sada 2501, Nuevo Leon Monterrey 64849 Mexico
| | - Erick Heredia‐Olea
- School of Engineering and Sciences Tecnologico de Monterrey Av. Eugenio Garza Sada 2501, Nuevo Leon Monterrey 64849 Mexico
| | - Esther Pérez‐Carrillo
- School of Engineering and Sciences Tecnologico de Monterrey Av. Eugenio Garza Sada 2501, Nuevo Leon Monterrey 64849 Mexico
| |
Collapse
|
6
|
Metatranscriptome Profiling of a Specialized Microbial Consortium during the Degradation of Nixtamalized Maize Pericarp. Microbiol Spectr 2022; 10:e0231821. [PMID: 34985337 PMCID: PMC8729791 DOI: 10.1128/spectrum.02318-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lignocellulose degradation by microbial consortia is multifactorial; hence, it must be analyzed from a holistic perspective. In this study, the temporal transcriptional activity of consortium PM-06, a nixtamalized maize pericarp (NMP) degrader, was determined and related to structural and physicochemical data to give insights into the mechanism used to degrade this substrate. Transcripts were described in terms of metabolic profile, carbohydrate-active enzyme (CAZyme) annotation, and taxonomic affiliation. The PM-06 gene expression pattern was closely related to the differential rates of degradation. The environmental and physiological conditions preceding high-degradation periods were crucial for CAZyme expression. The onset of degradation preceded the period with the highest degradation rate in the whole process, and in this time, several CAZymes were upregulated. Functional analysis of expressed CAZymes indicated that PM-06 overcomes NMP recalcitrance through modular enzymes operating at the proximity of the insoluble substrate. Increments in the diversity of expressed modular CAZymes occurred in the last stages of degradation where the substrate is more recalcitrant and environmental conditions are stressing. Taxonomic affiliation of CAZyme transcripts indicated that Paenibacillus macerans was fundamental for degradation. This microorganism established synergistic relationships with Bacillus thuringiensis for the degradation of cellulose and hemicellulose and with Microbacterium, Leifsonia, and Nocardia for the saccharification of oligosaccharides. IMPORTANCE Nixtamalized maize pericarp is an abundant residue of the tortilla industry. Consortium PM-06 efficiently degraded this substrate in 192 h. In this work, the temporal transcriptional profile of PM-06 was determined. Findings indicated that differential degradation rates are important sample selection criteria since they were closely related to the expression of carbohydrate-active enzymes (CAZymes). The initial times of degradation were crucial for the consumption of nixtamalized pericarp. A transcriptional profile at the onset of degradation is reported for the first time. Diverse CAZyme genes were rapidly transcribed after inoculation to produce different enzymes that participated in the stage with the highest degradation rate in the whole process. This study provides information about the regulation of gene expression and mechanisms used by PM-06 to overcome recalcitrance. These findings are useful in the design of processes and enzyme cocktails for the degradation of this abundant substrate.
Collapse
|
7
|
Dilution-to-Stimulation/Extinction Method: a Combination Enrichment Strategy To Develop a Minimal and Versatile Lignocellulolytic Bacterial Consortium. Appl Environ Microbiol 2021; 87:AEM.02427-20. [PMID: 33127812 PMCID: PMC7783344 DOI: 10.1128/aem.02427-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
The significance of our study mainly lies in the development of a combined top-down enrichment strategy (i.e., dilution to stimulation coupled to dilution to extinction) to build a minimal and versatile lignocellulolytic microbial consortium. We demonstrated that mainly two selectively enriched bacterial species (Pseudomonas sp. and Paenibacillus sp.) are required to drive the effective degradation of plant polymers. Our findings can guide the design of a synthetic bacterial consortium that could improve saccharification (i.e., the release of sugars from agricultural plant residues) processes in biorefineries. In addition, they can help to expand our ecological understanding of plant biomass degradation in enriched bacterial systems. The engineering of complex communities can be a successful path to understand the ecology of microbial systems and improve biotechnological processes. Here, we developed a strategy to assemble a minimal and effective lignocellulolytic microbial consortium (MELMC) using a sequential combination of dilution-to-stimulation and dilution-to-extinction approaches. The consortium was retrieved from Andean forest soil and selected through incubation in liquid medium with a mixture of three types of agricultural plant residues. After the dilution-to-stimulation phase, approximately 50 bacterial sequence types, mostly belonging to the Sphingobacteriaceae, Enterobacteriaceae, Pseudomonadaceae, and Paenibacillaceae, were significantly enriched. The dilution-to-extinction method demonstrated that only eight of the bacterial sequence types were necessary to maintain microbial growth and plant biomass consumption. After subsequent stabilization, only two bacterial species (Pseudomonas sp. and Paenibacillus sp.) became highly abundant (>99%) within the MELMC, indicating that these are the key players in degradation. Differences in the composition of bacterial communities between biological replicates indicated that selection, sampling, and/or priority effects could shape the consortium structure. The MELMC can degrade up to ∼13% of corn stover, consuming mostly its (hemi)cellulosic fraction. Tests with chromogenic substrates showed that the MELMC secretes an array of endoenzymes able to degrade xylan, arabinoxylan, carboxymethyl cellulose, and wheat straw. Additionally, the metagenomic profile inferred from the phylogenetic composition along with an analysis of carbohydrate-active enzymes of 20 bacterial genomes support the potential of the MELMC to deconstruct plant polysaccharides. This capacity was mainly attributed to the presence of Paenibacillus sp. IMPORTANCE The significance of our study mainly lies in the development of a combined top-down enrichment strategy (i.e., dilution to stimulation coupled to dilution to extinction) to build a minimal and versatile lignocellulolytic microbial consortium. We demonstrated that mainly two selectively enriched bacterial species (Pseudomonas sp. and Paenibacillus sp.) are required to drive the effective degradation of plant polymers. Our findings can guide the design of a synthetic bacterial consortium that could improve saccharification (i.e., the release of sugars from agricultural plant residues) processes in biorefineries. In addition, they can help to expand our ecological understanding of plant biomass degradation in enriched bacterial systems.
Collapse
|
8
|
Jiménez DJ, Wang Y, Chaib de Mares M, Cortes-Tolalpa L, Mertens JA, Hector RE, Lin J, Johnson J, Lipzen A, Barry K, Mondo SJ, Grigoriev IV, Nichols NN, van Elsas JD. Defining the eco-enzymological role of the fungal strain Coniochaeta sp. 2T2.1 in a tripartite lignocellulolytic microbial consortium. FEMS Microbiol Ecol 2020; 96:5643886. [PMID: 31769802 DOI: 10.1093/femsec/fiz186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022] Open
Abstract
Coniochaeta species are versatile ascomycetes that have great capacity to deconstruct lignocellulose. Here, we explore the transcriptome of Coniochaeta sp. strain 2T2.1 from wheat straw-driven cultures with the fungus growing alone or as a member of a synthetic microbial consortium with Sphingobacterium multivorum w15 and Citrobacter freundii so4. The differential expression profiles of carbohydrate-active enzymes indicated an onset of (hemi)cellulose degradation by 2T2.1 during the initial 24 hours of incubation. Within the tripartite consortium, 63 transcripts of strain 2T2.1 were differentially expressed at this time point. The presence of the two bacteria significantly upregulated the expression of one galactose oxidase, one GH79-like enzyme, one multidrug transporter, one laccase-like protein (AA1 family) and two bilirubin oxidases, suggesting that inter-kingdom interactions (e.g. amensalism) take place within this microbial consortium. Overexpression of multicopper oxidases indicated that strain 2T2.1 may be involved in lignin depolymerization (a trait of enzymatic synergism), while S. multivorum and C. freundii have the metabolic potential to deconstruct arabinoxylan. Under the conditions applied, 2T2.1 appears to be a better degrader of wheat straw when the two bacteria are absent. This conclusion is supported by the observed suppression of its (hemi)cellulolytic arsenal and lower degradation percentages within the microbial consortium.
Collapse
Affiliation(s)
- Diego Javier Jiménez
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Carrera 1 No 18A-12, Bogotá, Colombia
| | - Yanfang Wang
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| | - Maryam Chaib de Mares
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| | - Larisa Cortes-Tolalpa
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| | - Jeffrey A Mertens
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604, USA
| | - Ronald E Hector
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604, USA
| | - Junyan Lin
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jenifer Johnson
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Stephen J Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Bioagricultural Science and Pest Management Department, Colorado State University, Fort Collins, Colorado 80521, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720-3102, USA
| | - Nancy N Nichols
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604, USA
| | - Jan Dirk van Elsas
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| |
Collapse
|