1
|
Geng Z, Zuo L, Li J, Yin L, Yang J, Duan T, Wang L, Zhang X, Song X, Wang Y, Hu J. Ginkgetin improved experimental colitis by inhibiting intestinal epithelial cell apoptosis through EGFR/PI3K/AKT signaling. FASEB J 2024; 38:e23817. [PMID: 39003633 DOI: 10.1096/fj.202400211rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Excessive apoptosis of intestinal epithelial cells leads to intestinal barrier dysfunction, which is not only one of the pathological features of inflammatory bowel disease (IBD) but also a therapeutic target. A natural plant extract, Ginkgetin (GK), has been reported to have anti-apoptotic activity, but its role in IBD is unknown. This study aimed to explore whether GK has anti-colitis effects and related mechanisms. An experimental colitis model induced by dextran sulfate sodium (DSS) was established, and GK was found to relieve colitis in DSS-induced mice as evidenced by improvements in weight loss, colon shortening, Disease Activity Index (DAI), macroscopic and tissue scores, and proinflammatory mediators. In addition, in DSS mice and TNF-α-induced colonic organoids, GK protected the intestinal barrier and inhibited intestinal epithelial cell apoptosis, by improving permeability and inhibiting the number of apoptotic cells and the expression of key apoptotic regulators (cleaved caspase 3, Bax and Bcl-2). The underlying mechanism of GK's protective effect was explored by bioinformatics, rescue experiments and molecular docking, and it was found that GK might directly target and activate EGFR, thereby interfering with PI3K/AKT signaling to inhibit apoptosis of intestinal epithelial cells in vivo and in vitro. In conclusion, GK inhibited intestinal epithelial apoptosis in mice with experimental colitis, at least in part, by activating EGFR and interfering with PI3K/AKT activation, explaining the underlying mechanism for ameliorating colitis, which may provide new options for the treatment of IBD.
Collapse
Affiliation(s)
- Zhijun Geng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
| | - Lugen Zuo
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Jing Li
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lixia Yin
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Jingjing Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Ting Duan
- School of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Lian Wang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xiaofeng Zhang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
| | - Xue Song
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
| | - Yueyue Wang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Jianguo Hu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
2
|
Perico L, Remuzzi G, Benigni A. Sirtuins in kidney health and disease. Nat Rev Nephrol 2024; 20:313-329. [PMID: 38321168 DOI: 10.1038/s41581-024-00806-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 02/08/2024]
Abstract
Sirtuins (SIRTs) are putative regulators of lifespan in model organisms. Since the initial discovery that SIRTs could promote longevity in nematodes and flies, the identification of additional properties of these proteins has led to understanding of their roles as exquisite sensors that link metabolic activity to oxidative states. SIRTs have major roles in biological processes that are important in kidney development and physiological functions, including mitochondrial metabolism, oxidative stress, autophagy, DNA repair and inflammation. Furthermore, altered SIRT activity has been implicated in the pathophysiology and progression of acute and chronic kidney diseases, including acute kidney injury, diabetic kidney disease, chronic kidney disease, polycystic kidney disease, autoimmune diseases and renal ageing. The renoprotective roles of SIRTs in these diseases make them attractive therapeutic targets. A number of SIRT-activating compounds have shown beneficial effects in kidney disease models; however, further research is needed to identify novel SIRT-targeting strategies with the potential to treat and/or prevent the progression of kidney diseases and increase the average human healthspan.
Collapse
Affiliation(s)
- Luca Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.
| |
Collapse
|
3
|
Mohammadi Zonouz A, Ghasemzadeh Rahbardar M, Hosseinzadeh H. The molecular mechanisms of ginkgo (Ginkgo biloba) activity in signaling pathways: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155352. [PMID: 38342017 DOI: 10.1016/j.phymed.2024.155352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/30/2023] [Accepted: 01/08/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND One of the most unique plants that have ever grown on the planet is Ginkgo biloba L., a member of the Ginkgoaceae family with no close living relatives. The existence of several differently structured components of G. biloba has increased the chemical variety of herbal therapy. Numerous studies that investigated the biochemical characteristics of G. biloba suggest this plant as a potential treatment for many illnesses. PURPOSE Review the molecular mechanisms involved in the signaling pathways of G. biloba activity in varied circumstances and its potential as a novel treatment for various illnesses. METHODS Studies focusing on the molecular processes and signaling pathways of compounds and extracts of G. biloba were found and summarized using the proper keywords and operators from Google Scholar, PubMed, Web of Science, and Scopus without time restrictions. RESULTS G. biloba exerts its effects through its anti-inflammatory, anti-apoptotic, anti-cancer, neuroprotective, cardioprotective, hepatoprotective, antiviral, antibacterial, pulmoprotective, renoprotective, anti-osteoporosis, anti-melanogenic, retinoprotective, otoprotective, adipogenic, and anti-adipogenic properties. The most important mechanisms involved in these actions are altering the elevation of ROS formation, inhibiting NADPH oxidases activation, altering the expression of antioxidant enzymes, downregulating MAPKs (p38 MAPK and ERK, and JNK) and AP-1, increasing cAMP, inactivating Stat5, activating the AMPK signaling pathway, affecting Stat3/JAK2, NF-κB, Nrf-2, mTOR, HGF/c-Met, Wnt/β-catenin and BMP signaling pathways, and changing the mitochondrial transmembrane potential, the Bax/Bcl-2 ratio, the release of Cyc from mitochondria to cytosol, the protein cleavage of caspases 3, 7, 8, 9, and 12, poly (ADP-ribose) polymerase, and MMPs levels. CONCLUSIONS G. biloba and its components have gained attention in recent years for their therapeutic benefits, such as their anti-inflammatory, antioxidant, anti-apoptotic, and apoptotic effects. By understanding their molecular mechanisms and signaling pathways, potential novel medicines might be developed in response to the rising public desire for new therapies.
Collapse
Affiliation(s)
| | | | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Sharma S, Mahanty M, Rahaman SG, Mukherjee P, Dutta B, Khan MI, Sankaran KR, He X, Kesavalu L, Li W, Rahaman SO. Avocado-derived extracellular vesicles loaded with ginkgetin and berberine prevent inflammation and macrophage foam cell formation. J Cell Mol Med 2024; 28:e18177. [PMID: 38494843 PMCID: PMC10945093 DOI: 10.1111/jcmm.18177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/06/2024] [Accepted: 01/31/2024] [Indexed: 03/19/2024] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of aorta, remains the major cause of morbidity and mortality among cardiovascular disease patients. Macrophage foam cell formation and inflammation are critically involved in early stages of atherosclerosis, hence chemopreventive targeting of foam cell formation by nutraceuticals may be a promising approach to curbing the progression of atherosclerosis. However, many nutraceuticals including berberine and ginkgetin have low stability, tissue/cell penetration and bioavailability resulting in inadequate chemotherapeutic effects of these nutraceuticals. We have used avocado-derived extracellular vesicles (EV) isolated from avocado (EVAvo ) as a novel carrier of nutraceuticals, in a strategy to alleviate the build-up of macrophage foam cells and expression of inflammatory genes. Our key findings are: (i) Avocado is a natural source of plant-derived EVs as shown by the results from transmission electron microscopy, dynamic light scattering and NanoBrook Omni analysis and atomic force microscopy; (ii) EVAvo are taken up by macrophages, a critical cell type in atherosclerosis; (iii) EVAvo can be loaded with high amounts of ginkgetin and berberine; (iv) ginkgetin plus berberine-loaded EVAvo (EVAvo(B+G) ) suppress activation of NFκB and NLRP3, and inhibit expression of pro-inflammatory and atherogenic genes, specifically Cd36, Tnfα, Il1β and Il6; (v) EVAvo(B+G) attenuate oxidized low-density lipoprotein (oxLDL)-induced macrophage foam cell formation and (vi) EVAvo(B+G) inhibit oxLDL uptake but not its cell surface binding during foam cell formation. Overall, our results suggest that using EVAvo as a natural carrier of nutraceuticals may improve strategies to curb the progression of atherosclerosis by limiting inflammation and pro-atherogenic responses.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkMarylandUSA
| | - Manisha Mahanty
- Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkMarylandUSA
| | - Suneha G. Rahaman
- Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkMarylandUSA
| | - Pritha Mukherjee
- Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkMarylandUSA
| | - Bidisha Dutta
- Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkMarylandUSA
| | - Mohammad Imran Khan
- Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkMarylandUSA
| | | | - Xiaoming He
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
| | - Lakshmyya Kesavalu
- Department of Periodontology and Oral Biology, College of DentistryUniversity of FloridaGainesvilleFloridaUSA
| | - Wei Li
- Department of Biomedical Sciences, Joan C. Edwards School of MedicineMarshall UniversityHuntingtonWest VirginiaUSA
| | - Shaik O. Rahaman
- Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
5
|
Wang C, Bai Y, Li T, Liu J, Wang Y, Ju S, Yao W, Xiong B. Ginkgetin exhibits antifibrotic effects by inducing hepatic stellate cell apoptosis via STAT1 activation. Phytother Res 2024; 38:1367-1380. [PMID: 38217097 DOI: 10.1002/ptr.8106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/15/2024]
Abstract
Liver fibrosis affects approximately 800 million patients worldwide, with over 2 million deaths each year. Nevertheless, there are no approved medications for treating liver fibrosis. In this study, we investigated the impacts of ginkgetin on liver fibrosis and the underlying mechanisms. The impacts of ginkgetin on liver fibrosis were assessed in mouse models induced by thioacetamide or bile duct ligation. Experiments on human LX-2 cells and primary mouse hepatic stellate cells (HSCs) were performed to explore the underlying mechanisms, which were also validated in the mouse models. Ginkgetin significantly decreased hepatic extracellular matrix deposition and HSC activation in the fibrotic models induced by thioacetamide (TAA) and bile duct ligation (BDL). Beneficial effects also existed in inhibiting hepatic inflammation and improving liver function. In vitro experiments showed that ginkgetin markedly inhibited HSC viability and induced HSC apoptosis dose-dependently. Mechanistic studies revealed that the antifibrotic effects of ginkgetin depend on STAT1 activation, as the effects were abolished in vitro after STAT1 silencing and in vivo after inhibiting STAT1 activation by fludarabine. Moreover, we observed a meaningful cross-talk between HSCs and hepatocytes, in which IL-6, released by ginkgetin-induced apoptotic HSCs, enhanced hepatocyte proliferation by activating STAT3 signaling. Ginkgetin exhibits antifibrotic effects by inducing HSC apoptosis via STAT1 activation and enhances hepatocyte proliferation secondary to HSC apoptosis via the IL-6/STAT3 pathway.
Collapse
Affiliation(s)
- Chaoyang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongqiang Li
- Department of Interventional Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingliang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuguang Ju
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Xiong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Xu G, Dong F, Su L, Tan ZX, Lei M, Li L, Wen D, Zhang F. The role and therapeutic potential of nuclear factor κB (NF-κB) in ischemic stroke. Biomed Pharmacother 2024; 171:116140. [PMID: 38211425 DOI: 10.1016/j.biopha.2024.116140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Stroke is a prevalent cerebrovascular condition with a global impact, causing significant rates of illness and death. Despite extensive research, the available treatment options for stroke remain restricted. Hence, it is crucial to gain a deeper understanding of the molecular mechanisms associated with the onset and advancement of stroke in order to establish a theoretical foundation for novel preventive and therapeutic approaches. NF-κB, also known as nuclear factor κB, is a transcription factor responsible for controlling the expression of numerous genes and plays a crucial role in diverse physiological processes. NF-κB is triggered and regulates neuroinflammation and other processes after stroke, promoting the generation of cytokine storms and contributing to the advancement of ischemic stroke (IS). Therefore, NF-κB could potentially play a vital role in stroke by regulating diverse pathophysiological processes. This review provides an overview of the functions of NF-κB in stroke and its governing mechanisms. In addition, our attention is directed towards various potential therapies that aim to inhibit the NF-κB signaling pathway in order to offer valuable insights for the advancement of innovative treatment approaches for stroke.
Collapse
Affiliation(s)
- Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Lei Su
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding 071000, PR China
| | - Zi-Xuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Mingcheng Lei
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Lina Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, PR China.
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
7
|
Li XJ, Liu T, Wang Y. Allicin ameliorates sepsis-induced acute kidney injury through Nrf2/HO-1 signaling pathway. J Nat Med 2024; 78:53-67. [PMID: 37668824 PMCID: PMC10764392 DOI: 10.1007/s11418-023-01745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Acute kidney injury (AKI) is a complication that can be induced by different factors. Allicin is a class of organic sulfur compounds with anticancer and antibacterial effects, and has not been reported in sepsis-induced AKI (S-AKI). S-AKI was induced in c57BL/6 mice by cecal ligation puncture. In response to the treatment of allicin, the survival rate of mice with S-AKI was increased. Reduced levels of serum creatinine, blood urea nitrogen, UALB, KIM-1 and NGAL indicated an improvement in renal function of S-AKI mice. Allicin inhibited the inflammation and cell apoptosis, which evidenced by decreased levels of inflammatory cytokines and apoptosis-related proteins. Oxidative stress was evaluated by the levels of oxidative stress biomarkers, and suppressed by allicin. In addition, allicin-alleviated mitochondrial dysfunction was characterized by decreased JC-1 green monomer. These effects of allicin were also evidenced in HK2 cells primed with lipopolysaccharide (LPS). Both in vivo and in vitro experiments showed that the nuclear translocation of Nrf2 and the expression of HO-1 increased after allicin treatment, which was confirmed by ML385 and CDDO-Me. In summary, this study revealed the alleviating effect of allicin on S-AKI and demonstrated the promotive effect of allicin on nuclear translocation of Nrf2 for the first time. It was inferred that allicin inhibited the progression of S-AKI through Nrf2/HO-1 signaling pathway. This study makes contributions to the understanding of the roles of allicin in S-AKI.
Collapse
Affiliation(s)
- Xiao-Jun Li
- Department of Nephrology, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China
| | - Ting Liu
- Department of General Practice, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China
| | - Yuan Wang
- Department of Nephrology, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China.
| |
Collapse
|
8
|
Wang C, Bai Y, Li T, Liu J, Wang Y, Ju S, Yao W, Xiong B, Zhou G. Beneficial effects of ginkgetin on improving nonalcoholic steatohepatitis characterized by bulk and single-cell RNA sequencing analysis. Front Pharmacol 2023; 14:1267445. [PMID: 37860111 PMCID: PMC10582714 DOI: 10.3389/fphar.2023.1267445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Background and aims: Nonalcoholic steatohepatitis (NASH) has become one of the major causes of cirrhosis and liver failure. However, there are currently no approved medications for managing NASH. Our study was designed to assess the effects of ginkgetin on NASH and the involved mechanisms. Methods: We constructed a mouse model of NASH by high-fat diet for 24 weeks. The effects of ginkgetin on NASH were evaluated by histological study, Western blot, and biochemical analysis. RNA Sequencing (RNA-Seq) analysis was used to investigate the alteration in gene expression and signaling pathways at bulk and single-cell levels. Results: Administration of ginkgetin resulted in a marked improvement in hepatic lipid accumulation, inflammation, and fibrosis in the NASH model. And these results were supported by bulk RNA-Seq analysis, in which the related signaling pathways and gene expression were markedly downregulated. Furthermore, single-cell RNA-Seq (scRNA-Seq) analysis revealed that the effects of ginkgetin on NASH were associated with the reprogramming of macrophages, hepatic stellate cells, and endothelial cells. Especially, ginkgetin induced a marked decrease in macrophages and a shift from pro-inflammatory to anti-inflammatory phenotype in NASH mice. And the NASH-associated macrophages (NAMs), which emerge during NASH, were also significantly downregulated by ginkgetin. Conclusion: Ginkgetin exhibits beneficial effects on improving NASH, supported by bulk and single-cell RNA-Seq. Our study may promote pharmacological therapy for NASH and raise the existent understanding of NASH.
Collapse
Affiliation(s)
- Chaoyang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongqiang Li
- Department of Interventional Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingliang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuguang Ju
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Xiong
- Department of Interventional Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guofeng Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Alherz FA, Negm WA, El-Masry TA, Elmorshedy KE, El-Kadem AH. The potential beneficial role of Ginkgetin in doxorubicin-induced hepatotoxicity: Elucidating the underlying claim. Biomed Pharmacother 2023; 165:115010. [PMID: 37343436 DOI: 10.1016/j.biopha.2023.115010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023] Open
Abstract
Doxorubicin (DOX) is a widely used chemotherapeutic agent for various tumors treatment; apart from its chemotherapeutic activity, the traditional usage of DOX has been limited by its adverse effects on multiple organs, mainly hepatotoxicity. The molecular mechanisms underlying DOX hepatotoxicity are mainly due to the production of reactive oxygen species (ROS) inducing oxidative stress, diminishing antioxidant enzymes, apoptosis, inflammation, and mitochondrial dysfunction. Thus, there is an urgent need to develop a therapy that minimizes DOX hepatotoxicity and widens its use in various types of cancers without fear of its serious hepatotoxicity. Ginkgetin (GINK), a natural biflavonoid, exhibits diverse actions, including promising free radical scavenging, antioxidant, and anti-inflammatory activities. So, this study's objectives were to determine whether GINK could mitigate DOX's hepatotoxic effects and look into a putative hepatoprotective molecular pathway. Mice were divided into five groups: Normal control, control GINK 100, Untreated DOX group, and DOX groups treated with GINK (50 and 100 mg/kg) intraperitoneally daily for four days before DOX administration and an additional three days afterward. GINK 100 pretreatment showed marked protection from DOX hepatotoxicity and also attenuation of histopathological structural alterations. These outcomes were corroborated biochemically by a considerable decrease in alanine aminotransferases, aspartate aminotransferase, and alkaline phosphatase levels. GINK significantly augmented silent information regulator 1 and nuclear translocation of NF-E2-related factor 2 and repressed the expression and protein levels of forkhead box protein O1, inducible nitric oxide synthase, and P53 relative to DOX group. GINK alleviated oxidative stress and induced significant anti-inflammatory effects via suppression of interleukin-6, nuclear factor Kabba B, and iNOS respectively. This study is the first to investigate GINK's potentially beneficial effects in acute DOX hepatotoxicity, possibly exhibiting antioxidant, anti-inflammatory, and anti-apoptotic effects by modulation of Sirt1/FOXO-1/NF-κB Signal.
Collapse
Affiliation(s)
- Fatemah A Alherz
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Kadreya E Elmorshedy
- Anatomy and Embryology department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Aya H El-Kadem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
10
|
Chen X, Zhao T, Du J, Guan X, Yu H, Wang D, Wang C, Meng Q, Yao J, Sun H, Liu K, Wu J. Comparative Inhibitory Effects of Natural Biflavones from Ginkgo against Human CYP1B1 in Recombinant Enzymes and MCF-7 Cells. PLANTA MEDICA 2023; 89:397-407. [PMID: 36064115 DOI: 10.1055/a-1936-4807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Human cytochrome P450 1B1 (CYP1B1) is an extrahepatic enzyme overexpressed in many tumors and associated with angiogenesis. Ginkgetin, isoginkgetin, sciadopitysin, and amentoflavone, the primary biflavones found in Ginkgo biloba, have excellent anti-inflammatory and anti-tumor effects. However, the effect of biflavones on CYP1B1 activities remains unknown. In this study, 7-ethoxyresorufin O-deethylation (EROD) was used to characterize the activities of CYP1 families. The impacts of four ginkgo biflavones on CYP1B1 activity and the cellular protein expression of CYP1B1 were systematically investigated. The results showed that amentoflavone with six hydroxyl substituents exhibited the most potent selective inhibitory effect on CYP1B1 activity with IC50 of 0.054 µM in four biflavones. Sciadopitysin, with three hydroxyl and three methoxy substituents, had the weakest inhibitory activity against CYP1B1. Ginkgetin and isoginkgetin, both with four hydroxyl and two methoxy substituents, showed similar inhibitory intensity towards CYP1B1 with IC50 values of 0.289 and 0.211 µM, respectively. Kinetic analysis showed that ginkgetin and amentoflavone inhibited CYP1B1 in a non-competitive mode, whereas sciadopitysin and isoginkgetin induced competitive or mixed types of inhibition. Notably, four ginkgo biflavones were also confirmed to suppress the protein expressions of CYP1B1 and AhR in MCF-7. Furthermore, molecular docking studies indicated more hydrogen bonds formed between amentoflavone and CYP1B1, which might explain the strongest inhibitory action towards CYP1B1. In summary, these findings suggested that biflavones remarkably inhibited both the activity and protein expression of CYP1B1 and the inhibitory activities enhanced with the increasing hydroxyl substitution, providing new insights into the anti-tumor potentials of biflavones.
Collapse
Affiliation(s)
- Xiaodong Chen
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Tingting Zhao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jie Du
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xintong Guan
- College of Basic Medicine, Dalian Medical University, Dalian, China
| | - Hong Yu
- Department of Pharmacy, Dalian Municipal Women and Children's Medical Center, Liaoning Dalian, China
| | - Dalong Wang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Qiang Meng
- College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Jialin Yao
- College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Huijun Sun
- College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Kexin Liu
- College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Jingjing Wu
- College of Pharmacy, Dalian Medical University, Dalian, China
- Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
11
|
Liu T, Zhuang XX, Qin XJ, Wei LB, Gao JR. The potential role of N6-methyladenosine modification of LncRNAs in contributing to the pathogenesis of chronic glomerulonephritis. Inflamm Res 2023; 72:623-638. [PMID: 36700958 DOI: 10.1007/s00011-023-01695-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Increasing evidence indicates that N6-methyladenosine (m6A) modification of mRNAs has been shown to play a critical role in the occurrence and development of many diseases, while little is known about m6A modification in long non-coding RNAs (LncRNAs). Our study aims to investigate the potential functions of LncRNA m6A modifications in lipopolysaccharide (LPS)-induced mouse mesangial cells (MMCs), providing us with a new perspective on the molecular mechanisms of chronic glomerulonephritis (CGN) pathogenesis. METHODS Differentially methylated LncRNAs were identified by Methylated RNA immunoprecipitation sequencing (MeRIP-seq). LncRNA-mRNA and LncRNA-associated LncRNA-miRNA-mRNA (CeRNA) networks were constructed by bioinformatics analysis. Furthermore, we utilized gene ontology (GO) and pathway enrichment analyses (KEGG) to explore target genes from co-expression networks. In addition, the total level of m6A RNA methylation and expression of methyltransferase and pro-inflammatory cytokines were detected by the colorimetric quantification method and western blot, respectively. Cell viability and cell cycle stage were detected by cell counting kit-8 (CCK-8) and flow cytometry. RESULTS In total, 1141 differentially m6A-methylated LncRNAs, including 529 hypermethylated LncRNAs and 612 hypomethylated LncRNAs, were determined by MeRIP-seq. The results of GO and KEGG analysis revealed that the target mRNAs were mainly enriched in signal pathways, such as the NF-kappa B signaling pathway, MAPK signaling pathway, Toll-like receptor signaling pathway, and apoptosis signaling pathway. In addition, higher METTL3 expression was found in CGN kidney tissues using the GEO database. METTL3 knockdown in MMC cells drastically reduced the levels of m6A RNA methylation, pro-inflammatory cytokines IL6 and TNF-α, and inhibited cell proliferation and cycle progression. CONCLUSIONS Our findings provide a basis and novel insight for further investigations of m6A modifications in LncRNAs for the pathogenesis of CGN.
Collapse
Affiliation(s)
- Tao Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230011, Anhui, China
| | - Xing Xing Zhuang
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, Chaohu, 238000, Anhui, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230011, Anhui, China
| | - Xiu Juan Qin
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Liang Bing Wei
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Jia Rong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230031, Anhui, China.
| |
Collapse
|
12
|
Editorial Expression of Concern: Ginkgetin aglycone ameliorates LPS-induced acute kidney injury by activating SIRT1 via inhibiting the NF-κB signaling pathway. Cell Biosci 2022; 12:100. [PMID: 35773717 PMCID: PMC9248095 DOI: 10.1186/s13578-022-00837-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/25/2022] Open
|
13
|
Cornuside Is a Potential Agent against Alzheimer’s Disease via Orchestration of Reactive Astrocytes. Nutrients 2022; 14:nu14153179. [PMID: 35956355 PMCID: PMC9370780 DOI: 10.3390/nu14153179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/21/2022] Open
Abstract
Cornuside is an iridoid glycoside from Cornus officinalis, with the activities of anti-inflammatory, antioxidant, anti-mitochondrial dysfunction, and neuroprotection. In the present research, a triple-transgenic mice model of AD (3 × Tg-AD) was used to explore the beneficial actions and potential mechanism of cornuside on the memory deficits. We found that cornuside prominently alleviated neuronal injuries, reduced amyloid plaque pathology, inhibited Tau phosphorylation, and repaired synaptic damage. Additionally, cornuside lowered the release of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nitric oxide (NO), lowered the level of malondialdehyde (MDA), and increased the activity of superoxide dismutase (SOD) and the level of glutathione peroxidase (GSH-Px). Cornuside also significantly reduced the activation of astrocytes and modulated A1/A2 phenotypes by the AKT/Nrf2/NF-κB signaling pathway. We further confirmed that LY294002 and Nrf2 silencing could block the cornuside-mediated phenotypic switch of C6 cells induced by microglia conditioned medium (MCM) in response to lipopolysaccharide (LPS), which indicated that the effects of cornuside in astrocyte activation are dependent on AKT/Nrf2/NF-κB signaling. In conclusion, cornuside may regulate the phenotypic conversion of astrocytes, inhibit neuroinflammation and oxidative stress, improve synaptic plasticity, and alleviate cognitive impairment in mice through the AKT/Nrf2/NF-κB axis. Our present work provides an experimental foundation for further research and development of cornuside as a candidate drug for AD management.
Collapse
|
14
|
Traversing through half a century research timeline on Ginkgo biloba, in transforming a botanical rarity into an active functional food ingredient. Biomed Pharmacother 2022; 153:113299. [PMID: 35750010 DOI: 10.1016/j.biopha.2022.113299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Neurodegenerative diseases and various other chronic ailments have gradually transformed into public-health issues. Neurodegenerative disorders are a range of progressive neural abnormalities characterized by cellular dysfunctions, neuronal structure, and function loss. Among many chronic disorders, oxidative stress, inflammation, mitochondrial dysregulation, and cellular alterations in the human body are considered the most prevalent diagnostic symptoms. They have a profound impact on patients' health and wellbeing. The disease's poor curability, high healthcare costs, and lethality are the principal reasons for approaching and exploring the conventional treatment's phytotherapeutic alternatives. Ginkgo biloba (Maidenhair tree) is a well-known and widely used herbal plant in the Ginkgoaceae family. Its phytochemical constituents, Flavonoids, and terpenes, have been identified as the primary ingredients of Ginkgo biloba leaf extracts. It has been widely used due to its therapeutic properties, including its neuroprotective, anti-dementia, antioxidant, anti-inflammatory, vasoactive, anti-psychotic, anti-neoplastic, and anti-platelet activity. In recent decades, plenty of Ginkgo-derived substances has been researched and elucidated to have significant therapeutic effects in numerous disease models. This review aims to provide a thorough understanding of the botanical basis for Ginkgo biloba, its usage as herbal medicine, and its pivotal role in functional foods. Additionally, the clinical significance of Ginkgo biloba, as observed in various research works and clinical investigations, is also emphasized, facilitating a better understanding of their molecular basis and application in many chronic diseases.
Collapse
|
15
|
He S, Gao Q, Wu X, Shi J, Zhang Y, Yang J, Li X, Du S, Zhang Y, Yu J. NAD + ameliorates endotoxin-induced acute kidney injury in a sirtuin1-dependent manner via GSK-3β/Nrf2 signalling pathway. J Cell Mol Med 2022; 26:1979-1993. [PMID: 35137552 PMCID: PMC8980955 DOI: 10.1111/jcmm.17222] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 12/22/2022] Open
Abstract
Acute kidney injury (AKI) is a substantial worldwide public health concern with no specific and effective therapies in clinic. NAD+ is a pivotal determinant of cellular energy metabolism involved in the progression of AKI; however, its mechanism in kidney injury remains poorly understood. Sirtuin 1 (SIRT1) is an NAD+‐dependent deacetylase associated with renal protection and acute stress resistance. In this study, we have investigated the role of NAD+ in AKI and the potential mechanism(s) involved in its renoprotective effect. NAD+ was notably decreased and negatively correlated with kidney dysfunction in AKI, restoring NAD+ with NMN significantly ameliorates LPS‐induced oxidative stress and apoptosis and attenuates renal damage. We also found that the protection of NAD+ is associated with SIRT1 expressions and performs in a SIRT1‐dependent manner. Inhibition of SIRT1 blunted the protective effect of NAD+ and up‐regulated the activity of glycogen synthase kinase‐3β (GSK‐3β) that was concomitant with mitigated Nrf2 nuclear accumulation, thereby exacerbates AKI. These findings suggest that NAD+/SIRT1/GSK‐3β/Nrf2 axis is an important mechanism that can protect against AKI which might be a potential therapeutic target for the treatment of AKI.
Collapse
Affiliation(s)
- Simeng He
- School of Medicine, Nankai University, Tianjin, China
| | - Qiaoying Gao
- Tianjin key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin, China
| | - Xiaoyang Wu
- School of Medicine, Nankai University, Tianjin, China
| | - Jia Shi
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yuan Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jing Yang
- Tianjin key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin, China
| | - Xiangyun Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shihan Du
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yanfang Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jianbo Yu
- School of Medicine, Nankai University, Tianjin, China.,Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
16
|
Combination of Pentoxifylline and Ginko Biloba Nephroprotective Effect in Animal Models with Vancomycin-Induced Nephrotoxicity. CURRENT HEALTH SCIENCES JOURNAL 2022; 48:68-74. [PMID: 35911932 PMCID: PMC9289589 DOI: 10.12865/chsj.48.01.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/22/2022] [Indexed: 11/30/2022]
Abstract
Antioxidants have been commonly used in medicine for thousands of years. Clinically, pentoxifylline and Ginkgo biloba have beneficial renal effects. Our study evaluated the nephroprotective effect of Gingko biloba in combination with Pentoxifiln in an experimental model of vancomycin-induced nephrotoxicity. Male Winstar rats were used in 3 groups: CONTROL, VANCO and VANCO+GBI+PTX and each group included 6 rats. Insufficient studies in the literature on the prevention of acute kidney injury by the combination of Ginkgo biloba and pentoxifylline led to the necessity to perform the study. Acute kidney injury was demonstrated by measuring serum values of classical markers such as urea and creatinine but also by measuring the urinary N-acetyl-β-d-glucosaminidase index, a topical marker in modern medicine. The significant decrease of the biochemical parameters in group III (VANCO+GBI+PTX) compared to group II (VANCO) and values similar to group I (CONTROL), demonstrates, the nephroprotective effect of the use in combination of the two substances.
Collapse
|
17
|
Li C, Wang W, Xie SS, Ma WX, Fan QW, Chen Y, He Y, Wang JN, Yang Q, Li HD, Jin J, Liu MM, Meng XM, Wen JG. The Programmed Cell Death of Macrophages, Endothelial Cells, and Tubular Epithelial Cells in Sepsis-AKI. Front Med (Lausanne) 2021; 8:796724. [PMID: 34926535 PMCID: PMC8674574 DOI: 10.3389/fmed.2021.796724] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a systemic inflammatory response syndrome caused by infection, following with acute injury to multiple organs. Sepsis-induced acute kidney injury (AKI) is currently recognized as one of the most severe complications related to sepsis. The pathophysiology of sepsis-AKI involves multiple cell types, including macrophages, vascular endothelial cells (ECs) and renal tubular epithelial cells (TECs), etc. More significantly, programmed cell death including apoptosis, necroptosis and pyroptosis could be triggered by sepsis in these types of cells, which enhances AKI progress. Moreover, the cross-talk and connections between these cells and cell death are critical for better understanding the pathophysiological basis of sepsis-AKI. Mitochondria dysfunction and oxidative stress are traditionally considered as the leading triggers of programmed cell death. Recent findings also highlight that autophagy, mitochondria quality control and epigenetic modification, which interact with programmed cell death, participate in the damage process in sepsis-AKI. The insightful understanding of the programmed cell death in sepsis-AKI could facilitate the development of effective treatment, as well as preventive methods.
Collapse
Affiliation(s)
- Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wei Wang
- Anhui Province Key Laboratory of Genitourinary Diseases, Department of Urology and Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Shuai-Shuai Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wen-Xian Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Qian-Wen Fan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ying Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yuan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Qin Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Juan Jin
- Key Laboratory of Anti-inflammatory and Immunopharmacology (Ministry of Education), Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
18
|
Watroba M, Szukiewicz D. Sirtuins at the Service of Healthy Longevity. Front Physiol 2021; 12:724506. [PMID: 34899370 PMCID: PMC8656451 DOI: 10.3389/fphys.2021.724506] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Sirtuins may counteract at least six hallmarks of organismal aging: neurodegeneration, chronic but ineffective inflammatory response, metabolic syndrome, DNA damage, genome instability, and cancer incidence. Moreover, caloric restriction is believed to slow down aging by boosting the activity of some sirtuins through activating adenosine monophosphate-activated protein kinase (AMPK), thus raising the level of intracellular nicotinamide adenine dinucleotide (NAD+) by stimulating NAD+ biosynthesis. Sirtuins and their downstream effectors induce intracellular signaling pathways related to a moderate caloric restriction within cells, mitigating reactive oxygen species (ROS) production, cell senescence phenotype (CSP) induction, and apoptosis as forms of the cellular stress response. Instead, it can promote DNA damage repair and survival of cells with normal, completely functional phenotypes. In this review, we discuss mechanisms of sirtuins action toward cell-conserving phenotype associated with intracellular signaling pathways related to moderate caloric restriction, as well as some tissue-specific functions of sirtuins, especially in the central nervous system, heart muscle, skeletal muscles, liver, kidneys, white adipose tissue, hematopoietic system, and immune system. In this context, we discuss the possibility of new therapeutic approaches.
Collapse
Affiliation(s)
- Mateusz Watroba
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Dariusz Szukiewicz
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
19
|
Han S, Lin F, Ruan Y, Zhao S, Yuan R, Ning J, Jiang K, Xie J, Li H, Li C, Rao T, Yu W, Xia Y, Zhou X, Cheng F. miR-132-3p promotes the cisplatin-induced apoptosis and inflammatory response of renal tubular epithelial cells by targeting SIRT1 via the NF-κB pathway. Int Immunopharmacol 2021; 99:108022. [PMID: 34339961 DOI: 10.1016/j.intimp.2021.108022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Cisplatin is a highly effective and broad-spectrum anticancer drug for the clinical treatment of solid tumors. However, it causes acute kidney injury (AKI) in patients with cancer. Consequently, its clinical application is limited. The occurrence, development, and prognosis of AKI are closely associated with microRNA (miRNA), which needs validation as a biomarker, especially for the early stages of cisplatin-induced AKI. An example of miRNA is miR-132-3p, which plays important roles in inflammatory responses, cell proliferation, and apoptosis in a variety of diseases. However, variations in its expression, potential mechanisms, and downstream targets in cisplatin-induced AKI remain unclear. This study aimed to investigate the functions of miR-132-3p in cisplatin-induced AKI. Sequencing and qRT-PCR revealed that miR-132-3p was significantly upregulated in cisplatin-induced AKI models of mouse and human proximal renal tubular epithelial (HK-2) cells. Apoptosis and inflammatory responses were significantly suppressed by the inhibition of the miR-132-3p expression in cisplatin-stimulated HK-2 cells, and this suppression was blocked by miR-132-3p mimics. Bioinformatics and dual luciferase reporter gene assay identified the 3'- UTR of SIRT1 mRNA as a direct target of miR-132-3p. RNA-FISH and immunofluorescence co-localization demonstrated that miR-132-3p and SIRT1 directly combined and interacted in the cytoplasm of HK-2 cells. Mechanistically, the SIRT1 expression was suppressed and the NF-κB signaling pathway was activated by the upregulation of miR-132-3p in cisplatin-induced AKI. By contrast, the SIRT1 expression was upregulated after the inhibition of miR-132-3p. The ratios of p-p65/p65 and p-IκBα/IκBα were significantly reduced, and the expression levels of inflammatory biomarkers and apoptotic proteins induced by cisplatin were obviously attenuated. Our results suggested that miR-132-3p exacerbated cisplatin-induced AKI by negatively regulating SIRT1 and activating the NF-κB signaling pathway. Therefore, targeting miR-132-3p might be a potential adjuvant therapy for ameliorating AKI in cisplatin-treated patients.
Collapse
Affiliation(s)
- Shangting Han
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Sheng Zhao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Run Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jinzhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Kun Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jinna Xie
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Haoyong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chenglong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuqi Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
20
|
Lu P, Zhang L, Liu T, Fan JJ, Luo X, Zhu YT. MiR-494-mediated Effects on the NF-κB Signaling Pathway Regulate Lipopolysaccharide-Induced Acute Kidney Injury in Mice. Immunol Invest 2021; 51:1372-1384. [PMID: 34238104 DOI: 10.1080/08820139.2021.1944184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To explore the effects of miR-494 inhibition through the NF-κB signaling pathway on lipopolysaccharide (LPS)-induced acute kidney injury (AKI) mouse model. METHODS The AKI mice induced by LPS were treated with miR-494 antagomir, and the kidney parameters and indicators of oxidative stress were detected. HE and TUNEL staining were performed to observe the kidney histopathology and the apoptosis in renal tubular epithelial cells (RTECs), respectively. The ROS level was measured using dihydroethidium (DHE) staining. In addition, qRT-PCR, western blotting, immunohistochemistry (IHC), and ELISA were also used to detect gene or protein expression. RESULTS LPS-induced AKI mice injected with the miR-494 antagomir showed reduced blood urea nitrogen (BUN) and serum creatinine (Cr) with improved kidney histopathology. The expression levels of p-IKKα/β, p-IκBα and p65 NF-κB in the nucleus were increased in kidney tissues from the LPS-induced AKI mice, and they were decreased by the miR-494 antagomir. Moreover, the results of IHC showed that the miR-494 antagomir downregulated p65 NF-κB in kidney tissues from the LPS-induced AKI mice, accompanied by decreased levels of TNF-α, IL-1β, IL-6, MDA, NO, and ROS but increased levels of SOD and GSH. In addition, the LPS-induced AKI mice had increased apoptosis in RTECs, as well as increased Caspase-3 and Bax and decreased Bcl-2, which were reversed by the miR-494 antagomir. CONCLUSIONS The inhibition of miR-494 could reduce inflammatory responses and improve oxidative stress in kidney tissues from LPS-induced AKI mice by blocking the NF-κB pathway accompanying by reduced apoptosis in RTECs.
Collapse
Affiliation(s)
- Peng Lu
- Department of Clinical Laboratory, Cangzhou Central Hospital, Cangzhou, China
| | - Lei Zhang
- Department of Clinical Laboratory, Cangzhou Central Hospital, Cangzhou, China
| | - Ting Liu
- Department of Clinical Laboratory, The 252nd Hospital of PLA, Baoding, China
| | - Jing-Jing Fan
- Department of Emergency ICU, Cangzhou Central Hospital, Cangzhou, China
| | - Xu Luo
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou, China
| | - Yi-Tang Zhu
- Department of Clinical Laboratory, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
21
|
Negative Regulation of SIRT1 by IRF9 Involved in Hyperlipidemia Acute Pancreatitis Associated with Kidney Injury. Dig Dis Sci 2021; 66:1063-1071. [PMID: 32462510 DOI: 10.1007/s10620-020-06331-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/08/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Interferon regulatory factor 9 (IRF9) acts as a negative regulator of sirtuin-1 (SIRT1) to participate in many diseases. However, the role of SIRT1 and IRF9 in hyperlipidemia acute pancreatitis associated with kidney injury is unclear. AIMS To explore the function of SIRT1 and IRF9 in hyperlipidemia acute pancreatitis associated with kidney injury and provide theoretical guidance for disease diagnosis and treatment. METHODS Model rats were established by intraperitoneal injection of 20% L-arginine. Apoptosis of kidney tissue was determined by TUNEL staining. Expressions of IRF9, SIRT1, p53, and acetylated p53 were detected by qRT-PCR and Western blot. Dual-Luciferase Reporter Assay was carried out to validate the regulation of IRF9 on SIRT1. RESULTS Pancreatic and renal injury was more serious, and apoptosis of kidney epithelial cells increased in acute pancreatitis (AP) and hyperlipidemia acute pancreatitis (HLAP) group. IRF9, p53, and acetylated p53 were up-regulated, and SIRT1 was down-regulated in AP and HLAP group (p < 0.05). Down-regulation of SIRT1 was negatively correlated with up-regulation of IRF9 in AP and HLAP group (p < 0.05). Pancreatic and renal injury and kidney epithelial cells apoptosis in HLAP group were more obvious than AP group (p < 0.05). The up-regulation of IRF9 and down-regulation of SIRT1 in HLAP group were more than AP group (p < 0.05). The promoter activity of SIRT1 was repressed by IRF9. CONCLUSION In pancreatitis associated with kidney injury, IRF9 was a negative regulator of SIRT1, down-regulated the expression of SIRT1, increased acetylated p53, and promoted renal cell apoptosis. Hyperlipidemia further aggravated pancreatic and renal injury and renal cell apoptosis.
Collapse
|
22
|
Li X, Lu L, Chen J, Zhang C, Chen H, Huang H. New Insight into the Mechanisms of Ginkgo Biloba Extract in Vascular Aging Prevention. Curr Vasc Pharmacol 2020; 18:334-345. [PMID: 31223090 DOI: 10.2174/1570161117666190621150725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Aging-associated vascular dysfunction promotes cardiovascular diseases. Recently, Ginkgo biloba extract (GBE) has attracted considerable attention in the prevention of aged vasculature. METHODS This review discusses the pathophysiological alterations in aged vasculature and the underlying mechanisms of GBE in vascular aging suppression. RESULTS Both arterial stiffening and endothelial dysfunction are critical aging-related vascular phenotypes that result in the progression of cardiovascular diseases in the general population. Consistent oxidative stress and inflammatory reaction lead to vascular dysfunction. GBE ameliorates aging-related vascular dysfunction, due to its antioxidant and anti-inflammatory properties. The main effects of GBE in aged vasculature might be associated with the longevity signaling pathways. GBE also attenuates the progression of vascular aging in diabetes mellitus via regulation of glucose and lipid metabolism. CONCLUSION GBE plays an important role in the prevention of vascular aging process. It is a promising therapeutic approach to ameliorate aging-related vascular dysfunction and cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaoxue Li
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liuyi Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Chen
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chao Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong Chen
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Rahbar Saadat Y, Hosseiniyan Khatibi SM, Ardalan M, Barzegari A, Zununi Vahed S. Molecular pathophysiology of acute kidney injury: The role of sirtuins and their interactions with other macromolecular players. J Cell Physiol 2020; 236:3257-3274. [PMID: 32989772 DOI: 10.1002/jcp.30084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
Acute kidney injury (AKI), a rapid drop in kidney function, displays high mortality and morbidity, and its repeated or severe status can shift into chronic kidney disease or even end-stage renal disease. How and which events cause AKI still is controversial. In addition, no specific therapies have emerged that can attenuate AKI or expedite recovery. Some central mechanisms including tubular epithelial cells injury, endothelial injury, renal cell apoptosis, and necrosis signaling cascades, and inflammation have been reported in the pathophysiology of AKI. However, the timing of the activation of each pathway, their interactions, and the hierarchy of these pathways remain unknown. The main molecular mechanisms that might be complicated in this process are the mitochondrial impairment and alteration/shifting of cellular metabolites (e.g., acetyl-CoA and NAD+ /NADH) acting as cofactors to alter the activities of many enzymes, for instance, sirtuins. Moreover, alteration of mitochondrial structure over the fusion and fission mechanisms can regulate cellular signaling pathways by modifying the rate of reactive oxygen species generation and metabolic activities. The aim of this review is to better understand the underlying pathophysiological and molecular mechanisms of AKI. In addition, we predicted the main other molecular players in interaction with sirtuins as energy/stresses monitoring proteins for the development of future approaches in the treatment or prevention of ischemic AKI.
Collapse
Affiliation(s)
- Yalda Rahbar Saadat
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Villetaneuse, France
| | | |
Collapse
|
24
|
Lu S, Dong L, Jing X, Gen-Yang C, Zhan-Zheng Z. Abnormal lncRNA CCAT1/microRNA-155/SIRT1 axis promoted inflammatory response and apoptosis of tubular epithelial cells in LPS caused acute kidney injury. Mitochondrion 2020; 53:76-90. [DOI: 10.1016/j.mito.2020.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
|
25
|
Li ZH, Shi Z, Tang S, Yao HP, Lin X, Wu F. Epigallocatechin-3-gallate ameliorates LPS-induced inflammation by inhibiting the phosphorylation of Akt and ERK signaling molecules in rat H9c2 cells. Exp Ther Med 2020; 20:1621-1629. [PMID: 32742394 PMCID: PMC7388411 DOI: 10.3892/etm.2020.8827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/10/2020] [Indexed: 01/02/2023] Open
Abstract
The inflammatory response has been implicated in various cardiac and systemic diseases. Epigallocatechin-3-gallate (EGCG), the major polyphenol extracted from green tea, has various biological and pharmacological properties, such as anti-inflammation, anti-oxidative and anti-tumorigenesis. To some extent, the mechanism of EGCG in the inflammatory response that characterizes myocardial dysfunction is not fully understood. The present study aimed to investigate the inhibiting effect of EGCG on lipopolysaccharide (LPS)-induced inflammation in vitro. Treatment with LPS affected rat H9c2 cardiomyocytes and induced an inflammatory response. However, the LPS-induced effects were attenuated after treatment with EGCG. The present results demonstrated that EGCG treatment repressed several inflammatory mediators, such as vascular endothelial growth factor, chemokine ligand 5, chemokine ligand 2, intercellular adhesion molecule-1, matrix metalloproteinase-2, tumor necrosis factor-α and nitric oxide (induced by LPS), and the repressing effect of EGCG on inflammatory response was dose-dependent in the range of 6.25-100 µM. EGCG inhibited these marked inflammatory key signaling molecules by reducing the expression of phospho-nuclear factor-κB p65, -Akt, -ERK and -MAPK p38 while the total protein level of these signal proteins were not affected. In conclusion, the present findings suggested that EGCG possesses cardiomyocyte-protective action in reducing the LPS-induced inflammatory response due to the inhibition of the phosphorylation of Akt and ERK signaling molecules.
Collapse
Affiliation(s)
- Zhi Hui Li
- Department of Intensive Care Unit, Hangzhou Red Cross Hospital/Hospital of Integrated Traditional Chinese and Western Medicine in Zhejiang Province, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhanli Shi
- Department of Intensive Care Unit, Hangzhou Red Cross Hospital/Hospital of Integrated Traditional Chinese and Western Medicine in Zhejiang Province, Hangzhou, Zhejiang 310003, P.R. China
| | - Shengjie Tang
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Hang Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Institute of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xihua Lin
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Fang Wu
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
26
|
Li YY, Lu XY, Sun JL, Wang QQ, Zhang YD, Zhang JB, Fan XH. Potential hepatic and renal toxicity induced by the biflavonoids from Ginkgo biloba. Chin J Nat Med 2020; 17:672-681. [PMID: 31526502 DOI: 10.1016/s1875-5364(19)30081-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Indexed: 02/08/2023]
Abstract
Evidence continues to grow on potential health risks associated with Ginkgo biloba and its constituents. While biflavonoid is a subclass of the flavonoid family in Ginkgo biloba with a plenty of pharmacological properties, the potential toxicological effects of biflavonoids remains largely unknown. Thus, the aim of this study was to investigate the in vitro and in vivo toxicological effects of the biflavonoids from Ginkgo biloba (i.e., amentoflavone, sciadopitysin, ginkgetin, isoginkgetin, and bilobetin). In the in vitro cytotoxicity test, the five biflavonoids all reduced cell viability in a dose-dependent manner in human renal tubular epithelial cells (HK-2) and human normal hepatocytes (L-02), indicating they might have potential liver and kidney toxicity. In the in vivo experiments, after intragastrical administration of these biflavonoids at 20 mg·kg-1·d-1 for 7 days, serum biochemical analysis and histopathological examinations were performed. The activity of alkaline phosphatase was significantly increased after all the biflavonoid administrations and widespread hydropic degeneration of hepatocytes was observed in ginkgetin or bilobetin-treated mice. Moreover, the five biflavonoids all induced acute kidney injury in treated mice and the main pathological lesions were confirmed to the tubule, glomeruli, and interstitium injuries. As the in vitro and in vivo results suggested that these biflavonoids may be more toxic to the kidney than the liver, we further detected the mechanism of biflavonoids-induced nephrotoxicity. The increased TUNEL-positive cells were detected in kidney tissues of biflavonoids-treated mice, accompanied by elevated expression of proapoptotic protein BAX and unchanged levels of antiapoptotic protein BCL-2, indicating apoptosis was involved in biflavonoids-induced nephrotoxicity. Taken together, our results suggested that the five biflavonoids from Ginkgo biloba may have potential hepatic and renal toxicity and more attentions should be paid to ensure Ginkgo biloba preparations safety.
Collapse
Affiliation(s)
- Yun-Ying Li
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiao-Yan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia-Li Sun
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qing-Qing Wang
- Zhejiang University - Wanbangde Pharmaceutical Group Joint Research Center for Chinese Medicine Modernization, Hangzhou 310058, China
| | - Yao-Dan Zhang
- Zhejiang University - Wanbangde Pharmaceutical Group Joint Research Center for Chinese Medicine Modernization, Hangzhou 310058, China
| | - Jian-Bing Zhang
- Zhejiang University - Wanbangde Pharmaceutical Group Joint Research Center for Chinese Medicine Modernization, Hangzhou 310058, China
| | - Xiao-Hui Fan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
27
|
Xu M, Yu X, Meng X, Huang S, Zhang Y, Zhang A, Jia Z. Inhibition of PDE4/PDE4B improves renal function and ameliorates inflammation in cisplatin-induced acute kidney injury. Am J Physiol Renal Physiol 2020; 318:F576-F588. [PMID: 31961716 DOI: 10.1152/ajprenal.00477.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nephrotoxicity is a known clinical complication of cisplatin that limits the use of this potent antitumor drug. Cyclic nucleotide phosphodiesterases (PDEs) play complex roles in physiology and pathology. PDE4, which is a member of the PDE family, has four subtypes (PDE4A-PDE4D), and PDE4B plays an important role in inflammation. Thus, in the present study, we investigated the effect of PDE4/PDE4B inhibition on renal function and inflammation in a cisplatin nephrotoxicity model. In mice, cisplatin enhanced mRNA and protein expression of PDE4B in renal tubules. After treatment with the PDE4 inhibitor cilomilast, cisplatin-induced renal dysfunction, renal tubular injury, tubular cell apoptosis, and inflammation were all improved. Next, after silencing PDE4B in vivo, we observed a protective effect against cisplatin nephrotoxicity similar to that of the PDE4 inhibitor. In vitro, cisplatin-induced renal tubular cell death was strikingly ameliorated by the PDE4 inhibitor and PDE4B knockdown along with the blockade of the inflammatory response. Considering the known roles of some cell survival pathways in antagonizing insults, we examined levels of PDE4-associated proteins sirtuin 1, phosphatidylinositol 3-kinase, and phosphorylated AKT in cisplatin-treated renal tubular cells with or without cilomilast treatment. Strikingly, cisplatin treatment downregulated the expression of the above proteins, and this effect was largely abolished by the PDE4 inhibitor. Together, these findings indicate the beneficial role of PDE4/PDE4B inhibition in treating cisplatin nephrotoxicity, possibly through antagonizing inflammation and restoring cell survival signaling pathways.
Collapse
Affiliation(s)
- Man Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaowen Yu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, People's Republic of China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xia Meng
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, People's Republic of China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, People's Republic of China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, People's Republic of China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, People's Republic of China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, People's Republic of China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
28
|
Xue P, Zhao J, Zheng A, Li L, Chen H, Tu W, Zhang N, Yu Z, Wang Q, Gu M. Chrysophanol alleviates myocardial injury in diabetic db/db mice by regulating the SIRT1/HMGB1/NF-κB signaling pathway. Exp Ther Med 2019; 18:4406-4412. [PMID: 31772635 PMCID: PMC6862128 DOI: 10.3892/etm.2019.8083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
Myocardial injury induced by diabetes has become an increasing health problem. Chrysophanol (CHR) has been widely studied as a potential treatment for many diseases due to its anti-inflammatory effects, but has not been investigated in regard to diabetes-induced myocardial injury. The present study evaluated the myocardial protective effects of CHR in C57BL/KsJ-db/db diabetic mice. C57BL/KsJ-db/db and C57BLKS/J mice were treated with vehicle, metformin (100 mg/kg/day) or CHR (50 or 100 mg/kg/day) for 28 days. An oral glucose tolerance test was performed to detect blood glucose levels. Blood lipids, triglycerides, total cholesterol, myocardial function-associated enzymes, namely creatine kinase (CK) and lactate dehydrogenase (LDH), and insulin levels were analyzed. TNF-α, interleukin (IL)-1β and IL-6 inflammatory cytokine levels in serum and myocardial tissues were determined by ELISA. Expression of silent information regulator l (SIRT1) and high mobility group box 1/NF-κB pathway-associated proteins in myocardial tissues were measured by western blot analysis and immunohistochemistry. CHR treatment at both concentrations markedly decreased blood lipid and serum insulin levels, and inhibited the myocardial enzymes CK and LDH. CHR also significantly ameliorated the cardiac pathological changes in diabetic mice. The inflammatory cytokine levels that were increased in C57BL/KsJ-db/db diabetic mice were downregulated by CHR treatment. CHR also increased SIRT1 protein expression and inhibited activation of the HMGB1/NF-κB pathway. In conclusion, the present study indicates that CHR effectively protected against diabetic myocardial injury via regulation of SIRT1 and the HMGB1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Peng Xue
- Department of Pediatrics, Changzhou Children's Hospital of Nantong Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Jing Zhao
- Department of Pediatrics, Changzhou Children's Hospital of Nantong Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Aibin Zheng
- Department of Pediatrics, Changzhou Children's Hospital of Nantong Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Lin Li
- Department of Pediatrics, Changzhou Children's Hospital of Nantong Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Huaqin Chen
- Department of Pediatrics, Changzhou Children's Hospital of Nantong Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Wenjuan Tu
- Department of Pediatrics, Changzhou Children's Hospital of Nantong Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Ning Zhang
- Department of Pediatrics, Changzhou Children's Hospital of Nantong Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Zhangbin Yu
- Department of Pediatrics, Nanjing Maternity and Child Health Care Hospital of Nanjing Medical University, Nangjing, Jiangsu 210004, P.R. China
| | - Qiuwei Wang
- Department of Pediatrics, Changzhou Children's Hospital of Nantong Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Meng Gu
- Department of Pediatrics, Changzhou Children's Hospital of Nantong Medical University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
29
|
Ginkgetin attenuates cerebral ischemia-reperfusion induced autophagy and cell death via modulation of the NF-κB/p53 signaling pathway. Biosci Rep 2019; 39:BSR20191452. [PMID: 31420372 PMCID: PMC6732367 DOI: 10.1042/bsr20191452] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/27/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Cerebral ischemia–reperfusion (I/R) injury is the key to fatality in cerebrovascular accident, hence further endeavor is warranted to delineate the mechanism underlying its lethal aggravation procedure. In the present study, we aimed to elucidate the anti-autophagy and anti-apoptosis effects of ginkgetin via nuclear factor κB (NF-κB)/p53 pathway in cerebral I/R rats. Methods: Rats were administrated 2-h occlusion of right middle cerebral artery before the 24-h reperfusion followed. There were three doses of ginkgetin (25, 50, 100 mg/kg) given intraperitoneally (i.p.) after the 2-h ischemia, and Pifithrin-α (PFT-α, p53 inhibitor), SN50 (NF-κB inhibitor) and 3-methyladenine (3-MA, autophagy inhibitor) was administered 20 min before the ischemia, respectively. Results: The neurological deficits decreased significantly with the administration of ginkgetin. The concentrations of microtubule-associated protein 1 light chain 3-II and p53 were significantly decreased by PFT-α, 3-MA and ginkgetin. The concentrations of Beclin 1, damage-regulated autophagy modulator, cathepsin B and cathepsin D were significantly decreased due to the administration of PFT-α, ginkgetin and SN50. Furthermore, the concentrations of Bax and p53-upregulated modulator of apoptosis were significantly decreased with that of Bcl-2 being significantly increased by administration of SN50, PFT-α and ginkgetin. Conclusion: Ginkgetin can alleviate cerebral ischemia/reperfusion induced autophagy and apoptosis by inhibiting the NF-κB/p53 signaling pathway.
Collapse
|
30
|
Xie R, Liu M, Li S. Emodin weakens liver inflammatory injury triggered by lipopolysaccharide through elevating microRNA-145 in vitro and in vivo. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1877-1887. [PMID: 31079494 DOI: 10.1080/21691401.2019.1614015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- RuiJin Xie
- Department of Gastroenterology, Jining No.1 People’s Hospital, Jining, China
| | - Mei Liu
- Department of Gastroenterology, Jining No.1 People’s Hospital, Jining, China
| | - ShuJie Li
- Department of Rheumatology and Immunology, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
31
|
Zhang L, Liu J, Geng T. Ginkgetin aglycone attenuates the apoptosis and inflammation response through nuclear factor-kB signaling pathway in ischemic-reperfusion injury. J Cell Biochem 2019; 120:8078-8085. [PMID: 30582212 DOI: 10.1002/jcb.28086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/29/2018] [Indexed: 01/24/2023]
Abstract
AIMS Acute myocardial infarction (AMI) is one of the most threaten disease in the world. Ginkgetin aglycone (GA) was a new kind of Ginkgo biloba, involved in various diseases, including kidney injury and acute pancreatitis. However, the function of GA in AMI remains unknown. The aim of the study was to investigate the characteristics and function of GA in ischemic-reperfusion injury. METHODS H2 O 2 - and CoCl 2 -treated H9C2 cells were used to analyze the function of GA in vitro. Caspase 3, interleukin-6 (IL-6), and tumor necrosis factor-α were detected to evaluate the apoptosis and inflammation response. Rat AMI was performed to elucidate the function in vivo. RESULTS We found that GA could reduce the apoptosis and improved cell survival of H2 O 2 -treated H9C2 cardiomyocytes and CoCl 2 -treated H9C2 cells. GA attenuated CoCl 2 -induced inflammatory response and the level of cleaved caspase 33, suggesting that GA could alleviate the cell apoptosis. GA improved the cardiac function and attenuated the inflammatory cell infiltration in vivo. We also found that nuclear factor-kB signaling pathway, which was activated under hypoxia environment, was also suppressed in the GA-treated group. CONCLUSION We verified the function and mechanism of GA and provide evidence that GA may play a vital role in ischemic-reperfusion injury, and understanding the precise role of GA will undoubtedly shed new light on the clinical treatment.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Emergency, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiangang Liu
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Geng
- Healthcare Ward, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
32
|
Gao Q, Zhu H. The Overexpression of Sirtuin1 (SIRT1) Alleviated Lipopolysaccharide (LPS)-Induced Acute Kidney Injury (AKI) via Inhibiting the Activation of Nucleotide-Binding Oligomerization Domain-Like Receptors (NLR) Family Pyrin Domain Containing 3 (NLRP3) Inflammasome. Med Sci Monit 2019; 25:2718-2726. [PMID: 30980521 PMCID: PMC6476233 DOI: 10.12659/msm.913146] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Sepsis-induced acute kidney injury (AKI) is threatening the patients with sepsis, and nucleotide-binding oligomerization domain-like receptors (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is considered to play a critical role in this complication of sepsis and might be regulated by sirtuin1 (SIRT1). Thus, we explored the roles of NLRP3 and SIRT1 in the lipopolysaccharide (LPS)-induced AKI in the HK-2 cell line. Material/Methods Cell viability was assessed by Cell Counting Kit-8 (CCK-8). Apoptosis rate was measured by flow cytometry. Protein levels of interleukin (IL)-1β and IL-18 were tested by enzyme-linked immunosorbent assay (ELISA) and NLRP3, cleaved caspase-1, caspase-1 were tested by western blot. The mRNA levels of IL-1β, IL-18, and SIRT1 were quantified by qPCR. Results LPS could decrease cell viability and the expression of SIRT1 and elevate the expressions of IL-1β, IL-18, NLRP3, and cleaved caspase-1. However, the overexpression of SIRT1 could upregulate cell viability and expression of caspase-1 and downregulate apoptosis rate, expressions of NLRP3, IL-1β, IL-18, and cleaved caspase-1. Conclusions NLRP3 inflammasome could act as a critical regulator promoting the process of AKI induced by LPS, and the overexpression of SIRT1 might be able to suppress the activation of NLRP3 and therefore resist the kidney injury, showing promise to be used as a target in the treatment of sepsis-induced AKI.
Collapse
Affiliation(s)
- Qiufang Gao
- Department of Critical Care Medicine, Jining No. 1 People's Hospital, Jining, Shandong, China (mainland)
| | - Hengting Zhu
- Department of Critical Care Medicine, Jining No. 1 People's Hospital, Jining, Shandong, China (mainland)
| |
Collapse
|
33
|
Li HD, Meng XM, Huang C, Zhang L, Lv XW, Li J. Application of Herbal Traditional Chinese Medicine in the Treatment of Acute Kidney Injury. Front Pharmacol 2019; 10:376. [PMID: 31057404 PMCID: PMC6482429 DOI: 10.3389/fphar.2019.00376] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid loss of renal function, which may further develop into chronic kidney damage (CKD) or even end-stage renal disease (ESRD). AKI is a global health problem associated with high morbidity and costly treatments, and there is no specific or effective strategy to treat AKI. In recent years, Traditional Chinese Medicine (TCM) has attracted more attention, with lines of evidence showing that application of TCM improved AKI, and the mechanisms of action for some TCMs have been well illustrated. However, reviews summarizing the progress in this field are still lacking. In this paper, we reviewed TCM preparations and TCM monomers in the treatment of AKI over the last 10 years, describing their renal protective effects and mechanisms of action, including alleviating inflammation, programmed cell death, necrosis, and reactive oxygen species. By focusing on the mechanisms of TCMs to improve renal function, we provide effective complementary evidence to promote the development of TCMs to treat AKI. Moreover, we also summarized TCMs with nephrotoxicity, which provides a more comprehensive understanding of TCMs in the treatment of AKI. This review may provide a theoretical basis for the clinical application of TCMs in the future.
Collapse
Affiliation(s)
- Hai-Di Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Lei Zhang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiong-Wen Lv
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Jun Li, ;
| |
Collapse
|
34
|
Kang K, Gao Y, Wang SC, Liu HT, Kong WL, Zhang X, Huang R, Qi ZD, Zheng JB, Qu JD, Liu RJ, Liu YS, Wang HL, Yu KJ. Dexmedetomidine protects against lipopolysaccharide-induced sepsis-associated acute kidney injury via an α7 nAChR-dependent pathway. Biomed Pharmacother 2018; 106:210-216. [PMID: 29960167 DOI: 10.1016/j.biopha.2018.06.059] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/28/2018] [Accepted: 06/13/2018] [Indexed: 01/20/2023] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome that results in severe tubular damage with high morbidity and mortality. However, there is a lack of effective therapy strategies. Therefore, it is critical to develop effective drugs for AKI. Dexmedetomidine (DEX), a highly selective α2-adrenoreceptor agonist, has neuroprotective, anti-inflammatory and sympatholytic properties. The present study aimed to investigate the effect DEX on attenuating the inflammatory reaction and apoptosis in the kidney tissues of septic mice and to explore its underlying mechanisms. Sepsis-induced AKI mice models were generated via intraperitoneal injection of lipopolysaccaride (LPS). DEX reduced LPS-induced local inflammation and tubular apoptosis, which was aggravated in the pathogenesis of renal dysfunction. Reverse transcription-quantitative polymerase chain reaction and western blot analysis results revealed that the expression of pro-apoptotic genes and inflammatory factors were markedly reduced by DEX pretreatment. Furthermore, the protective role of DEX was markedly inhibited by the α7 nicotinic acetylcholine receptor (nAChR) antagonist α-bungarotoxin. These findings provided novel evidence for the anti-apoptotic and anti-inflammatory effects of DEX in LPS-induced AKI mice through an α7 nAChR-dependent signaling pathway.
Collapse
Affiliation(s)
- Kai Kang
- Department of Critical Care Medicine, The First A ffiliated Hospital of Harbin Medical University, China
| | - Yang Gao
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, China
| | - Si-Cong Wang
- Department of Critical Care Medicine, The Cancer Hospital of Harbin Medical University, China
| | - Hai-Tao Liu
- Department of Critical Care Medicine, The Cancer Hospital of Harbin Medical University, China
| | - Wei-Lan Kong
- Department of Critical Care Medicine, The First A ffiliated Hospital of Harbin Medical University, China
| | - Xing Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, China
| | - Rui Huang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, China
| | - Zhi-Dong Qi
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, China
| | - Jun-Bo Zheng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, China
| | - Jing-Dong Qu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, China
| | - Rui-Jin Liu
- Department of Critical Care Medicine, The Cancer Hospital of Harbin Medical University, China
| | - Yan-Song Liu
- Department of Critical Care Medicine, The Cancer Hospital of Harbin Medical University, China
| | - Hong-Liang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, China.
| | - Kai-Jiang Yu
- Department of Critical Care Medicine, The Cancer Hospital of Harbin Medical University, China; Institute of Critical Care Medicine in Sino Russian Medical Research Center of Harbin Medical University, China.
| |
Collapse
|
35
|
Khajevand-Khazaei MR, Mohseni-Moghaddam P, Hosseini M, Gholami L, Baluchnejadmojarad T, Roghani M. Rutin, a quercetin glycoside, alleviates acute endotoxemic kidney injury in C57BL/6 mice via suppression of inflammation and up-regulation of antioxidants and SIRT1. Eur J Pharmacol 2018; 833:307-313. [PMID: 29920283 DOI: 10.1016/j.ejphar.2018.06.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/16/2022]
Abstract
Acute kidney injury (AKI) is a common complication following severe sepsis, its incidence is increasing, and it is associated with a high rate of morbidity and mortality. Rutin is a glycoside of the bioflavonoid quercetin with various protective effects due to its antioxidant and anti-inflammatory potential. In this research, we tried to assess the protective effect of rutin administration in a model of AKI in C57BL/6 mice. For induction of AKI, lipopolysaccharide (LPS) was injected once (10 mg/kg, i.p.) and rutin was p.o. given at doses of 50 or 200 mg/kg. Treatment of LPS-challenged group with rutin lowered serum level of creatinine and blood urea nitrogen (BUN), restored to some extent renal oxidative stress-related indices such as malondialdehyde (MDA), glutathione (GSH), and activity of superoxide dismutase (SOD) and catalase. In addition, rutin brought back renal nuclear factor-kappaB (NF-κB), toll-like receptor 4 (TLR4), cyclooxygenase-2 (COX2), sirtuin 1 (SIRT1), tumor necrosis factor α (TNFα), interleukin-6, and caspase 3 activity to their control levels. Moreover, protective effect of rutin was in accordance to a dose-dependent manner. Collectively, rutin is capable to mitigate LPS-induced AKI via appropriate modulation of renal oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
| | | | - Marjan Hosseini
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Gholami
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Department of Physiology, Shahed University, Tehran, Iran.
| |
Collapse
|
36
|
Plantamajoside inhibits lipopolysaccharide-induced epithelial-mesenchymal transition through suppressing the NF-κB/IL-6 signaling in esophageal squamous cell carcinoma cells. Biomed Pharmacother 2018; 102:1045-1051. [PMID: 29710521 DOI: 10.1016/j.biopha.2018.03.171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/25/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023] Open
Abstract
Plantamajoside (PMS) is a major compound of Plantago asiatica and possesses anti-tumor activity. However, the effect of PMS on esophageal squamous cell carcinoma (ESCC) and the underlying mechanism of action are unclear. The present study aimed to evaluate the effect of PMS on lipopolysaccharide (LPS)-induced epithelial-mesenchymal transition (EMT) in ESCC. The results showed that PMS inhibited viability of ESCC cell lines (Eca-109 and TE-1) in a concentration-dependent manner. PMS also inhibited LPS-induced EMT in ESCC cells. PMS inhibited LPS-induced activation of the NF-κB pathway and IL-6 expression. PMS also suppressed IL-6-induced EMT in ESCC cells. Treatment of BAY11-7082 (an inhibitor of NF-κB) or antibody against IL-6 alleviated the effect of LPS-induced EMT in ESCC cells. Besides, inhibition of NF-κB decreased IL-6 expression. In conclusion, the results indicated that PMS inhibited LPS-induced EMT through suppressing the NF-κB/IL-6 signaling in ESCC cell lines, suggesting that PMS might be a useful agent for the treatment of ESCC.
Collapse
|
37
|
Yadav MK, Manoli NM, Vimalraj S, Madhunapantula SV. Unmethylated promoter DNA correlates with p53 expression and apoptotic levels only in Vitamin B9 and B12 deficient megaloblastic anemia but not in non-megaloblastic anemia controls. Int J Biol Macromol 2017; 109:76-84. [PMID: 29246873 DOI: 10.1016/j.ijbiomac.2017.12.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022]
Abstract
Cyanocobalamin (Vitamin B12, VB12) and Folic acid (Vitamin B9, VB9) deficiency leads to anemia in women. We have recently shown low VB12 and VB9 levels in the serum of megaloblastic anemia (MBA) patients. Further, our study demonstrated elevated homocysteine and p53, respectively, in the serum and bone marrow aspirates of MBA patients but not in non-MBA subjects. However, it is unknown whether any gender specific variation in VB12 and VB9 level exists in MBA and non-MBA patients? In addition, it is unclear whether low VB12 and VB9 has a role in the regulation of p53 expression in MBA patients? And whether elevated p53 is functionally active? If so, does bone marrow aspirates of MBA patients show elevated apoptosis. Hence, we have analyzed VB12 and VB9 levels in MBA patients and compared with non-MBA subjects. Next, methylation status of p53 promoter was determined and correlated with p53 expression. Furthermore, the level of apoptosis in bone marrow aspirate paraffin blocks was estimated using TUNEL staining. In conclusion, low VB12 and VB9 in male and female patients directly correlate with p53 promoter unmethylation status, but, inversely correlate with p53 protein expression and its activity, only in MBA cases but not in non-MBA controls.
Collapse
Affiliation(s)
- Manish K Yadav
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, Jagadguru Sri Shivarathreeshwara University (Accredited "A" Grade by NAAC and Ranked 45 by National Institutional Ranking Framework (NIRF)-2016, Ministry of Human Resource Development, Government of India), Mysuru, 570015, Karnataka, India
| | - Nandini M Manoli
- Department of Pathology, JSS Medical College, Jagadguru Sri Shivarathreeshwara University (Accredited "A" Grade by NAAC and Ranked 45 by National Institutional Ranking Framework (NIRF)-2016, Ministry of Human Resource Development, Government of India), Mysuru, 570015, Karnataka, India
| | - Selvaraj Vimalraj
- Vascular Biology Lab, AU-KBC Research Centre, MIT campus, Anna University, Chennai, 600044, Tamil Nadu, India.
| | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, Jagadguru Sri Shivarathreeshwara University (Accredited "A" Grade by NAAC and Ranked 45 by National Institutional Ranking Framework (NIRF)-2016, Ministry of Human Resource Development, Government of India), Mysuru, 570015, Karnataka, India.
| |
Collapse
|