1
|
Fu J, Zhao Y, Zhou Y, Wang Y, Fei Z, Wang W, Wu J, Zhang F, Zhao Y, Li J, Hao J, Niu Y. MrERF039 transcription factor plays an active role in the cold response of Medicago ruthenica as a sugar molecular switch. PLANT, CELL & ENVIRONMENT 2024; 47:1834-1851. [PMID: 38318779 DOI: 10.1111/pce.14845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
Cold stress severely restricts plant development, causing significant agricultural losses. We found a critical transcription factor network in Medicago ruthenica was involved in plant adaptation to low-temperature. APETALA2/ethylene responsive factor (AP2/ERF) transcription factor MrERF039 was transcriptionally induced by cold stress in M. ruthenica. Overexpression of MrERF039 significantly increased the glucose and maltose content, thereby improving the tolerance of M. ruthenica. MrERF039 could bind to the DRE cis-acting element in the MrCAS15A promoter. Additionally, the methyl group of the 14th amino acid in MrERF039 was required for binding. Transcriptome analysis showed that MrERF039 acted as a sugar molecular switch, regulating numerous sugar transporters and sugar metabolism-related genes. In addition, we found that MrERF039 could directly regulate β-amylase gene, UDP glycosyltransferase gene, and C2H2 zinc finger protein gene expression. In conclusion, these findings suggest that high expression of MrERF039 can significantly improve the cold tolerance of M. ruthenica root tissues during cold acclimation. Our results provide a new theoretical basis and candidate genes for breeding new legume forage varieties with high resistance.
Collapse
Affiliation(s)
- Jiabin Fu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yanyun Zhao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yan Zhou
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yu Wang
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhimin Fei
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Waner Wang
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jiaming Wu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Feng Zhang
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yan Zhao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jiayu Li
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jinfeng Hao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Science and Technology, Hohhot, China
| |
Collapse
|
2
|
Peng M, Bervoets S, Chin-A-Woeng T, Granchi Z, Hildén K, Mäkelä MR, de Vries RP. The transcriptomic response of two basidiomycete fungi to plant biomass is modulated by temperature to a different extent. Microbiol Res 2023; 270:127333. [PMID: 36804127 DOI: 10.1016/j.micres.2023.127333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Many fungi show a strong preference for specific habitats and growth conditions. Investigating the molecular mechanisms of fungal adaptation to varying environmental conditions is of great interest to biodiversity research and is important for many industrial applications. In this study, we compared the transcriptome profiles of two previously genome-sequenced white-rot wood-decay fungi, Trametes pubescens and Phlebia centrifuga, during their growth on two common plant biomass substrates (wheat straw and spruce) at two temperatures (15 °C and 25 °C). The results showed that both fungi partially tailored their molecular responses to different types of carbon sources, differentially expressing genes encoding polysaccharide degrading enzymes, transporters, proteases and monooxygenases. Notably, more lignin modification related AA2 genes and cellulose degradation related AA9 genes were differentially expressed in the tested conditions of T. pubescens than P. centrifuga. In addition, we detected more remarkable transcriptome changes to different growth temperature in P. centrifuga than in T. pubescens, which reflected their different ability to adapt to the temperature fluctuations. In P. centrifuga, differentially expressed genes (DEGs) related to temperature response mainly encode protein kinases, trehalose metabolism, carbon metabolic enzymes and glycoside hydrolases, while the main temperature-related DEGs identified in T. pubescens are only the carbon metabolic enzymes and glycoside hydrolases. Our study revealed both conserved and species-specific transcriptome changes during fungal adaptation to a changing environment, improving our understanding of the molecular mechanisms underlying fungal plant biomass conversion at varying temperatures.
Collapse
Affiliation(s)
- Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Sander Bervoets
- GenomeScan B.V., Plesmanlaan 1/D, 2333 BZ Leiden, the Netherlands
| | | | - Zoraide Granchi
- GenomeScan B.V., Plesmanlaan 1/D, 2333 BZ Leiden, the Netherlands
| | - Kristiina Hildén
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| |
Collapse
|
3
|
Li Y, Tian Q, Wang Z, Li J, Liu S, Chang R, Chen H, Liu G. Integrated analysis of transcriptomics and metabolomics of peach under cold stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1153902. [PMID: 37051086 PMCID: PMC10083366 DOI: 10.3389/fpls.2023.1153902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Low temperature is one of the environmental factors that restrict the growth and geographical distribution of peach (Prunus persica L. Batsch). To explore the molecular mechanisms of peach brunches in response to cold, we analyzed the metabolomics and transcriptomics of 'Donghe No.1' (cold-tolerant, CT) and '21st Century' (cold-sensitive, CS) treated by different temperatures (-5 to -30°C) for 12 h. Some cold-responsive metabolites (e.g., saccharides, phenolic acids and flavones) were identified with upregulation only in CT. Further, we identified 1991 cold tolerance associated genes in these samples and they were significantly enriched in the pathways of 'galactose metabolism', 'phenylpropanoid biosynthesis' and 'flavonoids biosynthesis'. Weighted gene correlation network analysis showed that soluble sugar, flavone, and lignin biosynthetic associated genes might play a key role in the cold tolerance of peach. In addition, several key genes (e.g., COMT, CCR, CAD, PER and F3'H) were substantially expressed more in CT than CS under cold stress, indicating that they might be major factors during the adaptation of peach to low temperature. This study will not only improve our understanding towards the molecular mechanisms of peach trees under cold stress but also contribute to the screening and breeding program of peach in the future.
Collapse
|
4
|
Guo M, Ma X, Zhou Y, Bian Y, Liu G, Cai Y, Huang T, Dong H, Cai D, Wan X, Wang Z, Xiao Y, Kang H. Genome Sequencing Highlights the Plant Cell Wall Degrading Capacity of Edible Mushroom Stropharia rugosoannulata. J Microbiol 2023; 61:83-93. [PMID: 36723791 DOI: 10.1007/s12275-022-00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 02/02/2023]
Abstract
The basidiomycetous edible mushroom Stropharia rugosoannulata has excellent nutrition, medicine, bioremediation, and biocontrol properties. S. rugosoannulata has been widely and easily cultivated using agricultural by-products showing strong lignocellulose degradation capacity. However, the unavailable high-quality genome information has hindered the research on gene function and molecular breeding of S. rugosoannulata. This study provided a high-quality genome assembly and annotation from S. rugosoannulata monokaryotic strain QGU27 based on combined Illumina-Nanopore data. The genome size was about 47.97 Mb and consisted of 20 scaffolds, with an N50 of 3.73 Mb and a GC content of 47.9%. The repetitive sequences accounted for 17.41% of the genome, mostly long terminal repeats (LTRs). A total of 15,726 coding gene sequences were putatively identified with the BUSCO score of 98.7%. There are 142 genes encoding plant cell wall degrading enzymes (PCWDEs) in the genome, and 52, 39, 30, 11, 8, and 2 genes related to lignin, cellulose, hemicellulose, pectin, chitin, and cutin degradation, respectively. Comparative genomic analysis revealed that S. rugosoannulata is superior in utilizing aldehyde-containing lignins and is possible to utilize algae during the cultivation.
Collapse
Affiliation(s)
- Mengpei Guo
- Institute of Vegetable, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, People's Republic of China
| | - Xiaolong Ma
- Institute of Vegetable, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, People's Republic of China.
| | - Yan Zhou
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| | - Yinbing Bian
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Gaolei Liu
- Institute of Vegetable, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, People's Republic of China
| | - Yingli Cai
- Institute of Vegetable, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, People's Republic of China
| | - Tianji Huang
- Hubei Changjiu Fungi Co. Ltd., Suizhou, 431525, Hubei, People's Republic of China
| | - Hongxia Dong
- Institute of Vegetable, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, People's Republic of China
| | - Dingjun Cai
- Institute of Vegetable, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, People's Republic of China
| | - Xueji Wan
- Institute of Vegetable, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, People's Republic of China
| | - Zhihong Wang
- Institute of Vegetable, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, People's Republic of China
| | - Yang Xiao
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Heng Kang
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| |
Collapse
|
5
|
Correction: Transcriptomic analysis of Stropharia rugosoannulata reveals carbohydrate metabolism and cold resistance mechanisms under low-temperature stress. AMB Express 2022; 12:72. [PMID: 35697966 PMCID: PMC9192868 DOI: 10.1186/s13568-022-01412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|