1
|
Hu ZC, Tao YC, Pan JC, Zheng CM, Wang YS, Xue YP, Liu ZQ, Zheng YG. Breeding of Saccharomyces cerevisiae with a High-Throughput Screening Strategy for Improvement of S-Adenosyl-L-Methionine Production. Appl Biochem Biotechnol 2024; 196:1450-1463. [PMID: 37418127 DOI: 10.1007/s12010-023-04622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
S-adenosyl-l-methionine (SAM), a vital physiologically active substance in living organisms, is produced by fermentation over Saccharomyces cerevisiae. The main limitation in SAM production was the low biosynthesis ability of SAM in S. cerevisiae. The aim of this work is to breed an SAM-overproducing mutant through UV mutagenesis coupled with high-throughput selection. Firstly, a high-throughput screening method by rapid identification of positive colonies was conducted. White colonies on YND medium were selected as positive strains. Then, nystatin/sinefungin was chosen as a resistant agent in directed mutagenesis. After several cycles of mutagenesis, a stable mutant 616-19-5 was successfully obtained and exhibited higher SAM production (0.41 g/L vs 1.39 g/L). Furthermore, the transcript levels of the genes SAM2, ADO1, and CHO2 involved in SAM biosynthesis increased, while ergosterol biosynthesis genes in mutant 616-19-5 significantly decreased. Finally, building on the above work, S. cerevisiae 616-19-5 could produce 10.92 ± 0.2 g/L SAM in a 5-L fermenter after 96 h of fermentation, showing a 2.02-fold increase in the product yield compared with the parent strain. Paving the way of breeding SAM-overproducing strain has improved the good basis for SAM industrial production.
Collapse
Affiliation(s)
- Zhong-Ce Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Yun-Chao Tao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Jun-Chao Pan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Chui-Mu Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Yuan-Shan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
2
|
Lv Y, Chang J, Zhang W, Dong H, Chen S, Wang X, Zhao A, Zhang S, Alam MA, Wang S, Du C, Xu J, Wang W, Xu P. Improving Microbial Cell Factory Performance by Engineering SAM Availability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3846-3871. [PMID: 38372640 DOI: 10.1021/acs.jafc.3c09561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Methylated natural products are widely spread in nature. S-Adenosyl-l-methionine (SAM) is the secondary abundant cofactor and the primary methyl donor, which confer natural products with structural and functional diversification. The increasing demand for SAM-dependent natural products (SdNPs) has motivated the development of microbial cell factories (MCFs) for sustainable and efficient SdNP production. Insufficient and unsustainable SAM availability hinders the improvement of SdNP MCF performance. From the perspective of developing MCF, this review summarized recent understanding of de novo SAM biosynthesis and its regulatory mechanism. SAM is just the methyl mediator but not the original methyl source. Effective and sustainable methyl source supply is critical for efficient SdNP production. We compared and discussed the innate and relatively less explored alternative methyl sources and identified the one involving cheap one-carbon compound as more promising. The SAM biosynthesis is synergistically regulated on multilevels and is tightly connected with ATP and NAD(P)H pools. We also covered the recent advancement of metabolic engineering in improving intracellular SAM availability and SdNP production. Dynamic regulation is a promising strategy to achieve accurate and dynamic fine-tuning of intracellular SAM pool size. Finally, we discussed the design and engineering constraints underlying construction of SAM-responsive genetic circuits and envisioned their future applications in developing SdNP MCFs.
Collapse
Affiliation(s)
- Yongkun Lv
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Jinmian Chang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Weiping Zhang
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan, Shandong 250101, China
| | - Hanyu Dong
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Song Chen
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Xian Wang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Anqi Zhao
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, China
| | - Shen Zhang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Chaojun Du
- Nanyang Research Institute of Zhengzhou University, Nanyang Institute of Technology, No. 80 Changjiang Road, Nanyang 473004, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
- National Key Laboratory of Biobased Transportation Fuel Technology, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Weigao Wang
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Palo Alto, California 94305, United States
| | - Peng Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China
| |
Collapse
|
3
|
Gogianu LI, Ruta LL, Farcasanu IC. Kcs1 and Vip1: The Key Enzymes behind Inositol Pyrophosphate Signaling in Saccharomyces cerevisiae. Biomolecules 2024; 14:152. [PMID: 38397389 PMCID: PMC10886477 DOI: 10.3390/biom14020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
The inositol pyrophosphate pathway, a complex cell signaling network, plays a pivotal role in orchestrating vital cellular processes in the budding yeast, where it regulates cell cycle progression, growth, endocytosis, exocytosis, apoptosis, telomere elongation, ribosome biogenesis, and stress responses. This pathway has gained significant attention in pharmacology and medicine due to its role in generating inositol pyrophosphates, which serve as crucial signaling molecules not only in yeast, but also in higher eukaryotes. As targets for therapeutic development, genetic modifications within this pathway hold promise for disease treatment strategies, offering practical applications in biotechnology. The model organism Saccharomyces cerevisiae, renowned for its genetic tractability, has been instrumental in various studies related to the inositol pyrophosphate pathway. This review is focused on the Kcs1 and Vip1, the two enzymes involved in the biosynthesis of inositol pyrophosphate in S. cerevisiae, highlighting their roles in various cell processes, and providing an up-to-date overview of their relationship with phosphate homeostasis. Moreover, the review underscores the potential applications of these findings in the realms of medicine and biotechnology, highlighting the profound implications of comprehending this intricate signaling network.
Collapse
Affiliation(s)
- Larisa Ioana Gogianu
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania;
- National Institute for Research and Development in Microtechnologies, Erou Iancu Nicolae Str. 126A, 077190 Voluntari, Romania
| | - Lavinia Liliana Ruta
- Faculty of Chemistry, University of Bucharest, Panduri Road 90-92, 050663 Bucharest, Romania;
| | - Ileana Cornelia Farcasanu
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania;
- Faculty of Chemistry, University of Bucharest, Panduri Road 90-92, 050663 Bucharest, Romania;
| |
Collapse
|
4
|
Lee JM, Park MH, Park BS, Oh MK. Production of S-methyl-methionine using engineered Saccharomyces cerevisiae sake K6. J Ind Microbiol Biotechnol 2023; 50:kuad026. [PMID: 37653437 PMCID: PMC10495038 DOI: 10.1093/jimb/kuad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023]
Abstract
S-methyl-methionine (SMM), also known as vitamin U, is an important food supplement produced by various plants. In this study, we attempted to produce it in an engineered microorganism, Saccharomyces cerevisiae, by introducing an MMT gene encoding a methionine S-methyltransferase from Arabidopsis thaliana. The S. cerevisiae sake K6 strain, which is a Generally Recognized as Safe (GRAS) strain, was chosen as the host because it produces a significant amount of S-adenosylmethionine (SAM), a precursor of SMM. To increase SMM production in the host, MHT1 and SAM4 genes encoding homocysteine S-methyltransferase were knocked out to prevent SMM degradation. Additionally, MMP1, which encodes S-methyl-methionine permease, was deleted to prevent SMM from being imported into the cell. Finally, ACS2 gene encoding acetyl-CoA synthase was overexpressed, and MLS1 gene encoding malate synthase was deleted to increase SAM availability. Using the engineered strain, 1.92 g/L of SMM was produced by fed-batch fermentation. ONE-SENTENCE SUMMARY Introducing a plant-derived MMT gene encoding methionine S-methyltransferase into engineered Saccharomyces cerevisiae sake K6 allowed microbial production of S-methyl-methionine (SMM).
Collapse
Affiliation(s)
- Jun-Min Lee
- Department of Chemical & Biological Engineering, Korea University, Seoul 136-763, Korea
| | - Min-Ho Park
- Department of Chemical & Biological Engineering, Korea University, Seoul 136-763, Korea
| | - Bu-Soo Park
- Department of Chemical & Biological Engineering, Korea University, Seoul 136-763, Korea
- Samyang Corp. 295 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Min-Kyu Oh
- Department of Chemical & Biological Engineering, Korea University, Seoul 136-763, Korea
| |
Collapse
|
5
|
Weng C, Mi Z, Li M, Qin H, Hu Z, Liu Z, Zheng Y, Wang Y. Improvement of S-adenosyl-L-methionine production in S accharomyces cerevisiae by atmospheric and room temperature plasma-ultraviolet compound mutagenesis and droplet microfluidic adaptive evolution. 3 Biotech 2022; 12:223. [PMID: 35975026 PMCID: PMC9375785 DOI: 10.1007/s13205-022-03297-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/02/2022] [Indexed: 11/01/2022] Open
Abstract
To improve S-Adenosyl-L-methionine (a compound with important physiological functions, SAM) production, atmospheric and room temperature plasma and ultraviolet-LiCl mutagenesis were carried out with Saccharomyces cerevisiae strain ZY 1-5. The mutants were screened with ethionine, L-methionine, nystatin and cordycepin as screening agents. Adaptive evolution of a positive mutant UV6-69 was further performed by droplet microfluidics cultivation with ethionine as screening pressure. After adaptation, mutant T11-1 was obtained. Its SAM titer in shake flask fermentation reached 1.31 g/L, which was 191% higher than that of strain ZY 1-5. Under optimal conditions, the SAM titer and biomass of mutant T11-1 in 5 L bioreactor reached 10.72 g/L and 105.9 g dcw/L (142.86% and 34.22% higher than those of strain ZY 1-5), respectively. Comparative transcriptome analysis between strain ZY 1-5 and mutant T11-1 revealed the enhancements in TCA cycle and gluconeogenesis/glycolysis pathways as well as the inhibitions in serine and ergosterol synthesis of mutant T11-1. The elevated SAM synthesis of mutant T11-1 may attribute to the above changes. Taken together, this study is helpful for industrial production of SAM.
Collapse
Affiliation(s)
- Chunyue Weng
- The National and LocalJoint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Zheyan Mi
- The National and LocalJoint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Meijing Li
- The National and LocalJoint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Haibin Qin
- The National and LocalJoint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Zhongce Hu
- The National and LocalJoint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Zhiqiang Liu
- The National and LocalJoint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Yuguo Zheng
- The National and LocalJoint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Yuanshan Wang
- The National and LocalJoint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014 People’s Republic of China
| |
Collapse
|
6
|
Chen H, Chai X, Wang Y, Liu J, Zhou G, Wei P, Song Y, Ma L. The multiple effects of REG1 deletion and SNF1 overexpression improved the production of S-adenosyl-L-methionine in Saccharomyces cerevisiae. Microb Cell Fact 2022; 21:174. [PMID: 36030199 PMCID: PMC9419380 DOI: 10.1186/s12934-022-01900-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Saccharomyces cerevisiae is often used as a cell factory for the production of S-adenosyl-L-methionine (SAM) for diverse pharmaceutical applications. However, SAM production by S. cerevisiae is negatively influenced by glucose repression, which is regulated by a serine/threonine kinase SNF1 complex. Here, a strategy of alleviating glucose repression by deleting REG1 (encodes the regulatory subunit of protein phosphatase 1) and overexpressing SNF1 (encodes the catalytic subunit of the SNF1 complex) was applied to improve SAM production in S. cerevisiae. SAM production, growth conditions, glucose consumption, ethanol accumulation, lifespan, glycolysis and amino acid metabolism were analyzed in the mutant strains. RESULTS The results showed that the multiple effects of REG1 deletion and/or SNF1 overexpression exhibited a great potential for improving the SAM production in yeast. Enhanced the expression levels of genes involved in glucose transport and glycolysis, which improved the glucose utilization and then elevated the levels of glycolytic intermediates. The expression levels of ACS1 (encoding acetyl-CoA synthase I) and ALD6 (encoding aldehyde dehydrogenase), and the activity of alcohol dehydrogenase II (ADH2) were enhanced especially in the presence of excessive glucose levels, which probably promoted the conversion of ethanol in fermentation broth into acetyl-CoA. The gene expressions involved in sulfur-containing amino acids were also enhanced for the precursor amino acid biosynthesis. In addition, the lifespan of yeast was extended by REG1 deletion and/or SNF1 overexpression. As expected, the final SAM yield of the mutant YREG1ΔPSNF1 reached 8.28 g/L in a 10-L fermenter, which was 51.6% higher than the yield of the parent strain S. cerevisiae CGMCC 2842. CONCLUSION This study showed that the multiple effects of REG1 deletion and SNF1 overexpression improved SAM production in S. cerevisiae, providing new insight into the application of the SNF1 complex to abolish glucose repression and redirect carbon flux to nonethanol products in S. cerevisiae.
Collapse
Affiliation(s)
- Hailong Chen
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, 93 Ji Chuan Road, 225300, Taizhou, Jiangsu, People's Republic of China
| | - Xiaoqin Chai
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, 93 Ji Chuan Road, 225300, Taizhou, Jiangsu, People's Republic of China
| | - Yan Wang
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, 93 Ji Chuan Road, 225300, Taizhou, Jiangsu, People's Republic of China
| | - Jing Liu
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, 93 Ji Chuan Road, 225300, Taizhou, Jiangsu, People's Republic of China
| | - Guohai Zhou
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, 93 Ji Chuan Road, 225300, Taizhou, Jiangsu, People's Republic of China
| | - Pinghe Wei
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, 93 Ji Chuan Road, 225300, Taizhou, Jiangsu, People's Republic of China
| | - Yuhe Song
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, 93 Ji Chuan Road, 225300, Taizhou, Jiangsu, People's Republic of China.
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, 211198, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Baumann L, Bruder S, Kabisch J, Boles E, Oreb M. High-Throughput Screening of an Octanoic Acid Producer Strain Library Enables Detection of New Targets for Increasing Titers in Saccharomyces cerevisiae. ACS Synth Biol 2021; 10:1077-1086. [PMID: 33979526 DOI: 10.1021/acssynbio.0c00600] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Octanoic acid is an industrially relevant compound with applications in antimicrobials or as a precursor for biofuels. Microbial biosynthesis through yeast is a promising alternative to current unsustainable production methods. To increase octanoic acid titers in Saccharomyces cerevisiae, we use a previously developed biosensor that is based on the octanoic acid responsive pPDR12 promotor coupled to GFP. We establish a biosensor strain amenable for high-throughput screening of an octanoic acid producer strain library. Through development, optimization, and execution of a high-throughput screening approach, we were able to detect two new genetic targets, KCS1 and FSH2, which increased octanoic acid titers through combined overexpression by about 55% compared to the parental strain. Neither target has yet been reported to be involved in fatty acid biosynthesis. The presented methodology can be employed to screen any genetic library and thereby more genes involved in improving octanoic acid production can be detected in the future.
Collapse
Affiliation(s)
- Leonie Baumann
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Stefan Bruder
- Department of Biology, Computer-aided Synthetic Biology, Technical University Darmstadt, Schnittspahnstr. 1, 64287 Darmstadt, Germany
| | - Johannes Kabisch
- Department of Biology, Computer-aided Synthetic Biology, Technical University Darmstadt, Schnittspahnstr. 1, 64287 Darmstadt, Germany
| | - Eckhard Boles
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Mislav Oreb
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|