1
|
Li S, Zhang L, Zhang H. A telomere-related signature for predicting prognosis and assessing immune microenvironment in osteosarcoma. Front Pharmacol 2025; 15:1532610. [PMID: 39980969 PMCID: PMC11841432 DOI: 10.3389/fphar.2024.1532610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/31/2024] [Indexed: 02/22/2025] Open
Abstract
Objective Osteosarcoma is the most common primary bone cancer with a high propensity for local invasion and metastasis. An increasing number of research studies show that telomeres play an important role in the occurrence and development of cancer. Thus, we established a telomere-related signature in osteosarcoma to comprehensively evaluate the pathogenic roles of telomeres in this disease. Methods The data on osteosarcoma were collected from the TARGET and Gene Expression Omnibus databases. First, we constructed a telomere-related signature using univariate and LASSO Cox regression analyses. Subsequently, we analyzed the prognostic value, functional annotation, immune microenvironment, and cell communication patterns of the telomere-related signature in osteosarcoma via comprehensive bioinformatics analyses. Cell proliferation was analyzed using the CCK-8 assay, and cell migration and invasion capabilities were evaluated using the Transwell assay. Results Based on the SP110, HHAT, TUBB, MORC4, TERT, PPARG, MAP3K5, PAGE5, MAP7, and CAMK1G, a telomere-related signature was built in osteosarcoma patients. The telomere-related signature could effectively predict the prognosis of osteosarcoma patients. The osteosarcoma patients in the high TELscore group exhibited poor prognosis. In addition, the telomere-related signature demonstrated predictive value for the immune microenvironment and drug sensitivity in osteosarcoma. Finally, we discovered significant reduction in MAP7 expression in osteosarcoma cells, and patients with low MAP7 expression had poor prognosis. Moreover, the overexpression of MAP7 significantly reduced cell proliferation, the ability of cell migration, and invasion in osteosarcoma cells. Conclusion A telomere-related signature was constructed in osteosarcoma patients, offering predictive values into prognosis, the immune microenvironment, and drug sensitivity. Moreover, MAP7 might serve as a prognostic marker for osteosarcoma patients.
Collapse
Affiliation(s)
- Shihao Li
- Department of Orthopedics, Zibo Central Hospital West Campus, Zibo, China
| | - Lina Zhang
- Department of Orthopedics, Zibo Central Hospital West Campus, Zibo, China
| | - Haiyang Zhang
- Department of Hand and Foot Surgery, Zibo Central Hospital, Zibo, China
| |
Collapse
|
2
|
Li AY, Bu J, Xiao HN, Zhao ZY, Zhang JL, Yu B, Li H, Li JP, Xiao T. Two-step consensus clustering approach to immune cell infiltration: An integrated exploration and validation of prognostic and immune implications in sarcomas. Heliyon 2024; 10:e38253. [PMID: 39492897 PMCID: PMC11531637 DOI: 10.1016/j.heliyon.2024.e38253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 11/05/2024] Open
Abstract
To conduct a comprehensive investigation of the sarcoma immune cell infiltration (ImmCI) patterns and tumoral microenvironment (TME). We utilized transcriptomic, clinical, and mutation data of sarcoma patients (training cohort) obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) server. Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) and Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithms were applied to decipher the immune cell infiltration landscape and TME profiles of sarcomas. An unsupervised clustering method was utilized for classifying ImmCI clusters (initial clustering) and ImmCI-based differentially expressed gene-driven clusters (secondary clustering). Mortality rates and immune checkpoint gene levels was analyzed among the identified clusters. We calculated the ImmCI score through principal component analysis. The tumor immune dysfunction evaluation (TIDE) score was also employed to quantify immunotherapy efficacy between two ImmCI score groups. We further validated the biomarkers for ImmCI and gene-driven clusters via experimental verification and the accuracy of the ImmCI score in predicting survival outcomes and immunotherapy efficacy by external validation cohorts (testing cohort). We demonstrated that ImmCI cluster A and gene-driven cluster A, were beneficial prognostic biomarkers and indicators of immune checkpoint blockade response in sarcomas via in-silico and laboratory experiments. Additionally, the ImmCI score exhibited independent prognostic significance and was predictive of immunotherapy response. Our research underscores the clinical significance of ImmCI scores in identifying sarcoma patients likely to respond to immunotherapy.
Collapse
Affiliation(s)
- Ao-Yu Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Jie Bu
- Department of Orthopedics, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hui-Ni Xiao
- Department of Gastroenterology, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Zi-Yue Zhao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Jia-Lin Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Bin Yu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Hui Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Jin-Ping Li
- Department of Orthopedics, Changsha Central Hospital, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Tao Xiao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| |
Collapse
|
3
|
Chen H, Wang W, Chang S, Huang X, Wang N. A useful mTORC1 signaling-related RiskScore model for the personalized treatment of osteosarcoma patients by using the bulk RNA-seq analysis. Discov Oncol 2024; 15:418. [PMID: 39251459 PMCID: PMC11383908 DOI: 10.1007/s12672-024-01301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
AIMS This research developed a prognostic model for OS patients based on the Mechanistic Target of Rapamycin Complex 1 (mTORC1) signature. BACKGROUND The mTORC1 signaling pathway has a critical role in the maintenance of cellular homeostasis and tumorigenesis and development through the regulation of cell growth, metabolism and autophagy. However, the mechanism of action of this signaling pathway in Osteosarcoma (OS) remains unclear. OBJECTIVE The datasets including the TARGET-OS and GSE39058, and 200 mTORC1 genes were collected. METHODS The mTORC1 signaling-related genes were obtained based on the Molecular Signatures Database (MSigDB) database, and the single sample gene set enrichment analysis (ssGSEA) algorithm was utilized in order to calculate the mTORC1 score. Then, the WGCNA were performed for the mTORC1-correlated gene module, the un/multivariate and lasso Cox regression analysis were conducted for the RiskScore model. The immune infiltration analysis was performed by using the ssGSEA method, ESTIMATE tool and MCP-Count algorithm. KM survival and Receiver Operating Characteristic (ROC) Curve analysis were performed by using the survival and timeROC package. RESULTS The mTORC1 score and WGCNA with β = 5 screened the mTORC1 positively correlated skyblue2 module that included 67 genes, which are also associated with the metabolism and hypoxia pathways. Further narrowing of candidate genes and calculating the regression coefficient, we developed a useful and reliable RiskScore model, which can classify the patients in the training and validation set into high and low-risk groups based on the median value of RiskScore as an independent and robust prognostic factor. High-risk patients had a significantly poor prognosis, lower immune infiltration level of multiple immune cells and prone to cancer metastasis. Finally, we a nomogram model incorporating the metastasis features and RiskScore showed excellent prediction accuracy and clinical practicability. CONCLUSION We developed a useful and reliable risk prognosis model based on the mTORC1 signaling signature.
Collapse
Affiliation(s)
- Hongxia Chen
- Department of Hematology, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Wei Wang
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Shichuan Chang
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Xiaoping Huang
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing, 404000, China.
| | - Ning Wang
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing, 404000, China.
| |
Collapse
|
4
|
Tatsuno R, Komohara Y, Pan C, Kawasaki T, Enomoto A, Jubashi T, Kono H, Wako M, Ashizawa T, Haro H, Ichikawa J. Surface Markers and Chemokines/Cytokines of Tumor-Associated Macrophages in Osteosarcoma and Other Carcinoma Microenviornments-Contradictions and Comparisons. Cancers (Basel) 2024; 16:2801. [PMID: 39199574 PMCID: PMC11353089 DOI: 10.3390/cancers16162801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents. Prognosis is improving with advances in multidisciplinary treatment strategies, but the development of new anticancer agents has not, and improvement in prognosis for patients with pulmonary metastases has stalled. In recent years, the tumor microenvironment (TME) has gained attention as a therapeutic target for cancer. The immune component of OS TME consists mainly of tumor-associated macrophages (TAMs). They exhibit remarkable plasticity, and their phenotype is influenced by the TME. In general, surface markers such as CD68 and CD80 show anti-tumor effects, while CD163 and CD204 show tumor-promoting effects. Surface markers have potential value as diagnostic and prognostic biomarkers. The cytokines and chemokines produced by TAMs promote tumor growth and metastasis. However, the role of TAMs in OS remains unclear to date. In this review, we describe the role of TAMs in OS by focusing on TAM surface markers and the TAM-produced cytokines and chemokines in the TME, and by comparing their behaviors in other carcinomas. We found contrary results from different studies. These findings highlight the urgency for further research in this field to improve the stalled OS prognosis percentages.
Collapse
Affiliation(s)
- Rikito Tatsuno
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan; (Y.K.); (C.P.)
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan; (Y.K.); (C.P.)
| | - Tomonori Kawasaki
- Department of Pathology, Saitama Medical University International Medical Center, Saitama 350-1298, Japan;
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan;
| | - Takahiro Jubashi
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Hiroyuki Kono
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Masanori Wako
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Tomoyuki Ashizawa
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Hirotaka Haro
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Jiro Ichikawa
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| |
Collapse
|
5
|
Wang C, Lei Z, Zhang C, Hu X. CXCL6-CXCR2 axis-mediated PD-L2 + mast cell accumulation shapes the immunosuppressive microenvironment in osteosarcoma. Heliyon 2024; 10:e34290. [PMID: 39082021 PMCID: PMC11284376 DOI: 10.1016/j.heliyon.2024.e34290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy and has a high propensity for local invasion and metastasis. The tumour microenvironment of OS is infiltrated by a large number of immune cells, which play a crucial role in its progression and prognosis. Mast cells are important innate immune cells in the tumour stroma and exhibit different phenotypes in diverse tumour microenvironments. However, the underlying mechanisms of mast cell accumulation and the phenotypic characteristics of mast cells in OS remain poorly understood. In this article, we found for the first time that mast cell accumulation in osteosarcoma tissue was modulated by the CXCL6-CXCR2 axis and that the number of infiltrating mast cells was significantly greater in tumour tissues than in adjacent nontumour tissues. These tumour-infiltrating mast cells express high levels of the immunosuppressive molecule PD-L2, and survival analyses revealed that patients in the PD-L2+ high-expression group had a worse prognosis. In vitro, mast cells were induced to express PD-L2 in a time- and dose-dependent manner using OS tissue culture supernatants to mimic the tumour microenvironment. Mechanistic studies revealed that tumour cell-derived G-CSF significantly induced mast cell PD-L2 expression by activating STAT3. Importantly, mast cells overexpressing PD-L2 inhibit tumour-specific CD8+ T-cell proliferation and tumour-killing cytokine secretion, which is reversed by blocking PD-L2 on mast cells. Therefore, our findings provide new insight into the immunosuppressive and tumorigenic roles of mast cells, as well as a novel mechanism by which PD-L2-expressing mast cells mediate immune tolerance.
Collapse
Affiliation(s)
- Chengguang Wang
- Department of Orthopedics, People's Hospital of Chongqing Hechuan, Chongqing, People's Republic of China
| | - Zhenbin Lei
- Department of Orthopedics, Chongqing Hechuan Traditional Chinese Medicine Hospital, Chongqing, People's Republic of China
| | - Chuanzhi Zhang
- Department of Orthopedics and Rehabilitation, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People's Republic of China
| | - Xiaobo Hu
- Department of Orthopedics and Rehabilitation, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People's Republic of China
| |
Collapse
|
6
|
Daley JD, Mukherjee E, Tufino AC, Bailey N, Bhaskar S, Periyapatna N, MacFawn I, Kunning S, Hinck C, Bruno T, Olson AC, McAllister-Lucas LM, Hinck AP, Cooper K, Bao R, Cillo AR, Bailey KM. Immunocompetent murine model of Ewing sarcoma reveals role for TGFβ inhibition to enhance immune infiltrates in Ewing tumors during radiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592974. [PMID: 38766091 PMCID: PMC11100684 DOI: 10.1101/2024.05.07.592974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Ewing sarcoma (ES) is an aggressive cancer diagnosed in adolescents and young adults. The fusion oncoprotein (EWSR1::FLI1) that drives Ewing sarcoma is known to downregulate TGFBR2 expression (part of the TGFβ receptor). Because TGFBR2 is downregulated, it was thought that TGFβ likely plays an inconsequential role in Ewing biology. However, the expression of TGFβ in the Ewing tumor immune microenvironment (TIME) and functional impact of TGFβ in the TIME remains largely unknown given the historical lack of immunocompetent preclinical models. Here, we use single-cell RNAseq analysis of human Ewing tumors to show that immune cells, such as NK cells, are the largest source of TGFβ production in human Ewing tumors. We develop a humanized (immunocompetent) mouse model of ES and demonstrate distinct TME signatures and metastatic potential in these models as compared to tumors developed in immunodeficient mice. Using this humanized model, we study the effect of TGFβ inhibition on the Ewing TME during radiation therapy, a treatment that both enhances TGFβ activation and is used to treat aggressive ES. Utilizing a trivalent ligand TGFβ TRAP to inhibit TGFβ, we demonstrate that in combination with radiation, TGFβ inhibition both increases ES immune cell infiltration and decreases lung metastatic burden in vivo . The culmination of these data demonstrates the value of humanized models to address immunobiologic preclinical questions in Ewing sarcoma and suggests TGFβ inhibition as a promising intervention during radiation therapy to promote metastatic tumor control.
Collapse
|
7
|
Wen J, Wan L, Dong X. Prognostic value of PRR11 and immune cell infiltration in Ewing sarcoma. PLoS One 2024; 19:e0299720. [PMID: 38427643 PMCID: PMC10906862 DOI: 10.1371/journal.pone.0299720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/13/2024] [Indexed: 03/03/2024] Open
Abstract
Ewing's sarcoma (ES) is the second most common bone and soft tissue malignancy in children and adolescents with a poor prognosis. The identification of genes with prognostic value may contribute to the prediction and treatment of this disease. The GSE17679, GSE68776, GSE63155, and GSE63156 datasets were downloaded from the Gene Expression Omnibus database and qualified. Prognostic value of differentially expressed genes (DEGs) between the normal and tumor groups and immune cell infiltration were explored by several algorithms. A prognostic model was established and validated. Finally, functional analyses of the DEGs were performed. Proline rich 11 (PRR11) and mast cell infiltration were noted as the key indicators for the prognosis of ES. Kaplan-Meier and scatter plots for the training and two validation sets showed that patients in the low-PRR11 expression group were associated with better outcomes than those in the high-PRR11 expression group. The concordance indices and calibration analyses of the prognostic model indicated good predictive accuracy in the training and validation sets. The area under the curve values obtained through the receiver operating characteristic analysis for 1-, 3-, 5-year prediction were ≥ 0.75 in the three cohorts, suggesting satisfactory sensitivity and specificity of the model. Decision curve analyses suggested that patients could benefit more from the model than the other strategies. Functional analyses suggested that DEGs were mainly clustered in the cell cycle pathway. PRR11 and mast cell infiltration are potential prognostic indicators in ES. PRR11 possibly affects the prognosis of patients with ES through the cell cycle pathway.
Collapse
Affiliation(s)
- Jian Wen
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Orthopedics, JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Lijia Wan
- Department of Child Healthcare, Hunan Provincial Maternal and Child Health Hospital, Changsha, Hunan, China
| | - Xieping Dong
- Department of Orthopedics, JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Zając AE, Czarnecka AM, Rutkowski P. The Role of Macrophages in Sarcoma Tumor Microenvironment and Treatment. Cancers (Basel) 2023; 15:5294. [PMID: 37958467 PMCID: PMC10648209 DOI: 10.3390/cancers15215294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Sarcomas are a heterogeneous group of malignant mesenchymal tumors, including soft tissue and bone sarcomas. Macrophages in the tumor microenvironment, involved in immunosuppression and leading to tumor development, are called tumor-associated macrophages (TAMs). TAMs are very important in modulating the microenvironment of sarcomas by expressing specific markers and secreting factors that influence immune and tumor cells. They are involved in many signaling pathways, such as p-STAT3/p-Erk1/2, PI3K/Akt, JAK/MAPK, and JAK/STAT3. TAMs also significantly impact the clinical outcomes of patients suffering from sarcomas and are mainly related to poor overall survival rates among bone and soft tissue sarcomas, for example, chondrosarcoma, osteosarcoma, liposarcoma, synovial sarcoma, and undifferentiated pleomorphic sarcoma. This review summarizes the current knowledge on TAMs in sarcomas, focusing on specific markers on sarcoma cells, cell-cell interactions, and the possibly involved molecular pathways. Furthermore, we discuss the clinical significance of macrophages in sarcomas as a potential target for new therapies, presenting clinical relevance, possible new treatment options, and ongoing clinical trials using TAMs in sarcoma treatment.
Collapse
Affiliation(s)
- Agnieszka E. Zając
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.E.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.E.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-176 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.E.Z.); (P.R.)
| |
Collapse
|
9
|
Xu J, Shi Q, Wang B, Ji T, Guo W, Ren T, Tang X. The role of tumor immune microenvironment in chordoma: promising immunotherapy strategies. Front Immunol 2023; 14:1257254. [PMID: 37720221 PMCID: PMC10502727 DOI: 10.3389/fimmu.2023.1257254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Chordoma is a rare malignant bone tumor with limited therapeutic options, which is resistant to conventional chemotherapy and radiotherapy, and targeted therapy is also shown with little efficacy. The long-standing delay in researching its mechanisms of occurrence and development has resulted in the dilemma of no effective treatment targets and no available drugs in clinical practice. In recent years, the role of the tumor immune microenvironment in driving tumor growth has become a hot and challenging topic in the field of cancer research. Immunotherapy has shown promising results in the treatment of various tumors. However, the study of the immune microenvironment of chordoma is still in its infancy. In this review, we aim to present a comprehensive reveal of previous exploration on the chordoma immune microenvironment and propose promising immunotherapy strategies for chordoma based on these characteristics.
Collapse
Affiliation(s)
- Jiuhui Xu
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Qianyu Shi
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Boyang Wang
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Tao Ji
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Wei Guo
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Tingting Ren
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
10
|
Wen J, Yi L, Wan L, Dong X. Prognostic value of GLCE and infiltrating immune cells in Ewing sarcoma. Heliyon 2023; 9:e19357. [PMID: 37662777 PMCID: PMC10474439 DOI: 10.1016/j.heliyon.2023.e19357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/10/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
Background The prognostic value of D-glucuronyl C5-epimerase (GLCE) and mast cell infiltration in Ewing sarcoma (ES) has not been well specified and highlighted, which may facilitate survival prediction and treatment. Methods Several qualified datasets were downloaded from the GEO website. Common differentially expressed genes between normal subjects and ES patients in GSE17679, GSE45544, and GSE68776 were identified and screened by multiple algorithms to find hub genes with prognostic value. The prognostic value of 64 infiltrating cells was also explored. A prognostic model was established and then validated with GSE63155 and GSE63156. Finally, functional analysis was performed. Results GLCE and mast cell infiltration were screened as two indicators for a prognostic model. The Kaplan‒Meier analysis showed that patients in the low GLCE expression, mast cell infiltration and risk score groups had poorer outcomes than patients in the high GLCE expression, mast cell infiltration and risk score groups, both in the training and validation sets. Scatter plots and heatmaps also indicated the same results. The concordance indices and calibration analyses indicated a high prediction accuracy of the model in the training and validation sets. The time-dependent receiver operating characteristic analyses suggested high sensitivity and specificity of the model, with area under the curve values between 0.76 and 0.98. The decision curve analyses suggested a significantly higher net benefit by the model than the treat-all and treat-none strategies. Functional analyses suggested that glycosaminoglycan biosynthesis-heparan sulfate/heparin, the cell cycle and microRNAs in cancer were upregulated in ES patients. Conclusions GLCE and mast cell infiltration are potential prognostic indicators in ES. GLCE may affect the proliferation, angiogenesis and metastasis of ES by affecting the biosynthesis of heparan sulfate and heparin.
Collapse
Affiliation(s)
- Jian Wen
- Medical College of Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Orthopedics, JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, 330006, China
| | - Lijun Yi
- Central Laboratory, Jiangxi Provincial Children's Hospital, Yangming Rd, Nanchang, Jiangxi, 330006, China
| | - Lijia Wan
- Department of Child Healthcare, Hunan Provincial Maternal and Child Health Hospital, Changsha, Hunan, 410008, China
| | - Xieping Dong
- Medical College of Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Orthopedics, JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
11
|
Park JA, Cheung NKV. Promise and Challenges of T Cell Immunotherapy for Osteosarcoma. Int J Mol Sci 2023; 24:12520. [PMID: 37569894 PMCID: PMC10419531 DOI: 10.3390/ijms241512520] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The cure rate for metastatic or relapsed osteosarcoma has not substantially improved over the past decades despite the exploitation of multimodal treatment approaches, allowing long-term survival in less than 30% of cases. Patients with osteosarcoma often develop resistance to chemotherapeutic agents, where personalized targeted therapies should offer new hope. T cell immunotherapy as a complementary or alternative treatment modality is advancing rapidly in general, but its potential against osteosarcoma remains largely unexplored. Strategies incorporating immune checkpoint inhibitors (ICIs), chimeric antigen receptor (CAR) modified T cells, and T cell engaging bispecific antibodies (BsAbs) are being explored to tackle relapsed or refractory osteosarcoma. However, osteosarcoma is an inherently heterogeneous tumor, both at the intra- and inter-tumor level, with no identical driver mutations. It has a pro-tumoral microenvironment, where bone cells, stromal cells, neovasculature, suppressive immune cells, and a mineralized extracellular matrix (ECM) combine to derail T cell infiltration and its anti-tumor function. To realize the potential of T cell immunotherapy in osteosarcoma, an integrated approach targeting this complex ecosystem needs smart planning and execution. Herein, we review the current status of T cell immunotherapies for osteosarcoma, summarize the challenges encountered, and explore combination strategies to overcome these hurdles, with the ultimate goal of curing osteosarcoma with less acute and long-term side effects.
Collapse
Affiliation(s)
- Jeong A Park
- Department of Pediatrics, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Nai-Kong V. Cheung
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
12
|
Ying H, Li ZQ, Li MP, Liu WC. Metabolism and senescence in the immune microenvironment of osteosarcoma: focus on new therapeutic strategies. Front Endocrinol (Lausanne) 2023; 14:1217669. [PMID: 37497349 PMCID: PMC10366376 DOI: 10.3389/fendo.2023.1217669] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Osteosarcoma is a highly aggressive and metastatic malignant tumor. It has the highest incidence of all malignant bone tumors and is one of the most common solid tumors in children and adolescents. Osteosarcoma tissues are often richly infiltrated with inflammatory cells, including tumor-associated macrophages, lymphocytes, and dendritic cells, forming a complex immune microenvironment. The expression of immune checkpoint molecules is also high in osteosarcoma tissues, which may be involved in the mechanism of anti-tumor immune escape. Metabolism and senescence are closely related to the immune microenvironment, and disturbances in metabolism and senescence may have important effects on the immune microenvironment, thereby affecting immune cell function and immune responses. Metabolic modulation and anti-senescence therapy are gaining the attention of researchers as emerging immunotherapeutic strategies for tumors. Through an in-depth study of the interconnection of metabolism and anti- senescence in the tumor immune microenvironment and its regulatory mechanism on immune cell function and immune response, more precise therapeutic strategies can be developed. Combined with the screening and application of biomarkers, personalized treatment can be achieved to improve therapeutic efficacy and provide a scientific basis for clinical decision-making. Metabolic modulation and anti- senescence therapy can also be combined with other immunotherapy approaches, such as immune checkpoint inhibitors and tumor vaccines, to form a multi-level and multi-dimensional immunotherapy strategy, thus further enhancing the effect of immunotherapy. Multidisciplinary cooperation and integrated treatment can optimize the treatment plan and maximize the survival rate and quality of life of patients. Future research and clinical practice will further advance this field, promising more effective treatment options for patients with osteosarcoma. In this review, we reviewed metabolic and senescence characteristics in the immune microenvironment of osteosarcoma and related immunotherapies, and provide a reference for development of more personalized and effective therapeutic strategies.
Collapse
Affiliation(s)
- Hui Ying
- Department of Emergency Trauma Surgery, Ganzhou People’s Hospital, Ganzhou, China
- Department of Spine Surgery, Ganzhou People’s Hospital, Ganzhou, China
| | - Zhi-Qiang Li
- Department of Emergency Trauma Surgery, Ganzhou People’s Hospital, Ganzhou, China
- Department of Spine Surgery, Ganzhou People’s Hospital, Ganzhou, China
| | - Meng-Pan Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wen-Cai Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Weil R, Loeb D. Breaking down the tumor immune infiltration within pediatric sarcomas. Front Endocrinol (Lausanne) 2023; 14:1187289. [PMID: 37424864 PMCID: PMC10324675 DOI: 10.3389/fendo.2023.1187289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Immunotherapies are a promising therapeutic option, yet for a variety of reasons, these treatments have achieved limited success against sarcomas. The immunosuppressive tumor microenvironment (TME) of sarcomas as well as lack of predictive biomarkers, decreased T-cell clonal frequency, and high expression of immunosuppressive infiltrating cells has thus far prevented major success using immunotherapies. By breaking down the TME into its individual components and understanding how the various cell types interact with each other as well as in the context of the complex immune microenvironment, can lead to effective therapeutic immunotherapy treatments, potentially improving outcomes for those with metastatic disease.
Collapse
Affiliation(s)
- Rachel Weil
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - David Loeb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
14
|
Tian H, Cao J, Li B, Nice EC, Mao H, Zhang Y, Huang C. Managing the immune microenvironment of osteosarcoma: the outlook for osteosarcoma treatment. Bone Res 2023; 11:11. [PMID: 36849442 PMCID: PMC9971189 DOI: 10.1038/s41413-023-00246-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 03/01/2023] Open
Abstract
Osteosarcoma, with poor survival after metastasis, is considered the most common primary bone cancer in adolescents. Notwithstanding the efforts of researchers, its five-year survival rate has only shown limited improvement, suggesting that existing therapeutic strategies are insufficient to meet clinical needs. Notably, immunotherapy has shown certain advantages over traditional tumor treatments in inhibiting metastasis. Therefore, managing the immune microenvironment in osteosarcoma can provide novel and valuable insight into the multifaceted mechanisms underlying the heterogeneity and progression of the disease. Additionally, given the advances in nanomedicine, there exist many advanced nanoplatforms for enhanced osteosarcoma immunotherapy with satisfactory physiochemical characteristics. Here, we review the classification, characteristics, and functions of the key components of the immune microenvironment in osteosarcoma. This review also emphasizes the application, progress, and prospects of osteosarcoma immunotherapy and discusses several nanomedicine-based options to enhance the efficiency of osteosarcoma treatment. Furthermore, we examine the disadvantages of standard treatments and present future perspectives for osteosarcoma immunotherapy.
Collapse
Affiliation(s)
- Hailong Tian
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Jiangjun Cao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Bowen Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Edouard C. Nice
- grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800 Australia
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, People's Republic of China.
| | - Yi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
15
|
Macrophage Repolarization as a Therapeutic Strategy for Osteosarcoma. Int J Mol Sci 2023; 24:ijms24032858. [PMID: 36769180 PMCID: PMC9917837 DOI: 10.3390/ijms24032858] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Macrophages are versatile immune cells and can adapt to both external stimuli and their surrounding environment. Macrophages are categorized into two major categories; M1 macrophages release pro-inflammatory cytokines and produce protective responses that lead to antimicrobial or antitumor activity. M2 or tumor-associated macrophages (TAM) release anti-inflammatory cytokines that support tumor growth, invasion capacity, and metastatic potential. Since macrophages can be re-polarized from an M2 to an M1 phenotype with a variety of strategies, this has emerged as an innovative anti-cancer approach. Osteosarcoma (OS) is a kind of bone cancer and consists of a complex niche, and immunotherapy is not very effective. Therefore, immediate attention to new strategies is required. We incorporated the recent studies that have used M2-M1 repolarization strategies in the aspect of treating OS cancer.
Collapse
|
16
|
Gong X, Chi H, Strohmer DF, Teichmann AT, Xia Z, Wang Q. Exosomes: A potential tool for immunotherapy of ovarian cancer. Front Immunol 2023; 13:1089410. [PMID: 36741380 PMCID: PMC9889675 DOI: 10.3389/fimmu.2022.1089410] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Ovarian cancer is a malignant tumor of the female reproductive system, with a very poor prognosis and high mortality rates. Chemotherapy and radiotherapy are the most common treatments for ovarian cancer, with unsatisfactory results. Exosomes are a subpopulation of extracellular vesicles, which have a diameter of approximately 30-100 nm and are secreted by many different types of cells in various body fluids. Exosomes are highly stable and are effective carriers of immunotherapeutic drugs. Recent studies have shown that exosomes are involved in various cellular responses in the tumor microenvironment, influencing the development and therapeutic efficacy of ovarian cancer, and exhibiting dual roles in inhibiting and promoting tumor development. Exosomes also contain a variety of genes related to ovarian cancer immunotherapy that could be potential biomarkers for ovarian cancer diagnosis and prognosis. Undoubtedly, exosomes have great therapeutic potential in the field of ovarian cancer immunotherapy. However, translation of this idea to the clinic has not occurred. Therefore, it is important to understand how exosomes could be used in ovarian cancer immunotherapy to regulate tumor progression. In this review, we summarize the biomarkers of exosomes in different body fluids related to immunotherapy in ovarian cancer and the potential mechanisms by which exosomes influence immunotherapeutic response. We also discuss the prospects for clinical application of exosome-based immunotherapy in ovarian cancer.
Collapse
Affiliation(s)
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Dorothee Franziska Strohmer
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Qin Wang
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
17
|
Han J, Hu Y, Ding S, Liu S, Wang H. The analysis of the pyroptosis-related genes and hub gene TP63 ceRNA axis in osteosarcoma. Front Immunol 2022; 13:974916. [PMID: 36389801 PMCID: PMC9664215 DOI: 10.3389/fimmu.2022.974916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Pyroptosis is a type of programmed cell death that is associated with tumor development, prognosis, and therapeutic response. The significance of pyroptosis-related genes (PRGs) in the tumor microenvironment (TME) remains unclear. We examined the expression patterns of PRGs in 141 OS samples from two different datasets and characterized the genetic and transcriptional changes in PRGs. Based on these PRGs, all OS samples could be classified into two clusters. We discovered that multilayer PRG changes were linked to clinicopathological traits, prognosis, and TME characteristics in two separate genetic subtypes. The PRG score was then developed for predicting overall survival, and its predictive efficacy in OS patients was tested. As a result, we developed a very precise nomogram to improve the PRG-predictive model in clinical application. Furthermore, a competing endogenous RNA (ceRNA) network was built to find a LAMTOR5-AS1/hsa-miR-23a-3p/TP63 regulatory axis. Through experimental verification, it was found that the pyroptosis gene TP63 plays an important role in the regulation of osteosarcoma pyroptosis. The possible functions of PRGs in the TME, clinicopathological characteristics, and prognosis were established in our investigation of PRGs in OS. These findings may aid in our understanding of PRGs in OS as well as provide a novel way for prognostic evaluation and the creation of more effective immunotherapy treatments.
Collapse
Affiliation(s)
- Jun Han
- School of Graduates, Dalian Medical University, Dalian, China,Department of Orthopedics, Dalian Municipal Central Hospital, Dalian City, China
| | - Yunxiang Hu
- School of Graduates, Dalian Medical University, Dalian, China,Department of Orthopedics, Dalian Municipal Central Hospital, Dalian City, China
| | - Shengqiang Ding
- Department of Spine Surgery, The People’s Hospital of Liuyang City, Changsha, China
| | - Sanmao Liu
- School of Graduates, Dalian Medical University, Dalian, China,Department of Orthopedics, Dalian Municipal Central Hospital, Dalian City, China
| | - Hong Wang
- Department of Orthopedics, Dalian Municipal Central Hospital, Dalian City, China,*Correspondence: Hong Wang,
| |
Collapse
|
18
|
Todosenko N, Yurova K, Khaziakhmatova O, Malashchenko V, Khlusov I, Litvinova L. Heparin and Heparin-Based Drug Delivery Systems: Pleiotropic Molecular Effects at Multiple Drug Resistance of Osteosarcoma and Immune Cells. Pharmaceutics 2022; 14:pharmaceutics14102181. [PMID: 36297616 PMCID: PMC9612132 DOI: 10.3390/pharmaceutics14102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
One of the main problems of modern health care is the growing number of oncological diseases both in the elderly and young population. Inadequately effective chemotherapy, which remains the main method of cancer control, is largely associated with the emergence of multidrug resistance in tumor cells. The search for new solutions to overcome the resistance of malignant cells to pharmacological agents is being actively pursued. Another serious problem is immunosuppression caused both by the tumor cells themselves and by antitumor drugs. Of great interest in this context is heparin, a biomolecule belonging to the class of glycosaminoglycans and possessing a broad spectrum of biological activity, including immunomodulatory and antitumor properties. In the context of the rapid development of the new field of “osteoimmunology,” which focuses on the collaboration of bone and immune cells, heparin and delivery systems based on it may be of intriguing importance for the oncotherapy of malignant bone tumors. Osteosarcoma is a rare but highly aggressive, chemoresistant malignant tumor that affects young adults and is characterized by constant recurrence and metastasis. This review describes the direct and immune-mediated regulatory effects of heparin and drug delivery systems based on it on the molecular mechanisms of (multiple) drug resistance in (onco) pathological conditions of bone tissue, especially osteosarcoma.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Department of Morphology and General Pathology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Correspondence:
| |
Collapse
|
19
|
Jiménez JA, Lawlor ER, Lyssiotis CA. Amino acid metabolism in primary bone sarcomas. Front Oncol 2022; 12:1001318. [PMID: 36276057 PMCID: PMC9581121 DOI: 10.3389/fonc.2022.1001318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/19/2022] [Indexed: 12/30/2022] Open
Abstract
Primary bone sarcomas, including osteosarcoma (OS) and Ewing sarcoma (ES), are aggressive tumors with peak incidence in childhood and adolescence. The intense standard treatment for these patients consists of combined surgery and/or radiation and maximal doses of chemotherapy; a regimen that has not seen improvement in decades. Like other tumor types, ES and OS are characterized by dysregulated cellular metabolism and a rewiring of metabolic pathways to support the biosynthetic demands of malignant growth. Not only are cancer cells characterized by Warburg metabolism, or aerobic glycolysis, but emerging work has revealed a dependence on amino acid metabolism. Aside from incorporation into proteins, amino acids serve critical functions in redox balance, energy homeostasis, and epigenetic maintenance. In this review, we summarize current studies describing the amino acid metabolic requirements of primary bone sarcomas, focusing on OS and ES, and compare these dependencies in the normal bone and malignant tumor contexts. We also examine insights that can be gleaned from other cancers to better understand differential metabolic susceptibilities between primary and metastatic tumor microenvironments. Lastly, we discuss potential metabolic vulnerabilities that may be exploited therapeutically and provide better-targeted treatments to improve the current standard of care.
Collapse
Affiliation(s)
- Jennifer A. Jiménez
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Elizabeth R. Lawlor
- Department of Pediatrics, University of Washington, Seattle, WA, United States,Seattle Children’s Research Institute, Seattle, WA, United States,*Correspondence: Elizabeth R. Lawlor, ; Costas A. Lyssiotis,
| | - Costas A. Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States,Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI, United States,*Correspondence: Elizabeth R. Lawlor, ; Costas A. Lyssiotis,
| |
Collapse
|
20
|
Pierrevelcin M, Flacher V, Mueller CG, Vauchelles R, Guerin E, Lhermitte B, Pencreach E, Reisch A, Muller Q, Doumard L, Boufenghour W, Klymchenko AS, Foppolo S, Nazon C, Weingertner N, Martin S, Briandet C, Laithier V, Di Marco A, Bund L, Obrecht A, Villa P, Dontenwill M, Entz-Werlé N. Engineering Novel 3D Models to Recreate High-Grade Osteosarcoma and its Immune and Extracellular Matrix Microenvironment. Adv Healthc Mater 2022; 11:e2200195. [PMID: 36057996 DOI: 10.1002/adhm.202200195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/24/2022] [Indexed: 01/27/2023]
Abstract
Osteosarcoma (OS) is the most common primary bone cancer, where the overall 5-year surviving rate is below 20% in resistant forms. Accelerating cures for those poor outcome patients remains a challenge. Nevertheless, several studies of agents targeting abnormal cancerous pathways have yielded disappointing results when translated into clinic because of the lack of accurate OS preclinical modeling. So, any effort to design preclinical drug testing may consider all inter-, intra-, and extra-tumoral heterogeneities throughout models mimicking extracellular and immune microenvironment. Therefore, the bioengineering of patient-derived models reproducing the OS heterogeneity, the interaction with tumor-associated macrophages (TAMs), and the modulation of oxygen concentrations additionally to recreation of bone scaffold is proposed here. Eight 2D preclinical models mimicking several OS clinical situations and their TAMs in hypoxic conditions are developed first and, subsequently, the paired 3D models faithfully preserving histological and biological characteristics are generated. It is possible to shape reproducibly M2-like macrophages cultured with all OS patient-derived cell lines in both dimensions. The final 3D models pooling all heterogeneity features are providing accurate proliferation and migration data to understand the mechanisms involved in OS and immune cells/biomatrix interactions and sustained such that engineered 3D preclinical systems will improve personalized medicine.
Collapse
Affiliation(s)
- Marina Pierrevelcin
- UMR CNRS 7021, Laboratory of Biomaging and Pathologies, Faculté de Pharmacie, 74 route du Rhin, Illkirch, 67405, France
| | - Vincent Flacher
- CNRS UPR3572, Laboratory I2CT - Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, 2, Allée Konrad Roentgen, Strasbourg, 67084, France
| | - Christopher G Mueller
- CNRS UPR3572, Laboratory I2CT - Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, 2, Allée Konrad Roentgen, Strasbourg, 67084, France
| | - Romain Vauchelles
- UMR CNRS 7021, Laboratory of Biomaging and Pathologies, Faculté de Pharmacie, 74 route du Rhin, Illkirch, 67405, France
| | - Eric Guerin
- Department of Cancer Molecular Genetics, Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 1 avenue Molière, Strasbourg, 67098, France
| | - Benoît Lhermitte
- Pathology department, University Hospital of Strasbourg, 1 avenue Molière, Strasbourg, 67098, France
| | - Erwan Pencreach
- Department of Cancer Molecular Genetics, Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 1 avenue Molière, Strasbourg, 67098, France
| | - Andreas Reisch
- UMR CNRS 7021, Laboratory of Biomaging and Pathologies, Faculté de Pharmacie, 74 route du Rhin, Illkirch, 67405, France
| | - Quentin Muller
- CNRS UPR3572, Laboratory I2CT - Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, 2, Allée Konrad Roentgen, Strasbourg, 67084, France
| | - Layal Doumard
- CNRS UPR3572, Laboratory I2CT - Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, 2, Allée Konrad Roentgen, Strasbourg, 67084, France
| | - Wacym Boufenghour
- CNRS UPR3572, Laboratory I2CT - Immunology, Immunopathology and Therapeutic Chemistry, Strasbourg Drug Discovery and Development Institute (IMS), Institut de Biologie Moléculaire et Cellulaire, 2, Allée Konrad Roentgen, Strasbourg, 67084, France
| | - Andrey S Klymchenko
- UMR CNRS 7021, Laboratory of Biomaging and Pathologies, Faculté de Pharmacie, 74 route du Rhin, Illkirch, 67405, France
| | - Sophie Foppolo
- UMR CNRS 7021, Laboratory of Biomaging and Pathologies, Faculté de Pharmacie, 74 route du Rhin, Illkirch, 67405, France
| | - Charlotte Nazon
- Pediatric Onco-hematology unit, University Hospital of Strasbourg, 1 avenue Molière, Strasbourg, 67098, France
| | - Noelle Weingertner
- Pathology department, University Hospital of Strasbourg, 1 avenue Molière, Strasbourg, 67098, France
| | - Sophie Martin
- UMR CNRS 7021, Laboratory of Biomaging and Pathologies, Faculté de Pharmacie, 74 route du Rhin, Illkirch, 67405, France
| | - Claire Briandet
- Pediatric Onco-hematology unit, Hospital of "Le Bocage"- University Hospital of Dijon, 1 bd Jeanne d'Arc, Dijon, 21079, France
| | - Véronique Laithier
- Pediatric Onco-hematology unit, University Hospital of Besançon, 3, boulevard A. Fleming, Besançon, 25030, France
| | - Antonio Di Marco
- Department of Orthopedic Surgery and Traumatology, University Hospital of Strasbourg, 1 avenue Molière, Strasbourg, 67098, France
| | - Laurent Bund
- Department of Pediatric Surgery, University Hospital of Strasbourg, 1 avenue Molière, Strasbourg, 67098, France
| | - Adeline Obrecht
- PCBIS Plate-forme de chimie biologique intégrative de Strasbourg, UMS 3286 CNRS, University of Strasbourg, Labex Medalis, 300 Bld Sébastien Brant, Illkirch, 67412, France
| | - Pascal Villa
- PCBIS Plate-forme de chimie biologique intégrative de Strasbourg, UMS 3286 CNRS, University of Strasbourg, Labex Medalis, 300 Bld Sébastien Brant, Illkirch, 67412, France
| | - Monique Dontenwill
- UMR CNRS 7021, Laboratory of Biomaging and Pathologies, Faculté de Pharmacie, 74 route du Rhin, Illkirch, 67405, France
| | - Natacha Entz-Werlé
- UMR CNRS 7021, Laboratory of Biomaging and Pathologies, Faculté de Pharmacie, 74 route du Rhin, Illkirch, 67405, France.,Pediatric Onco-hematology unit, University Hospital of Strasbourg, 1 avenue Molière, Strasbourg, 67098, France
| |
Collapse
|
21
|
Zhu T, Han J, Yang L, Cai Z, Sun W, Hua Y, Xu J. Immune Microenvironment in Osteosarcoma: Components, Therapeutic Strategies and Clinical Applications. Front Immunol 2022; 13:907550. [PMID: 35720360 PMCID: PMC9198725 DOI: 10.3389/fimmu.2022.907550] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma is a primary malignant tumor that tends to threaten children and adolescents, and the 5-year event-free survival rate has not improved significantly in the past three decades, bringing grief and economic burden to patients and society. To date, the genetic background and oncogenesis mechanisms of osteosarcoma remain unclear, impeding further research. The tumor immune microenvironment has become a recent research hot spot, providing novel but valuable insight into tumor heterogeneity and multifaceted mechanisms of tumor progression and metastasis. However, the immune microenvironment in osteosarcoma has been vigorously discussed, and the landscape of immune and non-immune component infiltration has been intensively investigated. Here, we summarize the current knowledge of the classification, features, and functions of the main infiltrating cells, complement system, and exosomes in the osteosarcoma immune microenvironment. In each section, we also highlight the complex crosstalk network among them and the corresponding potential therapeutic strategies and clinical applications to deepen our understanding of osteosarcoma and provide a reference for imminent effective therapies with reduced adverse effects.
Collapse
Affiliation(s)
- Tianyi Zhu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Liu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Wei Sun
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Xu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| |
Collapse
|
22
|
Zhu Z, Zhang M, Wang W, Zhang P, Wang Y, Wang L. Global Characterization of Metabolic Genes Regulating Survival and Immune Infiltration in Osteosarcoma. Front Genet 2022; 12:814843. [PMID: 35096022 PMCID: PMC8793845 DOI: 10.3389/fgene.2021.814843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022] Open
Abstract
Background: The alterations in metabolic profile of tumors have been identified as one of the prognostic hallmarks of cancers, including osteosarcoma. These alterations are majorly controlled by groups of metabolically active genes. However, the regulation of metabolic gene signatures in tumor microenvironment of osteosarcoma has not been well explained. Objectives: Thus, we investigated the sets of previously published metabolic genes in osteosarcoma patients and normal samples. Methods: We applied computational techniques to identify metabolic genes involved in the immune function of tumor microenvironment (TME) and survival and prognosis of the osteosarcoma patients. Potential candidate gene PAICS (phosphoribosyl aminoimidazole carboxylase, phosphoribosyl aminoimidazole succino carboxamide synthetase) was chosen for further studies in osteosarcoma cell lines for its role in cell proliferation, migration and apoptosis. Results: Our analyses identified a list of metabolic genes differentially expressed in osteosarcoma tissues. Next, we scrutinized the list of genes correlated with survival and immune cells, followed by clustering osteosarcoma patients into three categories: C1, C2, and C3. These analyses led us to choose PAICS as potential candidate gene as its expression showed association with poor survival and negative correlation with the immune cells. Furthermore, we established that loss of PAICS induced apoptosis and inhibited proliferation, migration, and wound healing in HOS and MG-63 cell lines. Finally, the results were supported by constructing and validating a prediction model for prognosis of the osteosarcoma patients. Conclusion: Here, we conclude that metabolic genes specifically PAICS play an integral role in the immune cell infiltration in osteosarcoma TME, as well as cancer development and metastasis.
Collapse
Affiliation(s)
- Zhongpei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weidong Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng Zhang
- Department of Orthopedics, Tumor Hospital of Henan Province, Zhengzhou, China
| | - Yuqiang Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Limin Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
CAR T targets and microenvironmental barriers of osteosarcoma. Cytotherapy 2022; 24:567-576. [DOI: 10.1016/j.jcyt.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/11/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
|
24
|
Construction and validation of a novel gene signature for predicting the prognosis of osteosarcoma. Sci Rep 2022; 12:1279. [PMID: 35075228 PMCID: PMC8786962 DOI: 10.1038/s41598-022-05341-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common type of primary malignant bone tumor. The high-throughput sequencing technology has shown potential abilities to illuminate the pathogenic genes in OS. This study was designed to find a powerful gene signature that can predict clinical outcomes. We selected OS cases with gene expression and survival data in the TARGET-OS dataset and GSE21257 datasets as training cohort and validation cohort, respectively. The univariate Cox regression and Kaplan–Meier analysis were conducted to determine potential prognostic genes from the training cohort. These potential prognostic genes underwent a LASSO regression, which then generated a gene signature. The harvested signature’s predictive ability was further examined by the Kaplan–Meier analysis, Cox analysis, and receiver operating characteristic (ROC curve). More importantly, we listed similar studies in the most recent year and compared theirs with ours. Finally, we performed functional annotation, immune relevant signature correlation identification, and immune infiltrating analysis to better study he functional mechanism of the signature and the immune cells’ roles in the gene signature’s prognosis ability. A seventeen-gene signature (UBE2L3, PLD3, SLC45A4, CLTC, CTNNBIP1, FBXL5, MKL2, SELPLG, C3orf14, WDR53, ZFP90, UHRF2, ARX, CORT, DDX26B, MYC, and SLC16A3) was generated from the LASSO regression. The signature was then confirmed having strong and stable prognostic capacity in all studied cohorts by several statistical methods. We revealed the superiority of our signature after comparing it to our predecessors, and the GO and KEGG annotations uncovered the specifically mechanism of action related to the gene signature. Six immune signatures, including PRF1, CD8A, HAVCR2, LAG3, CD274, and GZMA were identified associating with our signature. The immune-infiltrating analysis recognized the vital roles of T cells CD8 and Mast cells activated, which potentially support the seventeen-gene signature’s prognosis ability. We identified a robust seventeen-gene signature that can accurately predict OS prognosis. We identified potential immunotherapy targets to the gene signature. The T cells CD8 and Mast cells activated were identified linked with the seventeen-gene signature predictive power.
Collapse
|
25
|
Feng X, Zhao Z, Zhao Y, Song Z, Ma Y, Wang W. Development of Personalized Signature Based on the Immune Landscape to Predict the Prognosis of Osteosarcoma and the Response to Immunotherapy and Targeted Therapy. Front Mol Biosci 2022; 8:783915. [PMID: 35127816 PMCID: PMC8811188 DOI: 10.3389/fmolb.2021.783915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
As a heterogeneous and aggressive disease, osteosarcoma (OS) faces great challenges to prognosis and individualized treatment. Hence, we explore the role of immune-related genes in predicting prognosis and responsiveness to immunotherapy and targeted therapies in patients with OS based on the immunological landscape of osteosarcoma. Based on the database of the Therapeutical Applicable Research to Generate Effective Treatments (TARGET), single-sample gene set enrichment analysis (ssGSEA) was used to obtain the enrichment scores of 29 immune characteristics. A series of bioinformatics methods were performed to construct the immune-related prognostic signature (IRPS). Gene set enrichment analysis and gene set variation analysis were used to explore the biological functions of IRPS. We also analyzed the relationship between IRPS and tumor microenvironment. Lastly, the reactivity of IRPS to immune checkpoint therapy and targeted drugs was explored. The ssGSEA algorithm was used to define two immune subtypes, namely Immunity_High and Immunity_Low. Immunity_High was associated with a good prognosis and was an independent prognostic factor of OS. The IRPS containing 7 genes was constructed by the least absolute shrinkage and selection operator Cox regression. The IRPS can divide patients into low- and high-risk patients. Compared with high-risk patients, low-risk patients had a better prognosis and were positively correlated with immune cell infiltration and immune function. Low-risk patients benefited more from immunotherapy, and the sensitivity of targeted drugs in high- and low-risk groups was determined. IRPS can be used to predict the prognosis of OS patients, and provide therapeutic responsiveness to immunotherapy and targeted therapy.
Collapse
Affiliation(s)
- Xiaofei Feng
- Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Gansu, China
| | - Zhenrui Zhao
- Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Gansu, China
| | - Yuhao Zhao
- Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Gansu, China
| | - Zhengdong Song
- Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Gansu, China
| | - Yao Ma
- Clinical Laboratory Center, Gansu Provincial Maternity and Child-Care Hospital, Gansu, China
| | - Wenji Wang
- Department of Orthopedics, Lanzhou University First Affiliated Hospital, Gansu, China
- *Correspondence: Wenji Wang,
| |
Collapse
|
26
|
Zhao Y, Zhang B, Zhang Q, Ma X, Feng H. Tumor-associated macrophages in osteosarcoma. J Zhejiang Univ Sci B 2021; 22:885-892. [PMID: 34783219 DOI: 10.1631/jzus.b2100029] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents. It is an aggressive tumor with a tendency to spread to the lung, which is the most common site of metastasis. Patients with advanced OS with metastases have poor prognoses despite the application of chemotherapy, thus highlighting the need for novel therapeutic targets. The tumor microenvironment (TME) of OS is confirmed to be essential for and supportive of tumor growth and dissemination. The immune component of the OS microenvironment is mainly composed of tumor-associated macrophages (TAMs). In OS, TAMs promote tumor growth and angiogenesis and upregulate the cancer stem cell-like phenotype. However, TAMs inhibit the metastasis of OS. Therefore, much attention has been paid to investigating the mechanism of TAMs in OS development and the progression of immunotherapy for OS. In this article, we aim to summarize the roles of TAMs in OS and the major findings on the application of TAMs in OS treatment.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Orthopedics, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Benzheng Zhang
- Department of Ophthalmology, the Second Hospital of Hebei Medical University, Shijiazhuang 050061, China
| | - Qianqian Zhang
- Department of Gynecology, the Second Hospital of Hebei Medical University, Shijiazhuang 050061, China
| | - Xiaowei Ma
- Department of Orthopedics, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Helin Feng
- Department of Orthopedics, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China.
| |
Collapse
|
27
|
Fan L, Ru J, Liu T, Ma C. Identification of a Novel Prognostic Gene Signature From the Immune Cell Infiltration Landscape of Osteosarcoma. Front Cell Dev Biol 2021; 9:718624. [PMID: 34552929 PMCID: PMC8450587 DOI: 10.3389/fcell.2021.718624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/09/2021] [Indexed: 01/11/2023] Open
Abstract
Background: The tumor microenvironment (TME) mainly comprises tumor cells and tumor-infiltrating immune cells mixed with stromal components. Latestresearch hasdisplayed that tumor immune cell infiltration (ICI) is associated with the clinical outcome of patients with osteosarcoma (OS). This work aimed to build a gene signature according to ICI in OS for predicting patient outcomes. Methods: The TARGET-OS dataset was used for model training, while the GSE21257 dataset was taken forvalidation. Unsupervised clustering was performed on the training cohort based on the ICI profiles. The Kaplan–Meier estimator and univariate Cox proportional hazards models were used to identify the differentially expressed genes between clusters to preliminarily screen for potential prognostic genes. We incorporated these potential prognostic genes into a LASSO regression analysis and produced a gene signature, which was next assessed with the Kaplan–Meier estimator, Cox proportional hazards models, ROC curves, IAUC, and IBS in the training and validation cohorts. In addition, we compared our signature to previous models. GSEAswere deployed to further study the functional mechanism of the signature. We conducted an analysis of 22 TICsfor identifying the role of TICs in the gene signature’s prognosis ability. Results: Data from the training cohort were used to generate a nine-gene signature. The Kaplan–Meier estimator, Cox proportional hazards models, ROC curves, IAUC, and IBS validated the signature’s capacity and independence in predicting the outcomes of OS patients in the validation cohort. A comparison with previous studies confirmed the superiority of our signature regarding its prognostic ability. Annotation analysis revealed the mechanism related to the gene signature specifically. The immune-infiltration analysis uncoveredkey roles for activated mast cells in the prognosis of OS. Conclusion: We identified a robust nine-gene signature (ZFP90, UHRF2, SELPLG, PLD3, PLCB4, IFNGR1, DLEU2, ATP6V1E1, and ANXA5) that can predict OS outcome precisely and is strongly linked to activated mast cells.
Collapse
Affiliation(s)
- Lei Fan
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingtao Ru
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Liu
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao Ma
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
28
|
Osteosarcoma in Children: Not Only Chemotherapy. Pharmaceuticals (Basel) 2021; 14:ph14090923. [PMID: 34577623 PMCID: PMC8471047 DOI: 10.3390/ph14090923] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma (OS) is the most severe bone malignant tumor, responsible for altered osteoid deposition and with a high rate of metastasis. It is characterized by heterogeneity, chemoresistance and its interaction with bone microenvironment. The 5-year survival rate is about 67% for patients with localized OS, while it remains at 20% in case of metastases. The standard therapy for OS patients is represented by neoadjuvant chemotherapy, surgical resection, and adjuvant chemotherapy. The most used chemotherapy regimen for children is the combination of high-dose methotrexate, doxorubicin, and cisplatin. Considered that the necessary administration of high-dose chemotherapy is responsible for a lot of acute and chronic side effects, the identification of novel therapeutic strategies to ameliorate OS outcome and the patients' life expectancy is necessary. In this review we provide an overview on new possible innovative therapeutic strategies in OS.
Collapse
|
29
|
Gong Y, Wei ZR. Identification of PSMD14 as a potential novel prognosis biomarker and therapeutic target for osteosarcoma. Cancer Rep (Hoboken) 2021; 5:e1522. [PMID: 34383385 PMCID: PMC9327663 DOI: 10.1002/cnr2.1522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/08/2021] [Accepted: 06/14/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Osteosarcoma is the most common primary bone tumor. The survival rate of osteosarcoma patients has not significantly increased in the past decades. Uncovering the mechanisms of malignancy, progression, and metastasis will shed light on the development of new therapeutic targets and treatment for osteosarcoma. AIM The aim of this study is to identify potential osteosarcoma biomarker and/or therapeutic targets by using integrated bioinformatics analysis. METHODS AND RESULTS We utilized existing gene expression datasets to identify differential expressed genes (DEGs) that could serve as osteosarcoma biomarkers or even as therapeutic targets. We found 48 DEGs were overlapped in three datasets. Among these 48 DEGs, PSMD14 was on the top of the up-regulated gene list. We further found that higher PSMD14 expression was correlated with higher risk group (younger age group, ≤20.83 years of age), metastasis within 5 years and higher grade of tumor. Higher PSMD14 expression in osteosarcoma had positive correlation with higher infiltration of CD8+ T cells, neutrophils and myeloid dendritic cells. Kaplan-Myer survival data further revealed that higher expression of PSMD14 predicted significantly worse prognosis (p = .013). Gene set enrichment analysis was further performed for the DEGs related to PSMD14 in osteosarcoma. We found that lower PSMD14 expression group had more immune responses such as interferon γ, α responses, inflammation response etc. However, the higher PSMD14 expression group had more cell proliferation-related biological processes, such as G2M checkpoints and Myc targets. Through establishing protein-protein interaction networks using PSMD14 related DEGs, we identified 10 hub genes that were all ribosomal proteins. These hub genes may play roles in osteosarcoma tumorigenesis, progression and/or metastasis. CONCLUSION We identified PSMD14 gene as a possible osteosarcoma biomarker, and/or a possible therapeutic target.
Collapse
Affiliation(s)
- Yubao Gong
- Department of Orthopedics, Jilin University First Hospital, Jilin, China
| | - Zheng-Ren Wei
- Department of Pharmocology, Jilin University Bethune College of Medicine, Jilin, China
| |
Collapse
|
30
|
Ren EH, Deng YJ, Yuan WH, Zhang GZ, Wu ZL, Li CY, Xie QQ. An Immune-Related Long Non-Coding RNA Signature to Predict the Prognosis of Ewing's Sarcoma Based on a Machine Learning Iterative Lasso Regression. Front Cell Dev Biol 2021; 9:651593. [PMID: 34124041 PMCID: PMC8187926 DOI: 10.3389/fcell.2021.651593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/16/2021] [Indexed: 01/21/2023] Open
Abstract
The aim of this study was to construct a new immune-associated long non-coding RNA (lncRNA) signature to predict the prognosis of Ewing sarcoma (ES) and explore its molecular mechanisms. We downloaded transcriptome and clinical prognosis data from the Gene Expression Omnibus (GSE17679, which included 88 ES samples and 18 matched normal skeletal muscle samples), and used it as a training set to identify immune-related lncRNAs with different expression levels in ES. Univariable Cox regression was used to screen immune-related lncRNAs related to ES prognosis, and an immune-related lncRNA signature was constructed based on machine learning iterative lasso regression. An external verification set was used to confirm the predictive ability of the signature. Clinical feature subgroup analysis was used to explore whether the signature was an independent prognostic factor. In addition, CIBERSORT was used to explore immune cell infiltration in the high- and low-risk groups, and to analyze the correlations between the lncRNA signature and immune cell levels. Gene set enrichment and variation analyses were used to explore the possible regulatory mechanisms of the immune-related lncRNAs in ES. We also analyzed the expression of 17 common immunotherapy targets in the high- and low-risk groups to identify any that may be regulated by immune-related lncRNAs. We screened 35 immune-related lncRNAs by univariate Cox regression. Based on this, an immune-related 11-lncRNA signature was generated by machine learning iterative lasso regression. Analysis of the external validation set confirmed its high predictive ability. DPP10 antisense RNA 3 was negatively correlated with resting dendritic cell, neutrophil, and γδ T cell infiltration, and long intergenic non-protein coding RNA 1398 was positively correlated with resting dendritic cells and M2 macrophages. These lncRNAs may affect ES prognosis by regulating GSE17721_CTRL_VS_PAM3CSK4_12H_BMDC_UP, GSE2770_IL4_ACT_VS_ACT_CD4_TCELL_48H_UP, GSE29615_CTRL_VS_DAY3_ LAIV_IFLU_VACCINE_PBMC_UP, complement signaling, interleukin 2-signal transducer and activator of transcription 5 signaling, and protein secretion. The immune-related 11-lncRNA signature may also have regulatory effects on the immunotherapy targets CD40 molecule, CD70 molecule, and CD276 molecule. In conclusion, we constructed a new immune-related 11-lncRNA signature that can stratify the prognoses of patients with ES.
Collapse
Affiliation(s)
- En-Hui Ren
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, China.,Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Ya-Jun Deng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Wen-Hua Yuan
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Guang-Zhi Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Zuo-Long Wu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Chun-Ying Li
- The Fourth People's Hospital of Qinghai Province, Xining, China
| | - Qi-Qi Xie
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai University, Xining, China.,Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
31
|
Fan J, Qin X, He R, Ma J, Wei Q. Gene expression profiles for an immunoscore model in bone and soft tissue sarcoma. Aging (Albany NY) 2021; 13:13708-13725. [PMID: 33946044 PMCID: PMC8202872 DOI: 10.18632/aging.202956] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
Background: Immune infiltration is a prognostic marker to clinical outcomes in various solid tumors. However, reports that focus on bone and soft tissue sarcoma are rare. The study aimed to analyze and identify how immune components influence prognosis and develop a novel prognostic system for sarcomas. Methods: We retrieved the gene expression data from 3 online databases (GEO, TCGA, and TARGET). The immune fraction was estimated using the CIBERSORT algorithm. After that, we re-clustered samples by K-means and constructed immunoscore by the least absolute shrinkage and selection operator (LASSO) Cox regression model. Next, to confirm the prognostic value, nomograms were constructed. Results: 334 samples diagnosed with 8 tumor types (including osteosarcoma) were involved in our analysis. Patients were next re-clustered into three subgroups (OS, SAR1, and SAR2) through immune composition. Survival analysis showed a significant difference between the two soft tissue groups: patients with a higher proportion of CD8+ T cells, macrophages M1, and mast cells had favorable outcomes (p=0.0018). Immunoscore models were successfully established in OS and SAR2 groups consisting of 12 and 9 cell fractions, respectively. We found immunosocre was an independent factor for overall survival time. Patients with higher immunoscore had poor prognosis (p<0.0001). Patients with metastatic lesions scored higher than those counterparts with localized tumors (p<0.05). Conclusions: Immune fractions could be a useful tool for the classification and prognosis of bone and soft tissue sarcoma patients. This proposed immunoscore showed a promising impact on survival prediction.
Collapse
Affiliation(s)
- Jingyuan Fan
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xinyi Qin
- School of Graduate, Guangxi Medical University, Nanning, Guangxi, China
| | - Rongquan He
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jie Ma
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qingjun Wei
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
32
|
Huang H, Tan M, Zheng L, Yan G, Li K, Lu D, Cui X, He S, Lei D, Zhu B, Zhao J. Prognostic Implications of the Complement Protein C1Q and Its Correlation with Immune Infiltrates in Osteosarcoma. Onco Targets Ther 2021; 14:1737-1751. [PMID: 33707956 PMCID: PMC7943548 DOI: 10.2147/ott.s295063] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most widespread bone tumour among childhood cancers, and distant metastasis is the dominant factor in poor prognosis for patients with OS. Therefore, it is necessary to identify new prognostic biomarkers for identifying patients with aggressive disease. METHODS Two OS datasets (GSE21257 and GSE33383) were downloaded from the Gene Expression Omnibus (GEO) and subsequently subjected to weighted gene co-expression network analysis (WGCNA) and differential gene expression analysis (DGE) to screen candidate genes. A prognostic model was constructed using OS data derived from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) program to further screen key genes and perform gene ontology (GO) analysis. The prognostic values of key genes were assessed using the Kaplan-Meier (KM) plotter. The GEO dataset was used for immune infiltration analysis and association analysis of key genes. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) was employed to validate the expression levels of potentially crucial genes in OS cell lines. RESULTS In the present study, we found 114 genes with a highly significant correlation in the module and 44 downregulated genes; 25 candidate genes overlapped in the two parts of the genes. Among these, three key genes, C1QA, C1QB, and C1QC, were the most significant hub genes, which had the highest node degrees, were clustered into one group, and implicated in most significant biological processes (regulation of immune effector process). Moreover, these three key genes were negatively associated with the prognosis of OS and positively associated with three immune cells (follicular helper T cells, memory B cells, and CD8 T cells). Additionally, compared to non-metastatic OS cell lines, the expression of three key genes was significantly downregulated in metastatic OS cell lines. CONCLUSION Our results revealed that three key genes (C1QA, C1QB, and C1QC) were implicated in tumour immune infiltration and may be promising biomarkers for predicting metastasis and prognosis of patients with OS.
Collapse
Affiliation(s)
- Hanji Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Manli Tan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- International Joint Laboratory of Ministry of Education for Regeneration of Bone and Soft Tissues, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Guohua Yan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Kanglu Li
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Dejie Lu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Xiaofei Cui
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Si He
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Danqing Lei
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- The Medical and Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Bo Zhu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- International Joint Laboratory of Ministry of Education for Regeneration of Bone and Soft Tissues, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| |
Collapse
|
33
|
Characterization of Macrophages and Osteoclasts in the Osteosarcoma Tumor Microenvironment at Diagnosis: New Perspective for Osteosarcoma Treatment? Cancers (Basel) 2021; 13:cancers13030423. [PMID: 33498676 PMCID: PMC7866157 DOI: 10.3390/cancers13030423] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Due to the great genetic instability of osteosarcoma (OS), a recurrent molecular therapeutic target has not been identified to date. Therefore, characterization of the OS tumor microenvironment (TME) might offer new therapeutic perspectives. The OS2006 trial, originally designed to evaluate the impact of zoledronic acid (ZA, osteoclast-inhibitor) addition to conventional OS-therapies, was ended preliminary due to a negative impact on patient survival. Through retrospective biomarker analysis of the unique biological samples collected during the trial, we demonstrate here that ZA not only acts on harmful osteoclasts but also on protective macrophages, clarifying its detrimental effect. By multiplex immunohistochemistry, applied on additional OS biopsies, an important bipotent macrophage-population (CD168+/CD163+), homogenously distributed throughout OS tumor areas, was identified. These bipotent cells might play a determining role in the evolution of OS and offer a novel therapeutic approach. A clear definition of the macrophage populations present at diagnosis could re-enforce therapeutic decisions. Abstract Biological and histopathological techniques identified osteoclasts and macrophages as targets of zoledronic acid (ZA), a therapeutic agent that was detrimental for patients in the French OS2006 trial. Conventional and multiplex immunohistochemistry of microenvironmental and OS cells were performed on biopsies of 124 OS2006 patients and 17 surgical (“OSNew”) biopsies respectively. CSF-1R (common osteoclast/macrophage progenitor) and TRAP (osteoclast activity) levels in serum of 108 patients were correlated to response to chemotherapy and to prognosis. TRAP levels at surgery and at the end of the protocol were significantly lower in ZA+ than ZA− patients (padj = 0.0011; 0.0132). For ZA+-patients, an increase in the CSF-1R level between diagnosis and surgery and a high TRAP level in the serum at biopsy were associated with a better response to chemotherapy (p = 0.0091; p = 0.0251). At diagnosis, high CD163+ was associated with good prognosis, while low TRAP activity was associated with better overall survival in ZA− patients only. Multiplex immunohistochemistry demonstrated remarkable bipotent CD68+/CD163+ macrophages, homogeneously distributed throughout OS regions, aside osteoclasts (CD68+/CD163−) mostly residing in osteolytic territories and osteoid-matrix-associated CD68−/CD163+ macrophages. We demonstrate that ZA not only acts on harmful osteoclasts but also on protective macrophages, and hypothesize that the bipotent CD68+/CD163+ macrophages might present novel therapeutic targets.
Collapse
|
34
|
Luo ZW, Liu PP, Wang ZX, Chen CY, Xie H. Macrophages in Osteosarcoma Immune Microenvironment: Implications for Immunotherapy. Front Oncol 2020; 10:586580. [PMID: 33363016 PMCID: PMC7758531 DOI: 10.3389/fonc.2020.586580] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is a malignant primary bone tumor commonly occurring in children and adolescents. The treatment of local osteosarcoma is mainly based on surgical resection and chemotherapy, whereas the improvement of overall survival remains stagnant, especially in recurrent or metastatic cases. Tumor microenvironment (TME) is closely related to the occurrence and development of tumors, and macrophages are among the most abundant immune cells in the TME. Due to their vital roles in tumor progression, macrophages have gained increasing attention as the new target of tumor immunotherapy. In this review, we present a brief overview of macrophages in the TME and highlight the clinical significance of macrophages and their roles in the initiation and progression of osteosarcoma. Finally, we summarize the therapeutic approaches targeting macrophage, which represent a promising strategy in osteosarcoma therapies.
Collapse
Affiliation(s)
- Zhong-Wei Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Pan-Pan Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, China
- Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
35
|
Deng C, Xu Y, Fu J, Zhu X, Chen H, Xu H, Wang G, Song Y, Song G, Lu J, Liu R, Tang Q, Huang W, Wang J. Reprograming the tumor immunologic microenvironment using neoadjuvant chemotherapy in osteosarcoma. Cancer Sci 2020; 111:1899-1909. [PMID: 32232912 PMCID: PMC7293104 DOI: 10.1111/cas.14398] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor-infiltrating immune cells play a crucial role in tumor progression and response to treatment. However, the limited studies on infiltrating immune cells have shown inconsistent and even controversial results for osteosarcoma (OS). In addition, the dynamic changes of infiltrating immune cells after neoadjuvant chemotherapy are largely unknown. We downloaded the RNA expression matrix and clinical information of 80 OS patients from the TARGET database. CIBERSORT was used to evaluate the proportion of 22 immune cell types in patients based on gene expression data. M2 macrophages were found to be the most abundant immune cell type and were associated with improved survival in OS. Another cohort of pretreated OS samples was evaluated by immunohistochemistry to validate the results from CIBERSORT analysis. Matched biopsy and surgical samples from 27 patients were collected to investigate the dynamic change of immune cells and factors before and after neoadjuvant chemotherapy. Neoadjuvant chemotherapy was associated with increased densities of CD3+ T cells, CD8+ T cells, Ki67 + CD8+ T cells and PD-L1+ immune cells. Moreover, HLA-DR-CD33+ myeloid-derived suppressive cells (MDSC) were decreased after treatment. We determined that the application of chemotherapy may activate the local immune status and convert OS into an immune "hot" tumor. These findings provide rationale for investigating the schedule of immunotherapy treatment in OS patients in future clinical trials.
Collapse
Affiliation(s)
- Chuangzhong Deng
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yanyang Xu
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jianchang Fu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaojun Zhu
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Hongmin Chen
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Huaiyuan Xu
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Gaoyuan Wang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yijiang Song
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Guohui Song
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jinchang Lu
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ranyi Liu
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Qinglian Tang
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wenlin Huang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jin Wang
- Department of Musculoskeletal Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| |
Collapse
|
36
|
Corre I, Verrecchia F, Crenn V, Redini F, Trichet V. The Osteosarcoma Microenvironment: A Complex But Targetable Ecosystem. Cells 2020; 9:cells9040976. [PMID: 32326444 PMCID: PMC7226971 DOI: 10.3390/cells9040976] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 01/08/2023] Open
Abstract
Osteosarcomas are the most frequent primary bone sarcomas, affecting mainly children, adolescents, and young adults, and with a second peak of incidence in elderly individuals. The current therapeutic management, a combined regimen of poly-chemotherapy and surgery, still remains largely insufficient, as patient survival has not improved in recent decades. Osteosarcomas are very heterogeneous tumors, both at the intra- and inter-tumor level, with no identified driver mutation. Consequently, efforts to improve treatments using targeted therapies have faced this lack of specific osteosarcoma targets. Nevertheless, these tumors are inextricably linked to their local microenvironment, composed of bone, stromal, vascular and immune cells and the osteosarcoma microenvironment is now considered to be essential and supportive for growth and dissemination. This review describes the different actors of the osteosarcoma microenvironment and gives an overview of the past, current, and future strategies of therapy targeting this complex ecosystem, with a focus on the role of extracellular vesicles and on the emergence of multi-kinase inhibitors.
Collapse
Affiliation(s)
- Isabelle Corre
- INSERM, Nantes University, UMR1238 Phy-Os “Bone Sarcomas and Remodeling of Calcified Tissues”, F-44035 Nantes, France
- CNRS GDR3697 MicroNit, F-37044 Tours, France
- Correspondence: (I.C.); (V.T.)
| | - Franck Verrecchia
- INSERM, Nantes University, UMR1238 Phy-Os “Bone Sarcomas and Remodeling of Calcified Tissues”, F-44035 Nantes, France
| | - Vincent Crenn
- INSERM, Nantes University, UMR1238 Phy-Os “Bone Sarcomas and Remodeling of Calcified Tissues”, F-44035 Nantes, France
- Department of Orthopedic, Nantes Hospital, CHU Hotel-Dieu, F-44035 Nantes, France
| | - Francoise Redini
- INSERM, Nantes University, UMR1238 Phy-Os “Bone Sarcomas and Remodeling of Calcified Tissues”, F-44035 Nantes, France
| | - Valérie Trichet
- INSERM, Nantes University, UMR1238 Phy-Os “Bone Sarcomas and Remodeling of Calcified Tissues”, F-44035 Nantes, France
- CNRS GDR3697 MicroNit, F-37044 Tours, France
- Correspondence: (I.C.); (V.T.)
| |
Collapse
|
37
|
Heymann MF, Schiavone K, Heymann D. Bone sarcomas in the immunotherapy era. Br J Pharmacol 2020; 178:1955-1972. [PMID: 31975481 DOI: 10.1111/bph.14999] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 11/30/2022] Open
Abstract
Bone sarcomas are primary bone tumours found mainly in children and adolescents, as osteosarcoma and Ewing's sarcoma, and in adults in their 40s as chondrosarcoma. The last four decades the development of therapeutic approaches was based on drug combinations have shown no real improvement in overall survival. Recently oncoimmunology has allowed a better understand of the crucial role played by the immune system in the oncologic process. This led to clinical trials with the aim of reprogramming the immune system to facilitate cancer cell recognition. Immune infiltrates of bone sarcomas have been characterized and their molecular profiling identified as immune therapeutic targets. Unfortunately, the clinical responses in trials remain anecdotal but highlight the necessity to improve the characterization of tumour micro-environment to unlock the immunotherapeutic response, especially in their paediatric forms. Bone sarcomas have entered the immunotherapy era and here we overview the recent developments in immunotherapies in these sarcomas. LINKED ARTICLES: This article is part of a themed issue on The molecular pharmacology of bone and cancer-related bone diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.9/issuetoc.
Collapse
Affiliation(s)
- Marie-Françoise Heymann
- Université de Nantes, INSERM, CRCINA, Institut de Cancérologie de l'Ouest, Saint-Herblain, France.,"Tumor Heterogeneity and Precision Medicine", Institut de Cancérologie de l'Ouest, Saint Herblain, France.,INSERM, European Associated Laboratory "Sarcoma Research Unit", Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Kristina Schiavone
- Université de Nantes, INSERM, CRCINA, Institut de Cancérologie de l'Ouest, Saint-Herblain, France.,"Tumor Heterogeneity and Precision Medicine", Institut de Cancérologie de l'Ouest, Saint Herblain, France
| | - Dominique Heymann
- Université de Nantes, INSERM, CRCINA, Institut de Cancérologie de l'Ouest, Saint-Herblain, France.,"Tumor Heterogeneity and Precision Medicine", Institut de Cancérologie de l'Ouest, Saint Herblain, France.,INSERM, European Associated Laboratory "Sarcoma Research Unit", Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| |
Collapse
|
38
|
Yahiro K, Matsumoto Y, Yamada H, Endo M, Setsu N, Fujiwara T, Nakagawa M, Kimura A, Shimada E, Okada S, Oda Y, Nakashima Y. Activation of TLR4 signaling inhibits progression of osteosarcoma by stimulating CD8-positive cytotoxic lymphocytes. Cancer Immunol Immunother 2020; 69:745-758. [PMID: 32047957 DOI: 10.1007/s00262-020-02508-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/28/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND Osteosarcoma (OS) is the most common malignant bone tumor and the prognosis of advanced cases is still poor. Recently, there have been several reports suggesting the relationship between innate immunity and OS, but the detailed mechanism is unknown. We demonstrate the relationship between OS and Toll-like receptor 4 (TLR4) which is one of the most important factors in innate immunity. METHODS We established a syngenic mouse tumor model using C3H/HeN, C3H/HeJ mouse and a highly metastatic OS cell line, LM8. TLR4 activation with lipopolysaccharide (LPS) was performed on both mice and its influence on the progression of OS was evaluated. We also performed CD8 + cells depletion to examine the influence on TLR4 activation effects. RESULTS Tumor volume of C3H/HeN mice was significantly smaller and overall survival of C3H/HeN mice was significantly longer than C3H/HeJ mice. We found more CD8+ cells infiltrating in lung metastases of C3H/HeN mice and depletion of CD8+ cells canceled the antitumor effects of LPS. CONCLUSION TLR4 activation by LPS increased CD8+ cells infiltrating into lung metastases and suppressed OS progression in the mouse model. TLR4 activation may suppress the progression of OS via stimulating CD8+ cells and can be expected as a novel treatment for OS.
Collapse
Affiliation(s)
- Kenichiro Yahiro
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Fukuoka, Japan
| | - Yoshihiro Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Fukuoka, Japan.
| | - Hisakata Yamada
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Fukuoka, Japan
| | - Makoto Endo
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Fukuoka, Japan
| | - Nokitaka Setsu
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Fukuoka, Japan
| | - Toshifumi Fujiwara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Fukuoka, Japan
| | - Makoto Nakagawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Fukuoka, Japan.,Division of Orthopaedic Surgery, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Atsushi Kimura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Fukuoka, Japan
| | - Eijiro Shimada
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Fukuoka, Japan
| | - Seiji Okada
- Department of Immunobiology and Neuroscience Medical. Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Fukuoka, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Fukuoka, Japan
| |
Collapse
|
39
|
Abstract
Components of the tumor microenvironment (TME) are known to play an essential role during malignant progression, but often in a context-dependent manner. In bone and soft tissue sarcomas, disease-regulatory activities in the TME remain largely uncharacterized. This chapter introduces the cellular, structural, and chemical composition of the sarcoma TME from a pathobiological and therapeutic perspective.Sarcomas are malignant tumors with diverse features when it comes to primary tumor appearance, metastatic potential, and response to treatment. Many of the classic subtypes are mainly composed of malignant cells and are therefore assumed to be committed to autocrine signaling. Some of the tumors are infiltrated by immune cells and contain necrotic areas or excessive amounts of extracellular matrix (ECM) that regulates tissue stiffness and interstitial fluid pressure. Vascular invasion and blood vessel characteristics can in some instances be considered in the prognostic setting.Further insights into the disease-regulatory activities of the sarcoma TME will provide essential knowledge on how to develop successful combination treatments targeting not only malignant cells, but also their routes of nutrition and ability to shield themselves toward existing therapy.
Collapse
|
40
|
Stahl D, Gentles AJ, Thiele R, Gütgemann I. Prognostic profiling of the immune cell microenvironment in Ewing´s Sarcoma Family of Tumors. Oncoimmunology 2019; 8:e1674113. [PMID: 31741777 DOI: 10.1080/2162402x.2019.1674113] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
Ewing´s Sarcoma Family of Tumors (ESFT) are clinically aggressive bone and soft tissue tumors in children and young adults. Analysis of the immune tumor microenvironment (TME) provides insight into tumor evolution and novel treatment options. So far, the scarcity of immune cells in ESFT has hindered a comprehensive analysis of rare subtypes. We determined the relative fraction of 22 immune cell types using 197 microarray gene expression datasets of primary ESFT tumor samples by using CIBERSORT, a deconvolution algorithm enumerating infiltrating leucocytes in bulk tumor tissue. The most abundant cells were macrophages (mean 43% of total tumor-infiltrating leukocytes, TILs), predominantly immunosuppressive M2 type macrophages, followed by T cells (mean 23% of TILs). Increased neutrophils, albeit at low number, were associated with a poor overall survival (OS) (p = .038) and increased M2 macrophages predicted a shorter event-free survival (EFS) (p = .033). High frequency of T cells and activated NK cells correlated with prolonged OS (p = .044 and p = .007, respectively). A small patient population (9/32) with combined low infiltrating M2 macrophages, low neutrophils, and high total T cells was identified with favorable outcome. This finding was confirmed in a validation cohort of patients with follow up (11/38). When comparing the immune TME with expression of known stemness genes, hypoxia-inducible factor 1 α (HIF1α) correlated with high abundance of macrophages and neutrophils and decreased T cell levels. The immune TME in ESFTs shows a distinct composition including rare immune cell subsets that in part may be due to expression of HIF1α.
Collapse
Affiliation(s)
- David Stahl
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Andrew J Gentles
- Departments of Medicine and Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Ralf Thiele
- Department of Computer Science, Bonn-Rhine-Sieg University of Applied Sciences, Sankt Augustin, Germany
| | - Ines Gütgemann
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
41
|
The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma. Cell Immunol 2019; 343:103711. [DOI: 10.1016/j.cellimm.2017.10.011] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022]
|
42
|
Malzahn J, Kastrenopoulou A, Papadimitriou-Olivgeri I, Papachristou DJ, Brown JM, Oppermann U, Athanasou NA. Immunophenotypic expression of UCP1 in hibernoma and other adipose/non adipose soft tissue tumours. Clin Sarcoma Res 2019; 9:8. [PMID: 31114671 PMCID: PMC6515671 DOI: 10.1186/s13569-019-0118-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/06/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Uncoupling protein 1 (UCP1) is a mitochondral protein transporter that uncouples electron transport from ATP production. UCP1 is highly expressed in brown adipose tissue (BAT), including hibernomas, but its expression in other adipose tumours is uncertain. UCP1 has also been found in other tissues (e.g. smooth muscle) but whether it is expressed in non-adipose benign and malignant soft tissue tumours is unknown. METHODS Immunohistochemical staining of normal (axillary) BAT and subcutaneous/abdominal white adipose tissue (WAT) as well as a wide range of benign and malignant primary soft tissue tumours (n = 171) was performed using a rabbit polyclonal antibody to UCP1. BAT and hibernomas were also stained by immunohistochemistry with monoclonal and polyclonal antibodies to adipose/non-adipose tumour markers in order to characterise the immunophenotype of BAT cells. RESULTS UCP1 was strongly expressed in the cytoplasm of brown fat cells in BAT and hibernomas, both of which also expressed aP2, S100, CD31, vimentin and calponin. UCP1 was not expressed in WAT or other adipose tumours with the exception a few tumour cells in pleomorphic liposarcoma. UCP1 was variably expressed by tumour cells in a few non-adipose sarcomas including leiomyosarcoma, rhabdomyosarcoma, alveolar soft part sarcoma, synovial sarcoma and clear cell sarcoma. CONCLUSIONS UCP1 is strongly expressed in BAT but not WAT and is found in all hibernomas and a few pleomorphic liposarcomas but not in other adipose tumours. UCP1 expression in a few non-adipose soft tissue sarcomas may possibly reflect origin of tumour cells from a common mesenchymal stem cell precursor and/or developmental pathway.
Collapse
Affiliation(s)
- Jessica Malzahn
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX7 HE UK
| | - Afroditi Kastrenopoulou
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX7 HE UK
- Laboratory of Bone and Soft Tissue Studies, Department of Anatomy-Histology-Embryology, University Patras Medical School, Patras, Greece
| | - Ioanna Papadimitriou-Olivgeri
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX7 HE UK
- Laboratory of Bone and Soft Tissue Studies, Department of Anatomy-Histology-Embryology, University Patras Medical School, Patras, Greece
| | - Dionysios J. Papachristou
- Laboratory of Bone and Soft Tissue Studies, Department of Anatomy-Histology-Embryology, University Patras Medical School, Patras, Greece
| | - Jennifer M. Brown
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX7 HE UK
| | - Udo Oppermann
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX7 HE UK
| | - Nick A. Athanasou
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX7 HE UK
| |
Collapse
|
43
|
Withers SS, Skorupski KA, York D, Choi JW, Woolard KD, Laufer-Amorim R, Sparger EE, Rodriguez CO, McSorley SJ, Monjazeb AM, Murphy WJ, Canter RJ, Rebhun RB. Association of macrophage and lymphocyte infiltration with outcome in canine osteosarcoma. Vet Comp Oncol 2018; 17:49-60. [PMID: 30156029 DOI: 10.1111/vco.12444] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022]
Abstract
Immunotherapeutic strategies have shown promise for the treatment of canine osteosarcoma (cOSA). Very little is known about the immune microenvironment within cOSA, however, limiting our ability to identify potential immune targets and biomarkers of therapeutic response. We therefore prospectively assessed the disease-free interval (DFI) and overall survival time (ST) of 30 dogs with cOSA treated with amputation and six doses of adjuvant carboplatin. We then quantified lymphocytic (CD3+, FOXP3+) and macrophage (CD204+) infiltrates within the primary tumours of this cohort using immunohistochemistry, and evaluated their association with outcome. Overall, the median DFI and ST were 392 and 455 days, respectively. The median number of CD3+ and FOXP3+ infiltrates were 45.8 cells/mm2 (4.6-607.6 cells/mm2 ) and 8.5 mm2 (0-163.1 cells/mm2 ), respectively. The median area of CD204+ macrophages was 4.7% (1.3%-23.3%), and dogs with tumours containing greater than 4.7% CD204+ macrophages experienced a significantly longer DFI (P = 0.016). Interestingly, a significantly lower percentage of CD204+ macrophages was detected in cOSA arising from the proximal humerus compared to other appendicular bone locations (P = 0.016). Lymphocytic infiltrates did not appear to correlate with outcome in cOSA. Overall, our findings suggest that macrophages may play a role in inhibiting cOSA progression, as has been suggested in human osteosarcoma.
Collapse
Affiliation(s)
- Sita S Withers
- The Comparative Oncology Laboratory and Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Katherine A Skorupski
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Daniel York
- The Comparative Oncology Laboratory and Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Jin W Choi
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Kevin D Woolard
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Renee Laufer-Amorim
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Ellen E Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, California
| | | | - Stephen J McSorley
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Arta M Monjazeb
- Comprehensive Cancer Center, Department of Radiation Oncology, School of Medicine, University of California-Davis, Sacramento, California
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California-Davis, Sacramento, California
| | - Robert J Canter
- Comprehensive Cancer Center, Department of Surgery, School of Medicine, University of California-Davis, Sacramento, California
| | - Robert B Rebhun
- The Comparative Oncology Laboratory and Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California
| |
Collapse
|
44
|
Walter J, Kapitza S, Krayenbühl N, Tarnutzer AA. Clival Chondrosarcoma Associated With an Intra-Axial Cystic Medullary Lesion Responsive to Steroids. Front Neurol 2018; 9:502. [PMID: 29997571 PMCID: PMC6028611 DOI: 10.3389/fneur.2018.00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/08/2018] [Indexed: 11/19/2022] Open
Abstract
Introduction: Here we present a 75-year-old patient who was admitted with acute-onset right-sided hemiparesis, dysphagia, dysarthria and nystagmus. Repeated MRI scans showed two lesions with contact to one another: one solid stationary extra-axial lesion at the caudal part of the clivus and a rapidly growing intra-axial cystic lesion at the level of the medulla oblongata. Biopsy of the solid lesion demonstrated a low-grade chondrosarcoma, while no tissue sample of the cystic lesion could be retrieved. After initiation of dexamethasone therapy the cystic lesion markedly regressed. Background: A literature search on published cases with the same combination of a stationary solid extra-axial mass at the caudal part of the clivus and a growing intra-axial cystic mass in the medulla oblongata was negative, indicating that the case described here is both unique and novel. Discussion: Considering the rapid progression of symptoms and growth on MR-imaging in combination with the marked response to steroids, an inflammatory response linked to the chondrosarcoma is most likely. At the same time other possible explanations as a second neoplasm, an abscess or an ischemic lesion seem unlikely. Concluding remarks: This case underlines an unusual complication of a rare brainstem tumor and outlines both the differential diagnosis and potential treatment options. For such cystic lesions in combination with chondrosarcoma, a treatment course with steroids should be considered along with surgical exploration necessary to obtain the diagnosis and for potential reduction of mass-effect on the medulla oblongata.
Collapse
Affiliation(s)
- Johannes Walter
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Sandra Kapitza
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Niklaus Krayenbühl
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Alexander A Tarnutzer
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Du X, Gao Y, Sun P, Chen Y, Chang H, Wei B. CD163 +/CD68 + tumor-associated macrophages in angiosarcoma with lymphedema. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2106-2111. [PMID: 31938319 PMCID: PMC6958200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/21/2018] [Indexed: 06/10/2023]
Abstract
Angiosarcoma of soft tissue is a group of aggressive malignancies with high mortality. However, molecular pathogenesis and therapeutic targets of angiosarcoma remain to be established. We explored the influence of M2-polarized tumor-associated macrophages (TAMs) on the formation of angiosarcoma. CD163+/CD68+ macrophages were determined by immunohistochemistry from a series of 38 samples, including 17 cases of angiosarcoma with lymphedema and 21 cases of lymphangioma. The number of CD163+/CD68+ macrophages in angiosarcoma was significantly higher than that in lymphangioma. VEGFc was universally expressed in both angiosarcoma tumor cells and CD163+/CD68+ macrophages. VEGFR3 was expressed only in angiosarcoma tumor cells. Our study indicates a potential role of TAMs in the development of angiosarcoma with lymphedema. The VEGF signaling pathway may thus serve as a potential target for treatment of angiosarcoma.
Collapse
Affiliation(s)
- Xuemei Du
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical UniversityBeijing, China
| | - Ying Gao
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical UniversityBeijing, China
| | - Pingping Sun
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical UniversityBeijing, China
| | - Yizhi Chen
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical UniversityBeijing, China
| | - Hong Chang
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical UniversityBeijing, China
| | - Bojun Wei
- Department of Thyroid and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
46
|
Brown HK, Schiavone K, Gouin F, Heymann MF, Heymann D. Biology of Bone Sarcomas and New Therapeutic Developments. Calcif Tissue Int 2018; 102:174-195. [PMID: 29238848 PMCID: PMC5805807 DOI: 10.1007/s00223-017-0372-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023]
Abstract
Bone sarcomas are tumours belonging to the family of mesenchymal tumours and constitute a highly heterogeneous tumour group. The three main bone sarcomas are osteosarcoma, Ewing sarcoma and chondrosarcoma each subdivided in diverse histological entities. They are clinically characterised by a relatively high morbidity and mortality, especially in children and adolescents. Although these tumours are histologically, molecularly and genetically heterogeneous, they share a common involvement of the local microenvironment in their pathogenesis. This review gives a brief overview of their specificities and summarises the main therapeutic advances in the field of bone sarcoma.
Collapse
Affiliation(s)
- Hannah K Brown
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
- European Associated Laboratory, "Sarcoma Research Unit", INSERM, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Kristina Schiavone
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
- European Associated Laboratory, "Sarcoma Research Unit", INSERM, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - François Gouin
- European Associated Laboratory, "Sarcoma Research Unit", Faculty of Medicine, INSERM, UMR1238, INSERM, Nantes, France
- Faculty of Medicine, University of Nantes, 44035, Nantes, France
| | - Marie-Françoise Heymann
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
- Institut de Cancérologie de l'Ouest, site René Gauducheau, INSERM, UMR 1232, 44805, Saint-Herblain, France
- European Associated Laboratory, "Sarcoma Research Unit", INSERM, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Dominique Heymann
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- Faculty of Medicine, University of Nantes, 44035, Nantes, France.
- Institut de Cancérologie de l'Ouest, site René Gauducheau, INSERM, UMR 1232, 44805, Saint-Herblain, France.
- European Associated Laboratory, "Sarcoma Research Unit", INSERM, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
47
|
Gomez-Brouchet A, Illac C, Gilhodes J, Bouvier C, Aubert S, Guinebretiere JM, Marie B, Larousserie F, Entz-Werlé N, de Pinieux G, Filleron T, Minard V, Minville V, Mascard E, Gouin F, Jimenez M, Ledeley MC, Piperno-Neumann S, Brugieres L, Rédini F. CD163-positive tumor-associated macrophages and CD8-positive cytotoxic lymphocytes are powerful diagnostic markers for the therapeutic stratification of osteosarcoma patients: An immunohistochemical analysis of the biopsies fromthe French OS2006 phase 3 trial. Oncoimmunology 2017; 6:e1331193. [PMID: 28932633 DOI: 10.1080/2162402x.2017.1331193] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/15/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022] Open
Abstract
The French phase 3 trial (OS 2006) testing zoledronic acid, an osteoclast inhibitor, with chemotherapy and surgery did not improve the outcome of patients with osteosarcoma (OS). To understand this unexpected result, the presence of infiltrating immune cells was investigated in 124 pre-therapeutic biopsies of patients enrolled in the trial. The percentage of CD68/CD163 tumor-infiltrating macrophages (TAMs), CD8+ lymphocytes, osteoclasts, and the PD1/PDL-1 checkpoint were assessed by immunohistochemistry. M1/M2 macrophage polarization was characterized by pSTAT1/CMAF staining. The expression of these biomarkers was correlated with clinical outcome. No statistical correlations were found with response to chemotherapy. High CD163 levels (>50% of cells per core; 43.8% of patients) were associated with CMAF nuclear expression and significantly correlated with better overall survival (p = 0.0025) and longer metastasis progression-free survival (MPFS, p = 0.0315) independently of metastatic status (p = 0.002). Only a trend was observed for patients with high CD68-positive cells (p = 0.0582). CD8+ staining was positive in >50% of cases with a median staining of 1%. Lower CD8+ levels were associated with metastatic disease at diagnosis and the presence of CD8-positive cells significantly correlated with improved overall survival in zoledronate-treated patients (p = 0.0415). PD1/PDL-1 staining was negative in >80% of cases and was not correlated with outcome. Finally, CD163-positive TAMs and CD8 positive cells are crucial prognostic biomarkers in OS, whereas PD1/PDL-1 checkpoint plays a minor role. For the first time, we described a correlation between CD8 positive cells and survival in zoledronate-treated patients. The immunohistochemical analysis of the microenvironment in biopsies may represent a novel tool for therapeutic stratification.
Collapse
Affiliation(s)
- Anne Gomez-Brouchet
- Department of Pathology, IUCT-Oncopole, CHU of Toulouse and University of Toulouse, Pharmacology and Structural Biology Institute, Toulouse, France
| | - Claire Illac
- Department of Pathology, IUCT-Oncopole, CHU of Toulouse and University of Toulouse, Pharmacology and Structural Biology Institute, Toulouse, France
| | - Julia Gilhodes
- Biostatistics Unit, Claudius Regaud Institut, IUCT-Oncopole, Toulouse, France
| | | | | | | | | | - Frédérique Larousserie
- AP-HP, Hôpital Cochin, Service de Pathologie and Université Paris Descartes, Paris, France
| | | | - Gonzague de Pinieux
- Department of Pathology, CHU Tours, Tours, France.,INSERM UMR1238, Université de Nantes, Nantes, France
| | - Thomas Filleron
- Biostatistics Unit, Claudius Regaud Institut, IUCT-Oncopole, Toulouse, France
| | - Véronique Minard
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Vincent Minville
- Medical School of Rangueil, University Paul Sabatier, Toulouse, France
| | - Eric Mascard
- Department of Pediatric Orthopedic Surgery, Necker Hospital, Paris, France
| | - François Gouin
- INSERM UMR1238, Université de Nantes, Nantes, France.,Department of Orthopedic Surgery, CHU Nantes, Nantes, France
| | | | | | | | | | | |
Collapse
|
48
|
Kelleher FC, O'Sullivan H. Monocytes, Macrophages, and Osteoclasts in Osteosarcoma. J Adolesc Young Adult Oncol 2017; 6:396-405. [PMID: 28263668 DOI: 10.1089/jayao.2016.0078] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Macrophages appear to have a fundamental role in the pathogenesis of osteosarcoma. These highly diverse plastic cells are subdivided into classical or inflammatory macrophages known as M1 and alternative macrophages, which decrease inflammation and are reparative, called M2. Although primary and metastatic osteosarcomas are infiltrated with M2 macrophages, targeting the M1 macrophages with the immune adjuvant muramyl tripeptide phosphatidyl ethanolamine (MTP-PE) has been the greatest recent therapeutic advance in osteosarcoma. This discrepancy between the presence of M2 and activation of M1 macrophages is intriguing and is likely explained either by the plasticity of M1 and M2 macrophages or nonclassical patrolling monocytes (PMos). To date, MTP-PE has been approved in combination with chemotherapy for nonmetastatic osteosarcoma, but its use in metastatic tumors has not been investigated. In this review, we focus on macrophages, monocytes, and osteoclasts, their role in osteosarcoma, and the potential for targeting these cells in this disease.
Collapse
Affiliation(s)
- Fergal C Kelleher
- 1 Trinity College Dublin , Dublin, Ireland .,2 Department of Medical Oncology, St. James Hospital , Dublin, Ireland
| | - Hazel O'Sullivan
- 2 Department of Medical Oncology, St. James Hospital , Dublin, Ireland .,3 Whangarei Base Hospital , Whangarei, New Zealand
| |
Collapse
|