1
|
Zhao J, Tang B, Shen P, Zeng H, Wei Q. Empowering PARP inhibition through rational combination: Mechanisms of PARP inhibitors and combinations with a focus on the treatment of metastatic castration-resistant prostate cancer. Crit Rev Oncol Hematol 2025; 210:104698. [PMID: 40089046 DOI: 10.1016/j.critrevonc.2025.104698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/14/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors have revolutionized the treatment of many cancers. Metastatic castration-resistant prostate cancer (mCRPC) is an area where PARP inhibitors are intensively studied; the efficacy with PARP inhibitor monotherapy in patients with homologous recombination repair mutations following novel hormonal therapy have prompted the investigation of combination therapy, with adding an androgen receptor pathway inhibitor (ARPI) being one focus of research. Data on PARP inhibitor monotherapy and combination therapy for mCRPC are accumulating, and it is important to navigate through the complex data to inform treatment decision. Here we review the mechanisms of action of PARP inhibitors, their pharmacological properties, the synergistic activity of PARP inhibitors plus other drug classes, and the clinical evidence on monotherapy and combination therapy in patients with mCRPC. We propose key considerations in the selection of agents and treatment sequence for mCRPC, such as efficacy, toxicity profiles, biomarkers, and interactions with concomitant medications.
Collapse
Affiliation(s)
- Jinge Zhao
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Tang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Pengfei Shen
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zeng
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Mladenov M, Sazdova I, Hadzi-Petrushev N, Konakchieva R, Gagov H. The Role of Reductive Stress in the Pathogenesis of Endocrine-Related Metabolic Diseases and Cancer. Int J Mol Sci 2025; 26:1910. [PMID: 40076537 PMCID: PMC11899626 DOI: 10.3390/ijms26051910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Reductive stress (RS), characterized by excessive accumulation of reducing equivalents such as NADH and NADPH, is emerging as a key factor in metabolic disorders and cancer. While oxidative stress (OS) has been widely studied, RS and its complex interplay with endocrine regulation remain less understood. This review explores molecular circuits of bidirectional crosstalk between metabolic hormones and RS, focusing on their role in diabetes, obesity, cardiovascular diseases, and cancer. RS disrupts insulin secretion and signaling, exacerbates metabolic inflammation, and contributes to adipose tissue dysfunction, ultimately promoting insulin resistance. In cardiovascular diseases, RS alters vascular smooth muscle cell function and myocardial metabolism, influencing ischemia-reperfusion injury outcomes. In cancer, RS plays a dual role: it enhances tumor survival by buffering OS and promoting metabolic reprogramming, yet excessive RS can trigger proteotoxicity and mitochondrial dysfunction, leading to apoptosis. Recent studies have identified RS-targeting strategies, including redox-modulating therapies, nanomedicine, and drug repurposing, offering potential for novel treatments. However, challenges remain, particularly in distinguishing physiological RS from pathological conditions and in overcoming therapy-induced resistance. Future research should focus on developing selective RS biomarkers, optimizing therapeutic interventions, and exploring the role of RS in immune and endocrine regulation.
Collapse
Affiliation(s)
- Mitko Mladenov
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (M.M.); (N.H.-P.)
- Department of Fundamental and Applied Physiology, Russian States Medical University, 117997 Moscow, Russia
| | - Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (M.M.); (N.H.-P.)
| | - Rossitza Konakchieva
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| |
Collapse
|
3
|
Wu R, Li N, Huang W, Yang Y, Zang R, Song H, Shi J, Zhu S, Liu Q. Melittin suppresses ovarian cancer growth by regulating SREBP1-mediated lipid metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156367. [PMID: 39798341 DOI: 10.1016/j.phymed.2025.156367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/27/2024] [Accepted: 01/01/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Melittin, a major peptide component of bee venom, has demonstrated promising anti-cancer activity across various preclinical cell models, making it a potential candidate for cancer therapy. However, its molecular mechanisms, particularly in ovarian cancer, remain largely unexplored. Ovarian cancer is a life-threatening gynecological malignancy with poor clinical outcomes and limited treatment options. PURPOSE This study evaluated the efficacy of melittin in suppressing ovarian cancer and elucidated its underlying molecular mechanisms. METHODS A subcutaneous xenograft tumor model was established using ID8 cells in C57BL/6J mice. RNA sequencing revealed that melittin's anticancer effects were associated with the downregulation of lipid metabolism, particularly fatty acid synthesis. The impact of melittin on de novo fatty acid synthesis was assessed by measuring free fatty acid (FFA), triglyceride (TG), and total cholesterol (TC) levels in ovarian cancer cells. Lipogenic gene expression and sterol regulatory element-binding protein 1 (SREBP1) were analyzed by Western blot and quantitative real-time polymerase chain reaction. The regulation of FASN transcription by SREBP1 was explored using a dual-luciferase reporter assay. Plasmid DNA transfection and the SREBP1 inhibitor Fatostatin were employed to identify the signaling pathway mediating melittin's anticancer effects. RESULTS Our results confirmed that melittin significantly reduced de novo fatty acid synthesis, as evidenced by lower FFA, TG, and lipid droplet levels. Additionally, melittin inhibited the nuclear translocation of SREBP1 and specifically reduced SREBP1-mediated FASN transcription, demonstrating effects similar to those of Fatostatin. The motif (-424/-415) within the FASN promoter is a potential SREBP-1 binding site. SREBP1 overexpression through plasmid DNA transfection significantly counteracted melittin's downregulation of FASN promoter activity and counteracted its inhibitory effects on de novo fatty acid synthesis, cell proliferation, and colony formation. CONCLUSION Our findings suggested that melittin acts as a novel modulator of the SREBP1/FASN pathway, reducing lipogenesis and inhibiting ovarian cancer growth. This study was the first to demonstrate melittin's ability to target the SREBP1/FASN axis in ovarian cancer, identifying SREBP1 as a novel therapeutic target. These results highlighted melittin as a potential therapeutic agent for ovarian cancer by attenuating SREBP1-mediated lipid metabolism and suggested novel treatment strategies for targeting ovarian cancer.
Collapse
Affiliation(s)
- Ruixin Wu
- School of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Preclinical Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, China
| | - Ning Li
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, China
| | - Weiling Huang
- School of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yifang Yang
- School of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rongrong Zang
- School of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haiyan Song
- School of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jianrong Shi
- School of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shiguo Zhu
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Qing Liu
- School of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
4
|
Khan S, Simsek R, Fuentes JDB, Vohra I, Vohra S. Implication of Toll-Like Receptors in growth and management of health and diseases: Special focus as a promising druggable target to Prostate Cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189229. [PMID: 39608622 DOI: 10.1016/j.bbcan.2024.189229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Toll-like receptors (TLRs) are protein structures belonging to the pattern recognition receptors family. TLRs have the great potential that can directly recognize the specific molecular structures on the surface of pathogens, damaged senescent cells and apoptotic host cells. Available evidence suggests that TLRs have crucial roles in maintaining tissue homeostasis through control of the inflammatory and tissue repair responses during injury. TLRs are the player of first line of defense against different microbes and activate the signaling cascades which help to induce the immune system and inflammatory responses by affecting various signaling pathways, including nuclear factor-κB (NF-κB), interferon regulatory factors, and mitogen-activated protein kinases (MAPKs). TLRs have been identified to be over-expressed in different types of cancers and play an important role in control of health and management of diseases. The current review provides updated knowledge on the implication of TLRs in growth and management of cancers including prostate cancer.
Collapse
Affiliation(s)
- Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health Technology (IIHT), Paramedical and Nursing College, Deoband, 247554 Saharanpur, India; Department of Health Sciences, Novel Global Community Educational Foundation, Australia.
| | - Rahime Simsek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe Unversity, 06100 Ankara, Turkey
| | - Javier David Benitez Fuentes
- Medical Oncology Department, Hospital General Universitario de Elche, Carrer Almazara, 11, 03203 Elche, Alicante, Spain
| | - Isra Vohra
- University of Houston Clear Lake Graduated with bachelors Physiology, Houston, TX, USA
| | - Saeed Vohra
- Department of Anatomy and Physiology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Wang R, Liu Y, Liu M, Zhang M, Li C, Xu S, Tang S, Ma Y, Wu X, Fei W. Combating tumor PARP inhibitor resistance: Combination treatments, nanotechnology, and other potential strategies. Int J Pharm 2025; 669:125028. [PMID: 39638266 DOI: 10.1016/j.ijpharm.2024.125028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
PARP (poly (ADP-ribose) polymerase) inhibitors (PARPi) have demonstrated significant potential in cancer treatment, particularly in tumors with breast cancer susceptibility gene (BRCA) mutations and other DNA repair deficiencies. However, the development of resistance to PARPi has become a major challenge in their clinical application. The emergence of drug resistance leads to reduced efficacy of the PARPi over time, impacting long-term treatment outcomes and survival rates. PARPi resistance in tumors often arises as cells activate alternative DNA repair pathways or evade the effect of PARPi, diminishing therapeutic effectiveness. Consequently, overcoming resistance is crucial for maintaining treatment efficacy and improving patient prognosis. This paper reviews the strategies to overcome PARPi resistance through combination treatment and nanotechnology therapy. We first review the current combination therapies with PARPi, including anti-angiogenic therapies, radiotherapies, immunotherapies, and chemotherapies, and elucidate their mechanisms for overcoming PARPi resistance. Additionally, this paper focuses on the application of nanotechnology in improving the effectiveness of PARPi and overcoming drug resistance. Subsequently, this paper presents several promising strategies to tackle PARPi resistance, including but not limited to: structural modifications of PARPi, deployment of gene editing systems, implementation of "membrane lipid therapy," and modulation of cellular metabolism in tumors. By integrating these strategies, this research will provide comprehensive approaches to overcome the resistance of PARPi in cancer treatment and offer guidance for future research and clinical practice.
Collapse
Affiliation(s)
- Rong Wang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yunxi Liu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Mingqi Liu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Meng Zhang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Chaoqun Li
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Shanshan Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Sangsang Tang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yidan Ma
- YiPeng Subdistrict Community Healthcare Center, Hangzhou 311225, China
| | - Xiaodong Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Weidong Fei
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
6
|
Gralewska P, Gajek A, Marczak A, Rogalska A. Targeted Nanocarrier-Based Drug Delivery Strategies for Improving the Therapeutic Efficacy of PARP Inhibitors against Ovarian Cancer. Int J Mol Sci 2024; 25:8304. [PMID: 39125873 PMCID: PMC11312858 DOI: 10.3390/ijms25158304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The current focus of ovarian cancer (OC) research is the improvement of treatment options through maximising drug effectiveness. OC remains the fifth leading cause of cancer-induced mortality in women worldwide. In recent years, nanotechnology has revolutionised drug delivery systems. Nanoparticles may be utilised as carriers in gene therapy or to overcome the problem of drug resistance in tumours by limiting the number of free drugs in circulation and thereby minimising undesired adverse effects. Cell surface receptors, such as human epidermal growth factor 2 (HER2), folic acid (FA) receptors, CD44 (also referred to as homing cell adhesion molecule, HCAM), and vascular endothelial growth factor (VEGF) are highly expressed in ovarian cancer cells. Generation of active targeting nanoparticles involves modification with ligands that recognise cell surface receptors and thereby promote internalisation by cancer cells. Several poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are currently used for the treatment of high-grade serous ovarian carcinomas (HGSOC) or platinum-sensitive relapsed OC. However, PARP resistance and poor drug bioavailability are common challenges, highlighting the urgent need to develop novel, effective strategies for ovarian cancer treatment. This review evaluates the utility of nanoparticles in ovarian cancer therapy, with a specific focus on targeted approaches and the use of PARPi nanocarriers to optimise treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90–236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
| |
Collapse
|
7
|
De Lazzari G, Opattova A, Arena S. Novel frontiers in urogenital cancers: from molecular bases to preclinical models to tailor personalized treatments in ovarian and prostate cancer patients. J Exp Clin Cancer Res 2024; 43:146. [PMID: 38750579 PMCID: PMC11094891 DOI: 10.1186/s13046-024-03065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Over the last few decades, the incidence of urogenital cancers has exhibited diverse trends influenced by screening programs and geographical variations. Among women, there has been a consistent or even increased occurrence of endometrial and ovarian cancers; conversely, prostate cancer remains one of the most diagnosed malignancies, with a rise in reported cases, partly due to enhanced and improved screening efforts.Simultaneously, the landscape of cancer therapeutics has undergone a remarkable evolution, encompassing the introduction of targeted therapies and significant advancements in traditional chemotherapy. Modern targeted treatments aim to selectively address the molecular aberrations driving cancer, minimizing adverse effects on normal cells. However, traditional chemotherapy retains its crucial role, offering a broad-spectrum approach that, despite its wider range of side effects, remains indispensable in the treatment of various cancers, often working synergistically with targeted therapies to enhance overall efficacy.For urogenital cancers, especially ovarian and prostate cancers, DNA damage response inhibitors, such as PARP inhibitors, have emerged as promising therapeutic avenues. In BRCA-mutated ovarian cancer, PARP inhibitors like olaparib and niraparib have demonstrated efficacy, leading to their approval for specific indications. Similarly, patients with DNA damage response mutations have shown sensitivity to these agents in prostate cancer, heralding a new frontier in disease management. Furthermore, the progression of ovarian and prostate cancer is intricately linked to hormonal regulation. Ovarian cancer development has also been associated with prolonged exposure to estrogen, while testosterone and its metabolite dihydrotestosterone, can fuel the growth of prostate cancer cells. Thus, understanding the interplay between hormones, DNA damage and repair mechanisms can hold promise for exploring novel targeted therapies for ovarian and prostate tumors.In addition, it is of primary importance the use of preclinical models that mirror as close as possible the biological and genetic features of patients' tumors in order to effectively translate novel therapeutic findings "from the bench to the bedside".In summary, the complex landscape of urogenital cancers underscores the need for innovative approaches. Targeted therapy tailored to DNA repair mechanisms and hormone regulation might offer promising avenues for improving the management and outcomes for patients affected by ovarian and prostate cancers.
Collapse
Affiliation(s)
- Giada De Lazzari
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Alena Opattova
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
- Department of Oncology, University of Torino, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
| |
Collapse
|
8
|
Nakauma-González JA, Rijnders M, Noordsij MTW, Martens JWM, van der Veldt AAM, Lolkema MPJ, Boormans JL, van de Werken HJG. Whole-genome mapping of APOBEC mutagenesis in metastatic urothelial carcinoma identifies driver hotspot mutations and a novel mutational signature. CELL GENOMICS 2024; 4:100528. [PMID: 38552621 PMCID: PMC11019362 DOI: 10.1016/j.xgen.2024.100528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/22/2023] [Accepted: 03/06/2024] [Indexed: 04/13/2024]
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) enzymes mutate specific DNA sequences and hairpin-loop structures, challenging the distinction between passenger and driver hotspot mutations. Here, we characterized 115 whole genomes of metastatic urothelial carcinoma (mUC) to identify APOBEC mutagenic hotspot drivers. APOBEC-associated mutations were detected in 92% of mUCs and were equally distributed across the genome, while APOBEC hotspot mutations (ApoHMs) were enriched in open chromatin. Hairpin loops were frequent targets of didymi (twins in Greek), two hotspot mutations characterized by the APOBEC SBS2 signature, in conjunction with an uncharacterized mutational context (Ap[C>T]). Next, we developed a statistical framework that identified ApoHMs as drivers in coding and non-coding genomic regions of mUCs. Our results and statistical framework were validated in independent cohorts of 23 non-metastatic UCs and 3,744 samples of 17 metastatic cancers, identifying cancer-type-specific drivers. Our study highlights the role of APOBEC in cancer development and may contribute to developing novel targeted therapy options for APOBEC-driven cancers.
Collapse
Affiliation(s)
- J Alberto Nakauma-González
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands; Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands; Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands.
| | - Maud Rijnders
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands
| | - Minouk T W Noordsij
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands
| | - Astrid A M van der Veldt
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands; Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands
| | - Martijn P J Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands
| | - Joost L Boormans
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands
| | - Harmen J G van de Werken
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands; Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands; Department of Immunology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands.
| |
Collapse
|
9
|
Kwon WA. PARP Inhibitors in the Treatment of Prostate Cancer: From Scientific Rationale to Clinical Development. World J Mens Health 2024; 42:290-303. [PMID: 37853532 PMCID: PMC10949026 DOI: 10.5534/wjmh.230177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 10/20/2023] Open
Abstract
Prostate cancer (PC) treatment has reached a milestone with the introduction of poly(ADP-ribose) polymerase (PARP) inhibitors. PARP inhibitors (PARPi) induce breaks in single-stranded and/or double-stranded DNA, resulting in synthetic lethality in cancer cells lacking functional homologous recombination genes. Around 20% to 25% of patients with metastatic castration-resistant prostate cancer harbor mutations in DNA damage repair genes, either somatic or germline. The success of PARPi in these patients has prompted studies exploring its potential in tumors classified as "BRCAness," which refers to tumors without germline BRCA1 or BRCA2 mutations. Additionally, there is a proposed connection between androgen receptor signaling and synthetic lethality of PARPi. The inclusion of genetic mutation tests in the treatment algorithm for PC is a significant step towards precision and personalized medicine, marking a first in the field. The objectives of this review encompass understanding the mechanism of action of PARPi in both monotherapy and combination therapy, exploring patient selection criteria, discussing pivotal studies that led to its approval, and offering future prospects. However, numerous unanswered questions remain, including the identification of the patient population that could benefit most from PARPi, determining whether to use PARPi as monotherapy or in combination, and finding the optimal timing of PARPi administration in advanced or localized disease. To address these questions, several ongoing clinical trials are being conducted.
Collapse
Affiliation(s)
- Whi-An Kwon
- Department of Urology, Myongji Hospital, Hanyang University College of Medicine, Goyang, Korea.
| |
Collapse
|
10
|
Mahadevia H, Ponvilawan B, Al-Obaidi A, Buckley J, Subramanian J, Bansal D. Exceptional synergistic response of PARP inhibitor and immune checkpoint inhibitor in esophageal adenocarcinoma with a germline BRCA2 mutation: a case report. Ther Adv Med Oncol 2024; 16:17588359241242406. [PMID: 38559611 PMCID: PMC10981852 DOI: 10.1177/17588359241242406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) and poly (ADP-ribose) polymerase (PARP) inhibitors have shown efficacy in various tumors. A significant therapeutic challenge with either ICIs or PARP inhibitors as monotherapy is treatment failure from intrinsic primary resistance or the development of secondarily acquired resistance after a period of responsiveness. The combination of PARP inhibitors and ICIs could mitigate this by potentiating treatment response. We describe an 83-year-old male patient who initially presented with abdominal pain, and weight loss along with alternating constipation and diarrhea. Imaging and biopsy revealed metastatic esophageal adenocarcinoma. Genomic testing revealed germline BRCA2 mutation. The patient initially underwent a few cycles of chemoimmunotherapy. However, due to intolerance to chemotherapy, the patient's case was discussed at a multidisciplinary molecular tumor board. He was switched to PARP inhibitor olaparib and ICI nivolumab. This combination led to a durable complete response. A combination of poly-ADP ribose polymerase inhibitor (PARPi) plus ICI may work in synergy through various mechanisms including enhanced neoantigen expression, release of immune-activating cytokines, and increased programmed death-ligand 1 expression. This may culminate in accentuated efficacy outcomes with a manageable safety profile. This exceptional response with ICI and PARPi in our case is consistent with the synergistic value of this combination, and prospective studies are warranted to definitively characterize clinical utility.
Collapse
Affiliation(s)
- Himil Mahadevia
- Department of Internal Medicine, University of Missouri–Kansas City, Kansas City, MO, USA
| | - Ben Ponvilawan
- Department of Internal Medicine, University of Missouri–Kansas City, Kansas City, MO, USA
| | - Ammar Al-Obaidi
- Department of Hematology and Oncology, University of Missouri–Kansas City, Kansas City, MO, USA
| | - Jennifer Buckley
- Department of Radiology, Saint Luke’s Hospital, Kansas City, MO, USA
| | | | - Dhruv Bansal
- Department of Hematology and Oncology, Saint Luke’s Cancer Institute, 4401 Wornall Road, Kansas City, MO 64111, USA
| |
Collapse
|
11
|
Tan Y, Song Q. Bibliometric analysis of research trends on the combination of immune checkpoint inhibitors and PARP inhibitors in solid tumors. Heliyon 2024; 10:e24452. [PMID: 38293546 PMCID: PMC10826821 DOI: 10.1016/j.heliyon.2024.e24452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Introduction Immune checkpoint inhibitors (ICIs) has made significant achievements in the therapeutics of various tumor types, and recently growing evidence from preclinical studies and clinical trials has indicated that poly-ADP-ribose polymerase inhibitors (PARPi) are exhibiting encouraging synergism with ICIs. The aim of our current study is to explore the development pattern of literature related to the combined therapy of ICIs and PARPi in solid tumors from a bibliometric perspective. Methods Publications concerning the combination of ICIs and PARPi in solid tumors during 2008-2022 were extracted from the WOSCC database. VOSviewer and R-bibliometrix were applied to conduct bibliometrics. Results In total, 1113 articles were finally included. The USA was the most dominant country, and University of Texas MD Anderson Cancer Center was the most fruitful institute. Andreas Schneeweiss ranked first concerning the amount of publications in this research domain, and Timothy Yap had the most citations on this theme. The analysis of keyword co-occurrence indicated that research frontiers were shifted from the biological mechanisms of cell death to the combined strategy of ICIs and PARPi in clinical trials. Conclusions Our study comprehensively examined the publications on the combination of ICIs and PARPi in solid tumors from a bibliometric perspective. The research on this topic is in its rapid growth stage, and the USA is possessing an absolutely leading position in this field by its scientific accumulations and productivity. Moreover, the research frontiers have shifted from the mechanisms of ICIs and PARPi to their combined treatment in clinical application. In summary, our results demonstrated a comprehensive overview of the knowledge atlas and a valuable reference for the future investigations in this field.
Collapse
Affiliation(s)
- Yaqian Tan
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qi Song
- Department of Pharmacy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Fang W, Wang J, Ma X, Shao N, Ye K, Zhang D, Shi C, Luo L. A Progressively Disassembled DNA Repair Inhibitors Nanosystem for the Treatment of BRCA Wild-Type Triple-Negative Breast Cancer. Int J Nanomedicine 2023; 18:6001-6019. [PMID: 37901361 PMCID: PMC10612513 DOI: 10.2147/ijn.s426639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/05/2023] [Indexed: 10/31/2023] Open
Abstract
Background Olaparib, a poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitor has demonstrated promising efficacy in patients with triple-negative breast cancer (TNBC) carrying breast cancer gene (BRCA) mutations. However, its impact on BRCA wild-type (BRCAwt) TNBC is limited. Hence, it is crucial to sensitize BRCAwt TNBC cells to olaparib for effective clinical practice. Novobiocin, a DNA polymerase theta (POLθ) inhibitor, exhibits sensitivity towards BRCA-mutated cancer cells that have acquired resistance to PARP inhibitors. Although both of these DNA repair inhibitors demonstrate therapeutic efficacy in BRCA-mutated cancers, their nanomedicine formulations' antitumor effects on wild-type cancer remain unclear. Furthermore, ensuring effective drug accumulation and release at the cancer site is essential for the clinical application of olaparib. Materials and Methods Herein, we designed a progressively disassembled nanosystem of DNA repair inhibitors as a novel strategy to enhance the effectiveness of olaparib in BRCAwt TNBC. The nanosystem enabled synergistic delivery of two DNA repair inhibitors olaparib and novobiocin, within an ultrathin silica framework interconnected by disulfide bonds. Results The designed nanosystem demonstrated remarkable capabilities, including long-term molecular storage and specific drug release triggered by the tumor microenvironment. Furthermore, the nanosystem exhibited potent inhibitory effects on cell viability, enhanced accumulation of DNA damage, and promotion of apoptosis in BRCAwt TNBC cells. Additionally, the nanosystem effectively accumulated within BRCAwt TNBC, leading to significant growth inhibition and displaying vascular regulatory abilities as assessed by magnetic resonance imaging (MRI). Conclusion Our results provided the inaugural evidence showcasing the potential of a progressively disassembled nanosystem of DNA repair inhibitors, as a promising strategy for the treatment of BRCA wild-type triple-negative breast cancer.
Collapse
Affiliation(s)
- Weimin Fang
- Medical Imaging Center, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, People’s Republic of China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, Guangdong, People’s Republic of China
| | - Jinghao Wang
- Department of Pharmacy, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, People’s Republic of China
| | - Xiaocong Ma
- Medical Imaging Center, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, People’s Republic of China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, Guangdong, People’s Republic of China
| | - Ni Shao
- Medical Imaging Center, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, People’s Republic of China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, Guangdong, People’s Republic of China
| | - Kunlin Ye
- Medical Imaging Center, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, People’s Republic of China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, Guangdong, People’s Republic of China
| | - Dong Zhang
- Medical Imaging Center, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, People’s Republic of China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, Guangdong, People’s Republic of China
| | - Changzheng Shi
- Medical Imaging Center, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, People’s Republic of China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, Guangdong, People’s Republic of China
| | - Liangping Luo
- Medical Imaging Center, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, People’s Republic of China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
13
|
Beneyton A, Nonfoux L, Gagné JP, Rodrigue A, Kothari C, Atalay N, Hendzel M, Poirier G, Masson JY. The dynamic process of covalent and non-covalent PARylation in the maintenance of genome integrity: a focus on PARP inhibitors. NAR Cancer 2023; 5:zcad043. [PMID: 37609662 PMCID: PMC10440794 DOI: 10.1093/narcan/zcad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Poly(ADP-ribosylation) (PARylation) by poly(ADP-ribose) polymerases (PARPs) is a highly regulated process that consists of the covalent addition of polymers of ADP-ribose (PAR) through post-translational modifications of substrate proteins or non-covalent interactions with PAR via PAR binding domains and motifs, thereby reprogramming their functions. This modification is particularly known for its central role in the maintenance of genomic stability. However, how genomic integrity is controlled by an intricate interplay of covalent PARylation and non-covalent PAR binding remains largely unknown. Of importance, PARylation has caught recent attention for providing a mechanistic basis of synthetic lethality involving PARP inhibitors (PARPi), most notably in homologous recombination (HR)-deficient breast and ovarian tumors. The molecular mechanisms responsible for the anti-cancer effect of PARPi are thought to implicate both catalytic inhibition and trapping of PARP enzymes on DNA. However, the relative contribution of each on tumor-specific cytotoxicity is still unclear. It is paramount to understand these PAR-dependent mechanisms, given that resistance to PARPi is a challenge in the clinic. Deciphering the complex interplay between covalent PARylation and non-covalent PAR binding and defining how PARP trapping and non-trapping events contribute to PARPi anti-tumour activity is essential for developing improved therapeutic strategies. With this perspective, we review the current understanding of PARylation biology in the context of the DNA damage response (DDR) and the mechanisms underlying PARPi activity and resistance.
Collapse
Affiliation(s)
- Adèle Beneyton
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Louis Nonfoux
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Philippe Gagné
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Amélie Rodrigue
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Charu Kothari
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Nurgul Atalay
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Michael J Hendzel
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AlbertaT6G 1Z2, Canada
| | - Guy G Poirier
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| |
Collapse
|
14
|
Shaw KR, Salloum RG, Snyder PA. A translational model for early childhood intervention: developing, implementing, and scaling-up effective practices. Front Public Health 2023; 11:1198206. [PMID: 37483917 PMCID: PMC10361727 DOI: 10.3389/fpubh.2023.1198206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Early intervention (EI) researchers (i.e., those focused on children birth to age 3 and their families who experience early vulnerabilities) often engage in translational research and implementation science at the intersection of public health, pediatrics, and EI. There is currently a significant research-to-practice gap in EI despite ongoing efforts to close it. Translational research and implementation science are promising approaches to promote transdisciplinary collaborations among researchers and to move EI research into practice, thus supporting positive outcomes for young children and families. This commentary proposes a contemporary alignment of translational research phases for EI. Two literature reviews served to inform development of this alignment: (1) a narrative literature review identified existing applications of translational phases to EI; and (2) a rapid review identified examples of existing behavior-focused translational models across disciplines. Several case examples of current translational research being conducted in EI are discussed and classified according to their respective translational phase. The proposed alignment and case examples provide a basis for transdisciplinary conversations among those working across the various fields and disciplines relevant to EI research. A shift in EI research to reflect a translational and implementation focus will help bridge the research-to-practice gap and, most importantly, speed the movement of scientific evidence into real-world contexts to positively impact young children and families.
Collapse
Affiliation(s)
- Kallen R. Shaw
- School of Special Education, School Psychology, and Early Childhood Studies, College of Education, Anita Zucker Center for Excellence in Early Childhood Studies, University of Florida, Gainesville, FL, United States
| | - Ramzi G. Salloum
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Patricia A. Snyder
- School of Special Education, School Psychology, and Early Childhood Studies, College of Education, Anita Zucker Center for Excellence in Early Childhood Studies, University of Florida, Gainesville, FL, United States
| |
Collapse
|
15
|
Gao H, Sun L, Ni D, Zhang L, Wang H, Bu W, Li J, Shen Q, Wang Y, Liu Y, Zheng X. Regulating electron transportation by tungsten oxide nanocapacitors for enhanced radiation therapy. J Nanobiotechnology 2023; 21:205. [PMID: 37386437 DOI: 10.1186/s12951-023-01962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023] Open
Abstract
In the process of radiation therapy (RT), the cytotoxic effects of excited electrons generated from water radiolysis tend to be underestimated due to multiple biochemical factors, particularly the recombination between electrons and hydroxyl radicals (·OH). To take better advantage of radiolytic electrons, we constructed WO3 nanocapacitors that reversibly charge and discharge electrons to regulate electron transportation and utilization. During radiolysis, WO3 nanocapacitors could contain the generated electrons that block electron-·OH recombination and contribute to the yield of ·OH at a high level. These contained electrons could be discharged from WO3 nanocapacitors after radiolysis, resulting in the consumption of cytosolic NAD+ and impairment of NAD+-dependent DNA repair. Overall, this strategy of nanocapacitor-based radiosensitization improves the radiotherapeutic effects by increasing the utilization of radiolytic electrons and ·OH, warranting further validation in multiple tumour models and preclinical experiments.
Collapse
Affiliation(s)
- Hongbo Gao
- Department of Radiation Oncology, Shanghai Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Li Sun
- Department of Radiation Oncology, Shanghai Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Libo Zhang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenbo Bu
- Department of Material Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Jinjin Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Qianwen Shen
- Department of Radiation Oncology, Shanghai Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Ya Wang
- Department of Material Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yanyan Liu
- Department of Material Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
| | - Xiangpeng Zheng
- Department of Radiation Oncology, Shanghai Huadong Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
16
|
Tisseverasinghe S, Bahoric B, Anidjar M, Probst S, Niazi T. Advances in PARP Inhibitors for Prostate Cancer. Cancers (Basel) 2023; 15:1849. [PMID: 36980735 PMCID: PMC10046616 DOI: 10.3390/cancers15061849] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Poly-adenosine diphosphate-ribose polymerase plays an essential role in cell function by regulating apoptosis, genomic stability and DNA repair. PARPi is a promising drug class that has gained significant traction in the last decade with good outcomes in different cancers. Several trials have sought to test its effectiveness in metastatic castration resistant prostate cancer (mCRPC). We conducted a comprehensive literature review to evaluate the current role of PARPi in this setting. To this effect, we conducted queries in the PubMed, Embase and Cochrane databases. We reviewed and compared all major contemporary publications on the topic. In particular, recent phase II and III studies have also demonstrated the benefits of olaparib, rucaparib, niraparib, talazoparib in CRPC. Drug effectiveness has been assessed through radiological progression or overall response. Given the notion of synthetic lethality and potential synergy with other oncological therapies, several trials are looking to integrate PARPi in combined therapies. There remains ongoing controversy on the need for genetic screening prior to treatment initiation as well as the optimal patient population, which would benefit most from PARPi. PARPi is an important asset in the oncological arsenal for mCRPC. New combinations with PARPi may improve outcomes in earlier phases of prostate cancer.
Collapse
Affiliation(s)
| | - Boris Bahoric
- Department of Radiation Oncology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Maurice Anidjar
- Department of Urology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Stephan Probst
- Department of Nuclear Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Tamim Niazi
- Department of Radiation Oncology, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
17
|
Targeting receptor tyrosine kinases in ovarian cancer: Genomic dysregulation, clinical evaluation of inhibitors, and potential for combinatorial therapies. Mol Ther Oncolytics 2023; 28:293-306. [PMID: 36911068 PMCID: PMC9999170 DOI: 10.1016/j.omto.2023.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Epithelial ovarian cancer (EOC) remains one of the leading causes of cancer-related deaths among women worldwide. Receptor tyrosine kinases (RTKs) have long been sought as therapeutic targets for EOC, as they are frequently hyperactivated in primary tumors and drive disease relapse, progression, and metastasis. More recently, these oncogenic drivers have been implicated in EOC response to poly(ADP-ribose) polymerase (PARP) inhibitors and epigenome-interfering agents. This evidence revives RTKs as promising targets for therapeutic intervention of EOC. This review summarizes recent studies on the role of RTKs in EOC malignancy and the use of their inhibitors for clinical treatment. Our focus is on the ERBB family, c-Met, and VEGFR, as they are linked to drug resistance and targetable using commercially available drugs. The importance of these RTKs and their inhibitors is highlighted by their impact on signal transduction and intratumoral heterogeneity in EOC and successful use as maintenance therapy in the clinic through suppression of the VEGF/VEGFR axis. Finally, the therapeutic potential of RTK inhibitors is discussed in the context of combinatorial targeting via co-inhibiting proliferative and anti-apoptotic pathways, epigenomic/transcriptional programs, and harnessing the efficacy of PARP inhibitors and programmed cell death 1/ligand 1 immune checkpoint therapies.
Collapse
|
18
|
Sadeghi N, Boissonneault G, Tavalaee M, Nasr-Esfahani MH. Oxidative versus reductive stress: a delicate balance for sperm integrity. Syst Biol Reprod Med 2023; 69:20-31. [PMID: 36215401 DOI: 10.1080/19396368.2022.2119181] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Despite the long-standing notion of "oxidative stress," as the main mediator of many diseases including male infertility induced by increased reactive oxygen species (ROS), recent evidence suggests that ROS levels are also increased by "reductive stress," due to over-accumulation of reductants. Damaging mechanisms, like guanidine oxidation followed by DNA fragmentation, could be observed following reductive stress. Excessive accumulation of the reductants may arise from excess dietary supplementation over driving the one-carbon cycle and transsulfuration pathway, overproduction of NADPH through the pentose phosphate pathway (PPP), elevated levels of GSH leading to impaired mitochondrial oxidation, or as a result NADH accumulation. In addition, lower availability of oxidized reductants like NAD+, oxidized glutathione (GSSG), and oxidized thioredoxins (Trx-S2) induce electron leakage leading to the formation of hydrogen peroxide (H2O2). In addition, a lower level of NAD+ impairs poly (ADP-ribose) polymerase (PARP)-regulated DNA repair essential for proper chromatin integrity of sperm. Because of the limited studies regarding the possible involvement of reductive stress, antioxidant therapy remains a central approach in the treatment of male infertility. This review put forward the concept of reductive stress and highlights the potential role played by reductive vs oxidative stress at pre-and post-testicular levels and considering dietary supplementation.
Collapse
Affiliation(s)
- Niloofar Sadeghi
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Guylain Boissonneault
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
19
|
Ovejero-Sánchez M, González-Sarmiento R, Herrero AB. DNA Damage Response Alterations in Ovarian Cancer: From Molecular Mechanisms to Therapeutic Opportunities. Cancers (Basel) 2023; 15:448. [PMID: 36672401 PMCID: PMC9856346 DOI: 10.3390/cancers15020448] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
The DNA damage response (DDR), a set of signaling pathways for DNA damage detection and repair, maintains genomic stability when cells are exposed to endogenous or exogenous DNA-damaging agents. Alterations in these pathways are strongly associated with cancer development, including ovarian cancer (OC), the most lethal gynecologic malignancy. In OC, failures in the DDR have been related not only to the onset but also to progression and chemoresistance. It is known that approximately half of the most frequent subtype, high-grade serous carcinoma (HGSC), exhibit defects in DNA double-strand break (DSB) repair by homologous recombination (HR), and current evidence indicates that probably all HGSCs harbor a defect in at least one DDR pathway. These defects are not restricted to HGSCs; mutations in ARID1A, which are present in 30% of endometrioid OCs and 50% of clear cell (CC) carcinomas, have also been found to confer deficiencies in DNA repair. Moreover, DDR alterations have been described in a variable percentage of the different OC subtypes. Here, we overview the main DNA repair pathways involved in the maintenance of genome stability and their deregulation in OC. We also recapitulate the preclinical and clinical data supporting the potential of targeting the DDR to fight the disease.
Collapse
Affiliation(s)
- María Ovejero-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| | - Ana Belén Herrero
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| |
Collapse
|
20
|
Nakhjavani M, Shigdar S. Natural Blockers of PD-1/PD-L1 Interaction for the Immunotherapy of Triple-Negative Breast Cancer-Brain Metastasis. Cancers (Basel) 2022; 14:6258. [PMID: 36551742 PMCID: PMC9777321 DOI: 10.3390/cancers14246258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The limited treatment options for triple-negative breast cancer with brain metastasis (TNBC-BM) have left the door of further drug development for these patients wide open. Although immunotherapy via monoclonal antibodies has shown some promising results in several cancers including TNBC, it cannot be considered the most effective treatment for brain metastasis. This is due to the protective role of the blood-brain barrier (BBB) which limits the entrance of most drugs, especially the bulky ones such as antibodies, to the brain. For a drug to traverse the BBB via passive diffusion, various physicochemical properties should be considered. Since natural medicine has been a key inspiration for the development of the majority of current medicines, in this paper, we review several naturally-derived molecules which have the potential for immunotherapy via blocking the interaction of programmed cell death protein-1 (PD-1) and its ligand, PD-L1. The mechanism of action, physicochemical properties and pharmacokinetics of these molecules and their theoretical potential to be used for the treatment of TNBC-BM are discussed.
Collapse
Affiliation(s)
| | - Sarah Shigdar
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
21
|
Bernstein-Molho R, Friedman E, Evron E. Controversies and Open Questions in Management of Cancer-Free Carriers of Germline Pathogenic Variants in BRCA1/BRCA2. Cancers (Basel) 2022; 14:cancers14194592. [PMID: 36230512 PMCID: PMC9559251 DOI: 10.3390/cancers14194592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Females harboring germline BRCA1/BRCA2 (BRCA) P/LPV are offered a tight surveillance scheme from the age of 25−30 years, aimed at early detection of specific cancer types, in addition to risk-reducing strategies. Multiple national and international surveillance guidelines have been published and updated over the last two decades from geographically diverse countries. We searched for guidelines published between 1 January 2015 and 1 May 2022. Differences between guidelines on issues such as primary prevention, mammography screening in young (<30 years) carriers, MRI screening in carriers above age 65 years, breast imaging (if any) after risk-reducing bilateral mastectomy, during pregnancy, and breastfeeding, and hormone-replacement therapy, are just a few notable examples. Beyond formal guidelines, BRCA carriers’ concerns also focus on the timing of risk-reducing surgeries, fertility preservation, management of menopausal symptoms in cancer survivors, and pancreatic cancer surveillance, issues that, for some, there are no data to support evidence-based recommendations. This review discusses these unsettled issues, emphasizing the importance of future studies to enable global guideline harmonization for optimal surveillance strategies. Moreover, it raises the unmet need for personalized risk stratification and surveillance in BRCA P/LPV carriers.
Collapse
Affiliation(s)
- Rinat Bernstein-Molho
- The Oncogenetics Unit, Chaim Sheba Medical Center, Tel-Hashomer, The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 5265601, Israel
| | - Eitan Friedman
- Assuta Medical Center, Tel-Aviv, Israel, The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 8436322, Israel
| | - Ella Evron
- Oncology, Kaplan Medical Institute, Rehovot, Hadassah Medical School, The Hebrew University, Jerusalem 9190501, Israel
- Correspondence: or ; Tel.: +972-502-056-171
| |
Collapse
|
22
|
Enhanced Antitumoral Activity of Encapsulated BET Inhibitors When Combined with PARP Inhibitors for the Treatment of Triple-Negative Breast and Ovarian Cancers. Cancers (Basel) 2022; 14:cancers14184474. [PMID: 36139634 PMCID: PMC9496913 DOI: 10.3390/cancers14184474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Poly (adenosine diphosphate ribose) polymerase inhibitors (PARPis) have demonstrated antitumoral activity in several cancers harbouring germline and somatic BRCA1/2 mutations. The widespread use of these agents in clinical practice is restricted by the development of acquired resistance due to the presence of compensatory pathways. A strategy to deal with this is the use of combination therapies with drugs that act synergistically against the tumour. BETis can completely disrupt the HR pathway by repressing the expression of BRCA1 and could be aimed at generation combination regimes to overcome PARPi resistance and enhance PARPi efficacy. However, this strategy is hampered by the poor pharmacokinetic profile and short half-life of BETis. In this work and as a proof of concept, we discuss the potential preclinical benefit provided by the combination of the PARPi olaparib and the BET inhibitor JQ1 encapsulated into nanoparticles for the treatment of BRCAness tumours. Abstract BRCA1/2 protein-deficient or mutated cancers comprise a group of aggressive malignancies. Although PARPis have shown considerably efficacy in their treatment, the widespread use of these agents in clinical practice is restricted by various factors, including the development of acquired resistance due to the presence of compensatory pathways. BETis can completely disrupt the HR pathway by repressing the expression of BRCA1 and could be aimed at generation combination regimes to overcome PARPi resistance and enhance PARPi efficacy. Due to the poor pharmacokinetic profile and short half-life, the first-in-class BETi JQ1 was loaded into newly developed nanocarrier formulations to improve the effectivity of olaparib for the treatment of BRCAness cancers. First, polylactide polymeric nanoparticles were generated by double emulsion. Moreover, liposomes were prepared by ethanol injection and evaporation solvent method. JQ1-loaded drug delivery systems display optimal hydrodynamic radii between 60 and 120 nm, with a very low polydispersity index (PdI), and encapsulation efficiencies of 92 and 16% for lipid- and polymeric-based formulations, respectively. Formulations show high stability and sustained release. We confirmed that all assayed JQ1 formulations improved antiproliferative activity compared to the free JQ1 in models of ovarian and breast cancers. In addition, synergistic interaction between JQ1 and JQ1-loaded nanocarriers and olaparib evidenced the ability of encapsulated JQ1 to enhance antitumoral activity of PARPis.
Collapse
|
23
|
Takamatsu S, Brown JB, Yamaguchi K, Hamanishi J, Yamanoi K, Takaya H, Kaneyasu T, Mori S, Mandai M, Matsumura N. Utility of Homologous Recombination Deficiency Biomarkers Across Cancer Types. JCO Precis Oncol 2022; 6:e2200085. [PMID: 35613413 PMCID: PMC9200383 DOI: 10.1200/po.22.00085] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Homologous recombination DNA repair deficiency (HRD) is associated with sensitivity to platinum and poly (ADP-ribose) polymerase inhibitors in certain cancer types, including breast, ovarian, pancreatic, and prostate. In these cancers, BRCA1/2 alterations and genomic scar signatures are useful indicators for assessing HRD. However, alterations in other homologous recombination repair (HRR)-related genes and their clinical significance in other cancer types have not been adequately and systematically investigated. A comprehensive pan-cancer analysis on the clinical significance of homologous recombination deficiency![]()
Collapse
Affiliation(s)
- Shiro Takamatsu
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - J B Brown
- Life Science Informatics Research Unit, Department of Molecular Biosciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hisamitsu Takaya
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Tomoko Kaneyasu
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Seiichi Mori
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
24
|
Combinations of ATR, Chk1 and Wee1 Inhibitors with Olaparib Are Active in Olaparib Resistant Brca1 Proficient and Deficient Murine Ovarian Cells. Cancers (Basel) 2022; 14:cancers14071807. [PMID: 35406579 PMCID: PMC8997432 DOI: 10.3390/cancers14071807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Poly(ADP-ribose) polymerases inhibitors (PARPis), including olaparib, have been recently approved for ovarian carcinoma treatment and PARPi resistance has already been observed in the clinics. With the aim of dissecting the molecular mechanisms of PARPi resistance, we generated olaparib resistant cells lines, both in a homologous recombination (HR)-deficient and -proficient background by continuous in vitro drug treatment. In the HR proficient background, olaparib resistance was caused by overexpression of multidrug resistance 1 gene (MDR1), while multiple heterogeneous co-existing mechanisms were found in olaparib resistant HR-deficient cells, including overexpression of MDR1, a decrease in PARP1 protein level and partial reactivation of HR repair. We found that combinations of ATR, Chk1 and Wee1 inhibitors with olaparib were synergistic in sensitive and resistant sublines, regardless of the HR status. These new olaparib resistant models will be instrumental to screen new therapeutic options for PARPi-resistant ovarian tumors. Abstract Background. Poly(ADP-ribose) polymerases inhibitor (PARPi) have shown clinical efficacy in ovarian carcinoma, especially in those harboring defects in homologous recombination (HR) repair, including BRCA1 and BRCA2 mutated tumors. There is increasing evidence however that PARPi resistance is common and develops through multiple mechanisms. Methods. ID8 F3 (HR proficient) and ID8 Brca1-/- (HR deficient) murine ovarian cells resistant to olaparib, a PARPi, were generated through stepwise drug concentrations in vitro. Both sensitive and resistant cells lines were pharmacologically characterized and the molecular mechanisms underlying olaparib resistance. Results. In ID8, cells with a HR proficient background, olaparib resistance was mainly caused by overexpression of multidrug resistance 1 gene (MDR1), while multiple heterogeneous co-existing mechanisms were found in ID8 Brca1-/- HR-deficient cells resistant to olaparib, including overexpression of MDR1, a decrease in PARP1 protein level and partial reactivation of HR repair. Importantly, combinations of ATR, Chk1 and Wee1 inhibitors with olaparib were synergistic in sensitive and resistant sublines, regardless of the HR cell status. Conclusion. Olaparib-resistant cell lines were generated and displayed multiple mechanisms of resistance, which will be instrumental in selecting new possible therapeutic options for PARPi-resistant ovarian tumors.
Collapse
|
25
|
Hou J, He Z, Liu T, Chen D, Wang B, Wen Q, Zheng X. Evolution of Molecular Targeted Cancer Therapy: Mechanisms of Drug Resistance and Novel Opportunities Identified by CRISPR-Cas9 Screening. Front Oncol 2022; 12:755053. [PMID: 35372044 PMCID: PMC8970599 DOI: 10.3389/fonc.2022.755053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
Molecular targeted therapy has revolutionized the landscape of cancer treatment due to better therapeutic responses and less systemic toxicity. However, therapeutic resistance is a major challenge in clinical settings that hinders continuous clinical benefits for cancer patients. In this regard, unraveling the mechanisms of drug resistance may identify new druggable genetic alterations for molecularly targeted therapies, thus contributing to improved therapeutic efficacies. The recent rapid development of novel methodologies including CRISPR-Cas9 screening technology and patient-derived models provides powerful tools to dissect the underlying mechanisms of resistance to targeted cancer therapies. In this review, we updated therapeutic targets undergoing preclinical and clinical evaluation for various cancer types. More importantly, we provided comprehensive elaboration of high throughput CRISPR-Cas9 screening in deciphering potential mechanisms of unresponsiveness to molecularly targeted therapies, which will shed light on the discovery of novel opportunities for designing next-generation anti-cancer drugs.
Collapse
Affiliation(s)
- Jue Hou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zongsheng He
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tian Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dongfeng Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bin Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xi Zheng
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
26
|
Manco G, Lacerra G, Porzio E, Catara G. ADP-Ribosylation Post-Translational Modification: An Overview with a Focus on RNA Biology and New Pharmacological Perspectives. Biomolecules 2022; 12:biom12030443. [PMID: 35327636 PMCID: PMC8946771 DOI: 10.3390/biom12030443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Cellular functions are regulated through the gene expression program by the transcription of new messenger RNAs (mRNAs), alternative RNA splicing, and protein synthesis. To this end, the post-translational modifications (PTMs) of proteins add another layer of complexity, creating a continuously fine-tuned regulatory network. ADP-ribosylation (ADPr) is an ancient reversible modification of cellular macromolecules, regulating a multitude of key functional processes as diverse as DNA damage repair (DDR), transcriptional regulation, intracellular transport, immune and stress responses, and cell survival. Additionally, due to the emerging role of ADP-ribosylation in pathological processes, ADP-ribosyltransferases (ARTs), the enzymes involved in ADPr, are attracting growing interest as new drug targets. In this review, an overview of human ARTs and their related biological functions is provided, mainly focusing on the regulation of ADP-ribosyltransferase Diphtheria toxin-like enzymes (ARTD)-dependent RNA functions. Finally, in order to unravel novel gene functional relationships, we propose the analysis of an inventory of human gene clusters, including ARTDs, which share conserved sequences at 3′ untranslated regions (UTRs).
Collapse
Affiliation(s)
- Giuseppe Manco
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
- Correspondence: (G.M.); (G.C.)
| | - Giuseppina Lacerra
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
| | - Elena Porzio
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
| | - Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
- Correspondence: (G.M.); (G.C.)
| |
Collapse
|
27
|
Sim HW, Galanis E, Khasraw M. PARP Inhibitors in Glioma: A Review of Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14041003. [PMID: 35205750 PMCID: PMC8869934 DOI: 10.3390/cancers14041003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/02/2022] [Accepted: 02/12/2022] [Indexed: 02/04/2023] Open
Abstract
Gliomas are the most common malignant primary brain tumor in adults. Despite advances in multimodality therapy, incorporating surgery, radiotherapy, systemic therapy, tumor treating fields and supportive care, patient outcomes remain poor, especially in glioblastoma where median survival has remained static at around 15 months, for decades. Low-grade gliomas typically harbor isocitrate dehydrogenase (IDH) mutations, grow more slowly and confer a better prognosis than glioblastoma. However, nearly all gliomas eventually recur and progress in a way similar to glioblastoma. One of the novel therapies being developed in this area are poly(ADP-ribose) polymerase (PARP) inhibitors. PARP inhibitors belong to a class of drugs that target DNA damage repair pathways. This leads to synthetic lethality of cancer cells with coexisting homologous recombination deficiency. PARP inhibitors may also potentiate the cytotoxic effects of radiotherapy and chemotherapy, and prime the tumor microenvironment for immunotherapy. In this review, we examine the rationale and clinical evidence for PARP inhibitors in glioma and suggest therapeutic opportunities.
Collapse
Affiliation(s)
- Hao-Wen Sim
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW 2050, Australia;
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, NSW 2050, Australia
| | | | - Mustafa Khasraw
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW 2050, Australia;
- Duke University School of Medicine, Duke University, Durham, NC 27710, USA
- Correspondence: ; Tel.: +1-919-684-6173
| |
Collapse
|
28
|
Buyuk B, Jin S, Ye K. Epithelial-to-Mesenchymal Transition Signaling Pathways Responsible for Breast Cancer Metastasis. Cell Mol Bioeng 2022; 15:1-13. [PMID: 35096183 PMCID: PMC8761190 DOI: 10.1007/s12195-021-00694-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
Breast carcinoma is highly metastatic and invasive. Tumor metastasis is a convoluted and multistep process involving tumor cell disseminating from their primary site and migrating to the secondary organ. Epithelial-mesenchymal transition (EMT) is one of the crucial steps that initiate cell progression, invasion, and metastasis. During EMT, epithelial cells alter their molecular features and acquire a mesenchymal phenotype. The regulation of EMT is centered by several signaling pathways, including primary mediators TGF-β, Notch, Wnt, TNF-α, Hedgehog, and RTKs. It is also affected by hypoxia and microRNAs (miRNAs). All these pathways are the convergence on the transcriptional factors such as Snail, Slug, Twist, and ZEB1/2. In addition, a line of evidence suggested that EMT and cancer stem like cells (CSCs) are associated. EMT associated cancer stem cells display mesenchymal phenotypes and resist to chemotherapy or targeted therapy. In this review, we highlighted recent discoveries in these signaling pathways and their regulation in breast cancer metastasis and invasion. While the clinical relevance of EMT and breast cancers remains controversial, we speculated a convergent signaling network pivotal to elucidating the transition of epithelial to mesenchymal phenotypes and onset of metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Busra Buyuk
- Department of Biomedical Engineering, Watson College of Engineering and Applied Science, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), PO Box 6000, Binghamton, NY 13902 USA
| | - Sha Jin
- Department of Biomedical Engineering, Watson College of Engineering and Applied Science, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), PO Box 6000, Binghamton, NY 13902 USA
| | - Kaiming Ye
- Department of Biomedical Engineering, Watson College of Engineering and Applied Science, Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), PO Box 6000, Binghamton, NY 13902 USA
| |
Collapse
|
29
|
Watanabe T, Soeda S, Endo Y, Okabe C, Sato T, Kamo N, Ueda M, Kojima M, Furukawa S, Nishigori H, Takahashi T, Fujimori K. Rare Hereditary Gynecological Cancer Syndromes. Int J Mol Sci 2022; 23:1563. [PMID: 35163487 PMCID: PMC8835983 DOI: 10.3390/ijms23031563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
Hereditary cancer syndromes, which are characterized by onset at an early age and an increased risk of developing certain tumors, are caused by germline pathogenic variants in tumor suppressor genes and are mostly inherited in an autosomal dominant manner. Therefore, hereditary cancer syndromes have been used as powerful models to identify and characterize susceptibility genes associated with cancer. Furthermore, clarification of the association between genotypes and phenotypes in one disease has provided insights into the etiology of other seemingly different diseases. Molecular genetic discoveries from the study of hereditary cancer syndrome have not only changed the methods of diagnosis and management, but have also shed light on the molecular regulatory pathways that are important in the development and treatment of sporadic tumors. The main cancer susceptibility syndromes that involve gynecologic cancers include hereditary breast and ovarian cancer syndrome as well as Lynch syndrome. However, in addition to these two hereditary cancer syndromes, there are several other hereditary syndromes associated with gynecologic cancers. In the present review, we provide an overview of the clinical features, and discuss the molecular genetics, of four rare hereditary gynecological cancer syndromes; Cowden syndrome, Peutz-Jeghers syndrome, DICER1 syndrome and rhabdoid tumor predisposition syndrome 2.
Collapse
Affiliation(s)
- Takafumi Watanabe
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Shu Soeda
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Yuta Endo
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Chikako Okabe
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Tetsu Sato
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Norihito Kamo
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Makiko Ueda
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Manabu Kojima
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Shigenori Furukawa
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Hidekazu Nishigori
- Fukushima Medical Center for Children and Women, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan; (H.N.); (T.T.)
| | - Toshifumi Takahashi
- Fukushima Medical Center for Children and Women, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan; (H.N.); (T.T.)
| | - Keiya Fujimori
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| |
Collapse
|
30
|
Mitsogiannis I, Tzelves L, Dellis A, Issa H, Papatsoris A, Moussa M. Prostate cancer immunotherapy. Expert Opin Biol Ther 2022; 22:577-590. [PMID: 35037527 DOI: 10.1080/14712598.2022.2027904] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Medical treatment for prostate cancer (PC) targets hormonal pathways used by malignant cells. Research advances aided in gaining knowledge about implicated molecular pathways and opened the way for establishment of new types of therapies by modifying immunological mechanisms. The aim of this review is to present completed and ongoing research projects regarding PC immunotherapy. AREAS COVERED A literature search was conducted in PubMed/MEDLINE, Scopus, Cochrane Central Register of Controlled Trials, and https://www.clinicaltrials.gov/ from inception until 07/2021, to identify completed or ongoing Phase III trials regarding several immunotherapies against PC. Studies on vaccine therapies, CTLA-4 inhibitors, PD-1/PD-L1 inhibitors, PARP inhibitors, PSMA-targeted therapies, and tyrosine kinase inhibitors were considered eligible. EXPERT OPINION Although many molecules are being tested against PC cells, only sipuleucel-T has gain approval in the USA. The main reason for this delay in establishing immunotherapy as a standard option for managing PC is the heterogeneity and tumor immune microenvironment complexities. Ipilimumab and olaparib were proved to prolong overall survival significantly against placebo, but a lot of research is going on to identify which patients and at what stage of disease will benefit the most before incorporating them in clinical practice. More recent options such as PSMA-targeted treatments are currently evaluated. ARTICLE HIGHLIGHTS Intense research performed on immunotherapy for prostate cancer.Vaccine therapy with sipuleucel-T, the only approved immunotherapy for prostate cancer.Ipilimumab shows survival benefits.Olaparib shows survival benefits.Findings should be confirmed on further trials to identify target population characteristics and proper disease stage.Immunotherapy is not yet a standard due to tumor environment complex interaction between immune system and malignant cells.
Collapse
Affiliation(s)
- Iraklis Mitsogiannis
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Lazaros Tzelves
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Dellis
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Department of Surgery, School of Medicine, Aretaieion Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Hussein Issa
- Department of Urology, Al Zahraa Hospital, University Medical Center, Lebanese University, Beirut, Lebanon
| | - Athanasios Papatsoris
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Mohammad Moussa
- Department of Urology, Al Zahraa Hospital, University Medical Center, Lebanese University, Beirut, Lebanon
| |
Collapse
|
31
|
Vetrei C, Passariello M, Froechlich G, Rapuano Lembo R, Sasso E, Zambrano N, De Lorenzo C. Novel Combinations of Human Immunomodulatory mAbs Lacking Cardiotoxic Effects for Therapy of TNBC. Cancers (Basel) 2021; 14:cancers14010121. [PMID: 35008285 PMCID: PMC8750931 DOI: 10.3390/cancers14010121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Immunotherapy has revolutionized the management of cancer by improving outcomes of triple-negative breast cancer (TNBC). Recently, programmed death-ligand 1 (PD-L1), was identified as a target for TNBC and several preclinical and clinical trials are currently focusing on combinatorial treatments of immunomodulatory mAbs with chemotherapy, radiotherapy, or other mAbs. Here, we tested in in vitro models novel combinations of immunomodulatory mAbs on TNBC cell lines and on cardiomyocytes, in comparison with the mAbs approved by FDA for cancer therapy, in order to identify at early stages the more potent anti-cancer combinations endowed with low or no cardiotoxic side effects. Abstract Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer characterized by a higher mortality rate among breast cancer subtypes. Poly(ADP-ribose) polymerase (PARP) inhibitors are used in clinics to treat a subgroup of TNBC patients, but other targeted therapies are urgently needed. Programmed death-ligand 1 (PD-L1), involved in tumor immune escape, was recently identified as a target for TNBC; accordingly, the anti-PD-L1 monoclonal antibody (mAb), atezolizumab, has been approved by FDA in combination with Paclitaxel for the therapy of metastatic TNBC. Here, we tested novel combinations of fully human immunomodulatory mAbs, including anti-PD-L1 mAbs generated in our laboratory and atezolizumab, on TNBC and other tumor cell lines. We evaluated their anti-tumor efficacy when used as single agents or in combinatorial treatments with anti-CTLA-4 mAbs in in vitro co-cultures of hPBMCs with tumor cells, by measuring tumor cell lysis and IL-2 and IFNγ cytokines secretion by lymphocytes. In parallel, by using co-cultures of hPBMCs and cardiomyocytes, we analyzed the potential cardiotoxic adverse side effects of the same antibody treatments by measuring the cardiac cell lysis and the secretion of pro-inflammatory cytokines. We identified novel combinations of immunomodulatory mAbs endowed with more potent anti-cancer activity on TNBC and lower cardiotoxic side effects than the combination of atezolizumab and ipilimumab.
Collapse
Affiliation(s)
- Cinzia Vetrei
- Ceinge—Biotecnologie Avanzate s.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy; (C.V.); (M.P.); (G.F.); (R.R.L.); (E.S.); (N.Z.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Napoli, Italy
| | - Margherita Passariello
- Ceinge—Biotecnologie Avanzate s.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy; (C.V.); (M.P.); (G.F.); (R.R.L.); (E.S.); (N.Z.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Napoli, Italy
| | - Guendalina Froechlich
- Ceinge—Biotecnologie Avanzate s.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy; (C.V.); (M.P.); (G.F.); (R.R.L.); (E.S.); (N.Z.)
- European School of Molecular Medicine, University of Milan, 20122 Milan, Italy
| | - Rosa Rapuano Lembo
- Ceinge—Biotecnologie Avanzate s.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy; (C.V.); (M.P.); (G.F.); (R.R.L.); (E.S.); (N.Z.)
- European School of Molecular Medicine, University of Milan, 20122 Milan, Italy
| | - Emanuele Sasso
- Ceinge—Biotecnologie Avanzate s.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy; (C.V.); (M.P.); (G.F.); (R.R.L.); (E.S.); (N.Z.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Napoli, Italy
| | - Nicola Zambrano
- Ceinge—Biotecnologie Avanzate s.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy; (C.V.); (M.P.); (G.F.); (R.R.L.); (E.S.); (N.Z.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Napoli, Italy
| | - Claudia De Lorenzo
- Ceinge—Biotecnologie Avanzate s.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy; (C.V.); (M.P.); (G.F.); (R.R.L.); (E.S.); (N.Z.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Napoli, Italy
- Correspondence: ; Tel.: +39-081-373-7868
| |
Collapse
|
32
|
Cheng X, Zhang B, Guo F, Wu H, Jin X. Deubiquitination of FBP1 by USP7 blocks FBP1-DNMT1 interaction and decreases the sensitivity of pancreatic cancer cells to PARP inhibitors. Mol Oncol 2021; 16:1591-1607. [PMID: 34854226 PMCID: PMC8978517 DOI: 10.1002/1878-0261.13149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/02/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Poly[ADP‐ribose] polymerase (PARP) inhibitors can block DNA single‐strand damage repair and subsequently increase double‐stranded breaks (DSBs) by reducing the activity of the PARP1 protease and by preventing the PARP1 protein from dissociating from chromatin. Tumors with the BRCA mutation are particularly sensitive to PARP inhibitors. So far, PARP inhibitors (Olaparib) have been used to treat pancreatic cancer patients with BRCA mutation. However, these patients are prone to PARP inhibitor resistance. Our previous studies suggest that fructose‐1,6‐bisphosphatase 1 (FBP1) is responsible for the sensitivity to various anticancer agents, such as gemcitabine or mitogen‐activated protein kinase kinase (MEK) inhibitors. In this study, we demonstrate that FBP1 regulates the sensitivity to PARP inhibitors in pancreatic cancer. Then, we showed that nuclear FBP1 is responsible for this process by interacting with DNA (cytosine‐5)‐methyltransferase 1 (DNMT1) and trapping PARP1 in chromatin. Moreover, we revealed that ubiquitin carboxyl‐terminal hydrolase 7 (USP7) binds to and induces the deubiquitination of FBP1, which prevented FBP1 from translocating to the nucleus. Finally, we demonstrated that USP7 inhibitors enhanced the antitumor effect of PARP inhibitors in an FBP1‐dependent manner. Collectively, our results identify a novel USP7–FBP1–DNMT1 signaling axis in pancreatic cancer, which might indicate that USP7 inhibitors and PARP inhibitors might have more powerful antitumor effects than PARP inhibitors alone in pancreatic cancer patients.
Collapse
Affiliation(s)
- Xiang Cheng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China.,Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhang
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China.,Uro-Oncology Institute of Central South University, Changsha, China
| |
Collapse
|
33
|
Jeong KY, Lee H. Inhibition of poly (ADP-Ribose) polymerase: A promising strategy targeting pancreatic cancer with BRCAness phenotype. World J Gastrointest Oncol 2021. [PMID: 34853635 DOI: 10.4251/wjgo.v13.i11.1544.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The use of chemotherapeutic regimens for the treatment of pancreatic cancer is still limited because pancreatic cancer is usually diagnosed at an advanced stage as a refractory disease in which symptoms are difficult to recognize in the early stages. Furthermore, at advanced stages, there are important challenges to achieve clinical benefit and symptom resolution, even with the use of an expanded spectrum of anticancer drugs. Recently, a point of reduced susceptibility to conventional chemotherapies by breast cancer susceptibility gene (BRCA) mutations led to a new perspective for overcoming the resistance of pancreatic cancer within the framework of increased genome instability. Poly (ADP-Ribose) polymerase (PARP) -1 is an enzyme that can regulate intrinsic functions, such as response to DNA damage. Therefore, in an environment where germline mutations in BRCAs (BRCAness) inhibit homologous recombination in DNA damage, resulting in a lack of DNA damage response, a key role of PARP-1 for the adaptation of the genome instability could be further emphasized. Here, we summarized the key functional role of PARP-1 in genomic instability of pancreatic cancer with the BRCAness phenotype and listed clinical applications and outcomes of PARP-1 inhibitors to highlight the importance of targeting PARP-1 activity.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- R&D Center, Metimedi Pharmaceuticals, Incheon 22006, South Korea.
| | - Haejun Lee
- Department of Nuclear Medicine, Gil Medical Center, Incheon 21565, South Korea
| |
Collapse
|
34
|
Jeong KY, Lee H. Inhibition of poly (ADP-Ribose) polymerase: A promising strategy targeting pancreatic cancer with BRCAness phenotype. World J Gastrointest Oncol 2021; 13:1544-1550. [PMID: 34853635 PMCID: PMC8603447 DOI: 10.4251/wjgo.v13.i11.1544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
The use of chemotherapeutic regimens for the treatment of pancreatic cancer is still limited because pancreatic cancer is usually diagnosed at an advanced stage as a refractory disease in which symptoms are difficult to recognize in the early stages. Furthermore, at advanced stages, there are important challenges to achieve clinical benefit and symptom resolution, even with the use of an expanded spectrum of anticancer drugs. Recently, a point of reduced susceptibility to conventional chemotherapies by breast cancer susceptibility gene (BRCA) mutations led to a new perspective for overcoming the resistance of pancreatic cancer within the framework of increased genome instability. Poly (ADP-Ribose) polymerase (PARP) -1 is an enzyme that can regulate intrinsic functions, such as response to DNA damage. Therefore, in an environment where germline mutations in BRCAs (BRCAness) inhibit homologous recombination in DNA damage, resulting in a lack of DNA damage response, a key role of PARP-1 for the adaptation of the genome instability could be further emphasized. Here, we summarized the key functional role of PARP-1 in genomic instability of pancreatic cancer with the BRCAness phenotype and listed clinical applications and outcomes of PARP-1 inhibitors to highlight the importance of targeting PARP-1 activity.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- R&D Center, Metimedi Pharmaceuticals, Incheon 22006, South Korea
| | - Haejun Lee
- Department of Nuclear Medicine, Gil Medical Center, Incheon 21565, South Korea
| |
Collapse
|
35
|
Kliza KW, Liu Q, Roosenboom LWM, Jansen PWTC, Filippov DV, Vermeulen M. Reading ADP-ribosylation signaling using chemical biology and interaction proteomics. Mol Cell 2021; 81:4552-4567.e8. [PMID: 34551281 DOI: 10.1016/j.molcel.2021.08.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/23/2021] [Accepted: 08/26/2021] [Indexed: 01/12/2023]
Abstract
ADP-ribose (ADPr) readers are essential components of ADP-ribosylation signaling, which regulates genome maintenance and immunity. The identification and discrimination between monoADPr (MAR) and polyADPr (PAR) readers is difficult because of a lack of suitable affinity-enrichment reagents. We synthesized well-defined ADPr probes and used these for affinity purifications combined with relative and absolute quantitative mass spectrometry to generate proteome-wide MAR and PAR interactomes, including determination of apparent binding affinities. Among the main findings, MAR and PAR readers regulate various common and distinct processes, such as the DNA-damage response, cellular metabolism, RNA trafficking, and transcription. We monitored the dynamics of PAR interactions upon induction of oxidative DNA damage and uncovered the mechanistic connections between ubiquitin signaling and ADP-ribosylation. Taken together, chemical biology enables exploration of MAR and PAR readers using interaction proteomics. Furthermore, the generated MAR and PAR interaction maps significantly expand our current understanding of ADPr signaling.
Collapse
Affiliation(s)
- Katarzyna W Kliza
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands.
| | - Qiang Liu
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, Netherlands
| | - Laura W M Roosenboom
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, Netherlands.
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
36
|
Bernstein-Molho R, Evron E, Yerushalmi R, Paluch-Shimon S. Genetic testing in patients with triple-negative or hereditary breast cancer. Curr Opin Oncol 2021; 33:584-590. [PMID: 34474437 DOI: 10.1097/cco.0000000000000784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW In recent years there has been a dramatic evolution in the clinical utility of genetic testing with expanding therapeutic implications for individuals with breast cancer who harbor a germline mutation in BRCA1/2. As these therapeutic opportunities expand and evolve, this requires the clinical and research community to rethink the approach to genetic testing for individuals with breast cancer. RECENT FINDINGS Genetic testing is evolving from traditional testing models based on pretest counseling with the aim of identifying hereditary and individual risk for purposes of screening and risk reduction to contemporary models that utilize technology to improve accessibility and oncology led mainstreaming of testing where the oncologist refers for genetic testing, discloses the results and formal counseling occurs later in the process than in traditional models. The cost and accessibility to multigene panel testing have resulted in broad uptake despite the fact that clinical utility and appropriate interpretation of results are not yet well established. Furthermore, somatic testing for genomic alterations may also yield results beyond the disease with detection of germline mutations impacting the individual and their family more broadly than anticipated. SUMMARY With the establishment of poly (adenosine diphosphate-ribose) polymerase inhibitors as part of the treatment armamentarium for early and advanced breast cancer, paradigms, algorithms, and resources for genetic testing need to rapidly change in order to adapt to the evolution of germline mutations from hereditary and individual risk predictors to predictive therapeutic biomarkers.
Collapse
Affiliation(s)
- Rinat Bernstein-Molho
- Susanne Levy Gertner Oncogenetics Unit, The Danek Gertner Institute of Human Genetics, Chaim Sheba Medical Center, Tel-Hashomer.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv
| | - Ella Evron
- Department of Oncology, Kaplan Medical Center, Rehovot.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rinat Yerushalmi
- Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petah Tikva.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv
| | - Shani Paluch-Shimon
- Sharett Institute of Oncology, Hadassah University Hospital, Jerusalem.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
37
|
Synthesis, In Silico Study, and Anti-Cancer Activity of Thiosemicarbazone Derivatives. Biomedicines 2021; 9:biomedicines9101375. [PMID: 34680491 PMCID: PMC8533299 DOI: 10.3390/biomedicines9101375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Thiosemicarbazones are known for their biological and pharmacological activities. In this study, we have synthesized and characterized 3-Methoxybenzaldehyde thiosemicarbazone (3-MBTSc) and 4-Nitrobenzaldehyde thiosemicarbazone (4-NBTSc) using IR, 1HNMR and 13C NMR. The compound’s in vitro anticancer activities against different cell lines were evaluated. Molecular docking, Insilco ADMET, and drug-likeness prediction were also done. The test compounds showed a comparative IC50 and growth inhibition with the standard drug Doxorubicin. The IC50 ranges from 2.82 µg/mL to 14.25 µg/mL in 3-MBTSc and 2.80 µg/mL to 7.59 µg/mL in 4-NBTSc treated cells. The MTT assay result revealed, 3-MBTSc inhibits 50.42 and 50.31 percent of cell growth in B16-F0 and EAC cell lines, respectively. The gene expression showed that tumor suppressor genes such as PTEN and BRCA1 are significantly upregulated in 7.42 and 5.33 folds, and oncogenes, PKC, and RAS are downregulated −7.96 and −7.64 folds, respectively in treated cells. The molecular docking performed on the four targeted proteins (PARP, VEGFR-1, TGF-β1, and BRAFV600E) indicated that both 4-NBTSc and 3-MBTSc potentially bind to TGF-β1 with the best binding energy of −42.34 Kcal/mol and −32.13 Kcal/mol, respectively. In addition, the test compound possesses desirable ADMET and drug-likeness properties. Overall, both 3-MBTSc and 4-NBTSc have the potential to be multitargeting drug candidates for further study. Moreover, 3-MBTSc showed better activity than 4-NBTSc.
Collapse
|
38
|
Xu J, Keenan TE, Overmoyer B, Tung NM, Gelman RS, Habin K, Garber JE, Ellisen LW, Winer EP, Goss PE, Yeap BY, Chabner BA, Isakoff SJ. Phase II trial of veliparib and temozolomide in metastatic breast cancer patients with and without BRCA1/2 mutations. Breast Cancer Res Treat 2021; 189:641-651. [PMID: 34417675 DOI: 10.1007/s10549-021-06292-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/13/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE We evaluated the efficacy and safety of poly-(adenosine diphosphate-ribose) polymerase (PARP) 1 and 2 inhibitor veliparib and temozolomide in metastatic breast cancer patients with and without germline BRCA1/2 mutations. METHODS In this single-arm phase II trial, patients with metastatic breast cancer received veliparib 30 to 40 mg twice daily on days 1 to 7 with concurrent temozolomide 150 mg/m2 on days 1 to 5 of a 28-day cycle. The primary cohort was unselected for BRCA mutation status, and an expansion cohort enrolled only BRCA1/2 carriers. The primary endpoint was objective response rate (ORR) in each cohort. Secondary endpoints included progression-free survival (PFS), clinical benefit rate (CBR), and evaluation of safety and tolerability. RESULTS In the primary cohort of 41 unselected patients, which included 9 BRCA mutation carriers, the ORR was 10% and clinical benefit rate at 4 months (CBR) was 27%. In the expansion cohort of 21 BRCA1/2 carriers, the ORR was 14% and CBR was 43%. Among all 30 BRCA1/2 carriers, the ORR was 23% versus 0% among non-carriers. In the subset of BRCA1/2 carriers, the ORR was 32% among platinum-naïve patients versus 9% among platinum-exposed patients. The median PFS was 3.3 months among BRCA1/2 carriers compared to 1.8 months among non-carriers (HR: 0.48, p = 0.006). A longer median PFS of 6.2 months was observed among BRCA1/2 carriers who had no prior platinum therapy. The most common grade 3 and 4 toxicities were thrombocytopenia (32%) and neutropenia (21%) that generally improved with dose modifications. CONCLUSION Veliparib and temozolomide demonstrated clinical activity in platinum-naïve BRCA-associated metastatic breast cancer with manageable toxicity at doses of veliparib well below the single-agent active dose. Although the study did not meet its primary endpoint in unselected nor BRCA-associated breast cancer, this regimen was further evaluated in the BROCADE 2 study. TRIAL REGISTRATION NCT01009788 (ClinicalTrials.gov), November 9, 2009.
Collapse
Affiliation(s)
- Jing Xu
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02141, USA.,Harvard Medical School, Boston, USA.,Sanofi US, 50 Binney St, Cambridge, MA, 02142, USA
| | - Tanya E Keenan
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02141, USA.,Dana-Farber Cancer Institute, Boston, USA.,Harvard Medical School, Boston, USA
| | - Beth Overmoyer
- Dana-Farber Cancer Institute, Boston, USA.,Harvard Medical School, Boston, USA
| | - Nadine M Tung
- Beth Israel Deaconess Medical Center, Boston, USA.,Harvard Medical School, Boston, USA
| | - Rebecca S Gelman
- Dana-Farber Cancer Institute, Boston, USA.,Harvard Medical School, Boston, USA
| | - Karleen Habin
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02141, USA
| | - Judy E Garber
- Dana-Farber Cancer Institute, Boston, USA.,Harvard Medical School, Boston, USA
| | - Leif W Ellisen
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02141, USA.,Harvard Medical School, Boston, USA
| | - Eric P Winer
- Dana-Farber Cancer Institute, Boston, USA.,Harvard Medical School, Boston, USA
| | - Paul E Goss
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02141, USA.,Harvard Medical School, Boston, USA
| | - Beow Y Yeap
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02141, USA.,Harvard Medical School, Boston, USA
| | - Bruce A Chabner
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02141, USA. .,Harvard Medical School, Boston, USA.
| | - Steven J Isakoff
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02141, USA.,Harvard Medical School, Boston, USA
| |
Collapse
|
39
|
Pham MM, Ngoi NYL, Peng G, Tan DSP, Yap TA. Development of poly(ADP-ribose) polymerase inhibitor and immunotherapy combinations: progress, pitfalls, and promises. Trends Cancer 2021; 7:958-970. [PMID: 34158277 PMCID: PMC8458234 DOI: 10.1016/j.trecan.2021.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022]
Abstract
The efficacy of poly(ADP-ribose) polymerase inhibitors (PARPi) is restricted by inevitable drug resistance, while their use in combination with chemotherapy and targeted agents is commonly associated with dose-limiting toxicities. Immune checkpoint blockade (ICB) has demonstrated durable responses in different solid tumors and is well-established across multiple cancers. Despite this, single agent activity is limited to a minority of patients and drug resistance remains an issue. Building on the monotherapy success of both drug classes, combining PARPi with ICB may be a safe and well-tolerated strategy with the potential to improve survival outcomes. In this review, we present the preclinical, translational, and clinical data supporting the combination of DNA damage response (DDR) and ICB as well as consider important questions to be addressed with future research.
Collapse
Affiliation(s)
- Melissa M Pham
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie Y L Ngoi
- Department of Hematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Guang Peng
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S P Tan
- Department of Hematology-Oncology, National University Cancer Institute, National University Health System, Singapore; Cancer Science Institute, National University of Singapore, Singapore
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
40
|
Sargazi S, Mukhtar M, Rahdar A, Barani M, Pandey S, Díez-Pascual AM. Active Targeted Nanoparticles for Delivery of Poly(ADP-ribose) Polymerase (PARP) Inhibitors: A Preliminary Review. Int J Mol Sci 2021; 22:10319. [PMID: 34638660 PMCID: PMC8508934 DOI: 10.3390/ijms221910319] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology has revolutionized novel drug delivery strategies through establishing nanoscale drug carriers, such as niosomes, liposomes, nanomicelles, dendrimers, polymeric micelles, and nanoparticles (NPs). Owing to their desirable cancer-targeting efficacy and controlled release, these nanotherapeutic modalities are broadly used in clinics to improve the efficacy of small-molecule inhibitors. Poly(ADP-ribose) polymerase (PARP) family members engage in various intracellular processes, including DNA repair, gene transcription, signal transduction, cell cycle regulation, cell division, and antioxidant response. PARP inhibitors are synthetic small-molecules that have emerged as one of the most successful innovative strategies for targeted therapy in cancer cells harboring mutations in DNA repair genes. Despite these advances, drug resistance and unwanted side effects are two significant drawbacks to using PARP inhibitors in the clinic. Recently, the development of practical nanotechnology-based drug delivery systems has tremendously improved the efficacy of PARP inhibitors. NPs can specifically accumulate in the leaky vasculature of the tumor and cancer cells and release the chemotherapeutic moiety in the tumor microenvironment. On the contrary, NPs are usually unable to permeate across the body's normal organs and tissues; hence the toxicity is zero to none. NPs can modify the release of encapsulated drugs based on the composition of the coating substance. Delivering PARP inhibitors without modulation often leads to the toxic effect; therefore, a delivery vehicle is essential to encapsulate them. Various nanocarriers have been exploited to deliver PARP inhibitors in different cancers. Through this review, we hope to cast light on the most innovative advances in applying PARP inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan 9816743463, Iran;
| | - Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös utca 6, 6720 Szeged, Hungary;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran;
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Sadanad Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea; or
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
41
|
Wilson T, Pirovano G, Xiao G, Samuels Z, Roberts S, Viray T, Guru N, Zanzonico P, Gollub M, Pillarsetty N, Reiner T, Bargonetti J. PARP-Targeted Auger Therapy in p53 Mutant Colon Cancer Xenograft Mouse Models. Mol Pharm 2021; 18:3418-3428. [PMID: 34318678 PMCID: PMC8686831 DOI: 10.1021/acs.molpharmaceut.1c00323] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite Auger electrons being highly appealing due to their short-range and high linear energy transfer to surrounding tissues, the progress in the field has been limited due to the challenge in delivering a therapeutic dose within the close proximity of cancer cell's DNA. Here, we demonstrate that the PARP inhibitor 123I-MAPi is a viable agent for the systemic administration and treatment of p53 mutant cancers. Significantly, minimal off-site toxicity was observed in mice administered with up to 74 MBq of 127I-PARPi. Taken together, these results lay the foundation for future clinical evaluation and broader preclinical investigations. By harnessing the scaffold of the PARP inhibitor Olaparib, we were able to deliver therapeutic levels of Auger radiation to the site of human colorectal cancer xenograft tumors after systemic administration. In-depth toxicity studies analyzed blood chemistry levels and markers associated with specific organ toxicity. Finally, p53+/+ and p53-/- human colorectal cancer cell lines were evaluated for the ability of 123I-MAPi to induce tumor growth delay. Toxicity studies demonstrate that both 123I-MAPi and its stable isotopologue, 127I-PARPi, have no significant off-site toxicity when administered systemically. Analysis following 123I-MAPi treatment confirmed its ability to induce DNA damage at the site of xenograft tumors when administered systemically. Finally, we demonstrate that 123I-MAPi generates a therapeutic response in p53-/-, but not p53+/+, subcutaneous xenograft tumors in mouse models. Taken together, these results represent the first example of a PARP Auger theranostic agent capable of delivering a therapeutic dose to xenograft human colorectal cancer tumors upon systemic administration without causing significant toxicity to surrounding mouse organs. Moreover, it suggests that a PARP Auger theranostic can act as a targeted therapeutic for cancers with mutated p53 pathways. This landmark goal paves the way for clinical evaluation of 123I-MAPi for pan cancer therapeutics.
Collapse
Affiliation(s)
- Thomas Wilson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Giacomo Pirovano
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Gu Xiao
- Department of Biological Sciences Hunter College, City University of New York, NY, 10065, USA
| | - Zachary Samuels
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Sheryl Roberts
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Tara Viray
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Navjot Guru
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Pat Zanzonico
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Marc Gollub
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, USA
| | | | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jill Bargonetti
- Department of Biological Sciences Hunter College, City University of New York, NY, 10065, USA
- The Graduate Center Biology and Biochemistry PhD Program of City University of New York, NY, 10016, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| |
Collapse
|
42
|
Dong Q, Liu M, Chen B, Zhao Z, Chen T, Wang C, Zhuang S, Li Y, Wang Y, Ai L, Liu Y, Liang H, Qi L, Gu Y. Revealing biomarkers associated with PARP inhibitors based on genetic interactions in cancer genome. Comput Struct Biotechnol J 2021; 19:4435-4446. [PMID: 34471490 PMCID: PMC8379270 DOI: 10.1016/j.csbj.2021.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
Candidate genomic biomarkers were revealed for PARPis from genetic interactions. Gain-of-function mutation of EGFR induced resistance to PARP inhibitors. Lung cancer may benefit from combination of PARP inhibitor and EGFR inhibitor. Gene set of biomarkers for PARPis contributes to the prognosis of cancer patients.
Poly (ADPribose) polymerase inhibitors (PARPis) are clinically approved drugs designed according to the concept of synthetic lethality (SL) interaction. It is crucial to expand the scale of patients who can benefit from PARPis, and overcome drug resistance associated with it. Genetic interactions (GIs) include SL and synthetic viability (SV) that participate in drug response in cancer cells. Based on the hypothesis that mutated genes with SL or SV interactions with PARP1/2/3 are potential sensitive or resistant PARPis biomarkers, respectively, we developed a novel computational method to identify them. We analyzed fitness variation of cell lines to identify PARP1/2/3-related GIs according to CRISPR/Cas9 and RNA interference functional screens. Potential resistant/sensitive mutated genes were identified using pharmacogenomic datasets. We identified 41 candidate resistant and 130 candidate sensitive PARPi-response related genes, and observed that EGFR with gain-of-function mutation induced PARPi resistance, and predicted a combination therapy with PARP inhibitor (veliparib) and EGFR inhibitor (erlotinib) for lung cancer. We also revealed that a resistant gene set (TNN, PLEC, and TRIP12) in lower grade glioma and a sensitive gene set (BRCA2, TOP3A, and ASCC3) in ovarian cancer, which were associated with prognosis. Thus, cancer genome-derived GIs provide new insights for identifying PARPi biomarkers and a new avenue for precision therapeutics.
Collapse
Affiliation(s)
- Qi Dong
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Mingyue Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Bo Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhangxiang Zhao
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Tingting Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chengyu Wang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuping Zhuang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yawei Li
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yuquan Wang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Liqiang Ai
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yaoyao Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Haihai Liang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lishuang Qi
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
43
|
Zhou L, Xiang J, He Y. Research progress on the association between environmental pollutants and the resistance mechanism of PARP inhibitors in ovarian cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49491-49506. [PMID: 34370190 DOI: 10.1007/s11356-021-15852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The occurrence and progression of ovarian cancer are closely related to genetics and environmental pollutants. Poly(ADP-ribose) polymerase (PARP) inhibitors have been a major breakthrough in the history of ovarian cancer treatment. PARP is an enzyme responsible for post-translational modification of proteins and repair of single-stranded DNA damage. PARP inhibitors can selectively inhibit PARP function, resulting in a synthetic lethal effect on tumor cells defective in homologous recombination repair. However, with large-scale application, drug resistance also inevitably appears. For PARP inhibitors, the diversity and complexity of drug resistance mechanisms have always been difficult problems in clinical treatment. Herein, we mainly summarized the research progress of DNA damage repair and drug resistance mechanisms related to PARP inhibitors and the impact of environmental pollutants on DNA damage repair to aid the development prospects and highlight urgent problems to be solved.
Collapse
Affiliation(s)
- Lina Zhou
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Jiangdong Xiang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Yinyan He
- Department of Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
44
|
Takamatsu S, Brown J, Yamaguchi K, Hamanishi J, Yamanoi K, Takaya H, Kaneyasu T, Mori S, Mandai M, Matsumura N. Utility of Homologous Recombination Deficiency Biomarkers Across Cancer Types. JCO Precis Oncol 2021; 5:PO.21.00141. [PMID: 34423229 PMCID: PMC8373547 DOI: 10.1200/po.21.00141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/07/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Homologous recombination DNA repair deficiency (HRD) is associated with sensitivity to platinum and poly (ADP-ribose) polymerase inhibitors in certain cancer types, including breast, ovarian, pancreatic, and prostate. In these cancers, BRCA1/2 alterations and genomic scar signatures are useful indicators for assessing HRD. However, alterations in other homologous recombination repair (HRR)-related genes and their clinical significance in other cancer types have not been adequately and systematically investigated. METHODS We obtained data sets of all solid tumors in The Cancer Genome Atlas and Cancer Cell Line Encyclopedia, and comprehensively analyzed HRR pathway gene alterations, their loss-of-heterozygosity status, and per-sample genomic scar scores, that is, the HRD score and mutational signature 3 ratio, DNA methylation profiles, gene expression profiles, somatic TP53 mutations, sex, and clinical or in vitro response to chemical exposure. RESULTS Biallelic alterations in HRR genes other than BRCA1/2 were also associated with elevated genomic scar scores. The association between HRR-related gene alterations and genomic scar scores differed significantly by sex and the presence of somatic TP53 mutations. HRD tumors determined by a combination of indices also showed HRD features in gene expression analysis and exhibited significantly higher sensitivity to DNA-damaging agents than non-HRD cases in both clinical samples and cell lines. CONCLUSION This study provides evidence for the usefulness of HRD analysis in all cancer types, improves chemotherapy decision making and its efficacy in clinical settings, and represents a substantial advancement in precision oncology.A comprehensive pan-cancer analysis on the clinical significance of homologous recombination deficiency.
Collapse
Affiliation(s)
- Shiro Takamatsu
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - J.B. Brown
- Life Science Informatics Research Unit, Department of Molecular Biosciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hisamitsu Takaya
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Tomoko Kaneyasu
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Seiichi Mori
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
45
|
Imyanitov E, Sokolenko A. Mechanisms of acquired resistance of BRCA1/2-driven tumors to platinum compounds and PARP inhibitors. World J Clin Oncol 2021; 12:544-556. [PMID: 34367927 PMCID: PMC8317650 DOI: 10.5306/wjco.v12.i7.544] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/04/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Molecular pathogenesis of tumors arising in BRCA1/2 germ-line mutation carriers usually includes somatic inactivation of the remaining allele of the involved gene. Consequently, BRCA1/2-driven cancers are sensitive to platinum-based therapy and poly (ADP-ribose) polymerase inhibitors (PARPi). Long-term exposure to these drugs may result in the emergence of secondary BRCA1/2 mutations, which restore the open-reading frame of the affected allele. This platinum/PARPi cross-resistance mechanism applies both for BRCA1 and BRCA2 genes and has been repeatedly validated in various laboratory models and multiple clinical studies. There are some other routes associated with the partial rescue of BRCA1/2 function or the development of BRCA1/2-independent pathways for genomic maintenance; however, their actual clinical relevance remains to be established. In addition, studies on the short-term neoadjuvant therapy for ovarian cancer revealed that even chemonaive BRCA1-driven tumors contain a small proportion of BRCA1-proficient cells. These pre-existing cells with retained BRCA1 heterozygosity rapidly repopulate the tumor mass during platinum exposure, but become outcompeted by BRCA1-deficient cells during therapy holidays. Understanding of the platinum/PARPi resistance pathways has led to the development of novel therapeutic approaches, which aim to improve the management of BRCA1/2-related cancers and are currently undergoing preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Evgeny Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg 197758, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, Saint-Petersburg 194100, Russia
- Department of Oncology, I.I. Mechnikov North-Western Medical University, Saint-Petersburg 191015, Russia
| | - Anna Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg 197758, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, Saint-Petersburg 194100, Russia
| |
Collapse
|
46
|
Desai D, Khandwala P, Parsi M, Potdar R. PARP inhibitors: shifting the paradigm in the treatment of pancreatic cancer. Med Oncol 2021; 38:61. [PMID: 33891252 DOI: 10.1007/s12032-021-01507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/30/2021] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer, being one of the most fatal cancers, is the 7th leading cause of death globally. Cancer that is resistant to current treatment proves that there is a need for personalized and targeted therapy, based on the tumor and genomic markers. Pembrolizumab and Larotrectinib are examples of current medications used as targeted therapy in pancreatic cancer. Pancreatic cancer has many different molecular subgroups, providing the opportunity for the development of new drugs that can target these groups. Poly (ADP-Ribose) polymerase inhibitors (PARPi) are a group of drugs inhibiting PARP to decrease the stability of the cancer cells. Currently, PARPi are mostly used in ovarian and breast cancer. There are multiple studies that have shown positive effects of PARPi in decreasing the tumor burden in advanced pancreatic cancer. PARPi are the future of pancreatic cancer management, and hence it is important to understand their mechanism, resistance pathways, and their application in the real world.
Collapse
Affiliation(s)
- Devashish Desai
- Internal Medicine, Crozer Chester Medical Center, 1 Medical Center Blvd, Upland, PA, 19013, USA.
| | - Pushti Khandwala
- Internal Medicine, Crozer Chester Medical Center, 1 Medical Center Blvd, Upland, PA, 19013, USA
| | - Meghana Parsi
- Internal Medicine, Crozer Chester Medical Center, 1 Medical Center Blvd, Upland, PA, 19013, USA
| | - Rashmika Potdar
- Hematology/Oncology Department, Alliance Cancer Specialist, Crozer Chester Medical Center, Upland, USA
| |
Collapse
|
47
|
Toy HI, Karakülah G, Kontou PI, Alotaibi H, Georgakilas AG, Pavlopoulou A. Investigating Molecular Determinants of Cancer Cell Resistance to Ionizing Radiation Through an Integrative Bioinformatics Approach. Front Cell Dev Biol 2021; 9:620248. [PMID: 33898418 PMCID: PMC8058375 DOI: 10.3389/fcell.2021.620248] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Eradication of cancer cells through exposure to high doses of ionizing radiation (IR) is a widely used therapeutic strategy in the clinical setting. However, in many cases, cancer cells can develop remarkable resistance to radiation. Radioresistance represents a prominent obstacle in the effective treatment of cancer. Therefore, elucidation of the molecular mechanisms and pathways related to radioresistance in cancer cells is of paramount importance. In the present study, an integrative bioinformatics approach was applied to three publicly available RNA sequencing and microarray transcriptome datasets of human cancer cells of different tissue origins treated with ionizing radiation. These data were investigated in order to identify genes with a significantly altered expression between radioresistant and corresponding radiosensitive cancer cells. Through rigorous statistical and biological analyses, 36 genes were identified as potential biomarkers of radioresistance. These genes, which are primarily implicated in DNA damage repair, oxidative stress, cell pro-survival, and apoptotic pathways, could serve as potential diagnostic/prognostic markers cancer cell resistance to radiation treatment, as well as for therapy outcome and cancer patient survival. In addition, our findings could be potentially utilized in the laboratory and clinical setting for enhancing cancer cell susceptibility to radiation therapy protocols.
Collapse
Affiliation(s)
- Halil Ibrahim Toy
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Panagiota I Kontou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Hani Alotaibi
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, Zografou, National Technical University of Athens, Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
48
|
Maluchenko NV, Koshkina DO, Feofanov AV, Studitsky VM, Kirpichnikov MP. Poly(ADP-Ribosyl) Code Functions. Acta Naturae 2021; 13:58-69. [PMID: 34377556 PMCID: PMC8327145 DOI: 10.32607/actanaturae.11089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/10/2020] [Indexed: 01/14/2023] Open
Abstract
Poly(ADP-ribosyl)ation plays a key role in cellular metabolism. Covalent poly(ADP-ribosyl)ation affects the activity of the proteins engaged in DNA repair, chromatin structure regulation, gene expression, RNA processing, ribosome biogenesis, and protein translation. Non-covalent PAR-dependent interactions are involved in the various types of cellular response to stress and viral infection, such as inflammation, hormonal signaling, and the immune response. The review discusses how structurally different poly(ADP-ribose) (PAR) molecules composed of identical monomers can differentially participate in various cellular processes acting as the so-called "PAR code." The article describes the ability of PAR polymers to form functional biomolecular clusters through a phase-separation in response to various signals. This phase-separation contributes to rapid spatial segregation of biochemical processes and effective recruitment of the necessary components. The cellular PAR level is tightly controlled by a network of regulatory proteins: PAR code writers, readers, and erasers. Impaired PAR metabolism is associated with the development of pathological processes causing oncological, cardiovascular, and neurodegenerative diseases. Pharmacological correction of the PAR level may represent a new approach to the treatment of various diseases.
Collapse
Affiliation(s)
- N. V. Maluchenko
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
| | - D. O. Koshkina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
| | - A. V. Feofanov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - V. M. Studitsky
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
- Fox Chase Cancer Center, Philadelphia, PA, 19111-2497 USA
| | - M. P. Kirpichnikov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
49
|
Schick J, Ritchie RP, Restini C. Breast Cancer Therapeutics and Biomarkers: Past, Present, and Future Approaches. Breast Cancer (Auckl) 2021; 15:1178223421995854. [PMID: 33994789 PMCID: PMC8100889 DOI: 10.1177/1178223421995854] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC) is the leading cause of cancer death in women and the second-most common cancer. An estimated 281 550 new cases of invasive BC will be diagnosed in women in the United States, and about 43 600 will die during 2021. Continual research has shed light on all disease areas, including tumor classification and biomarkers for diagnosis/prognosis. As research investigations evolve, new classes of drugs are emerging with potential benefits in BC treatment that are covered in this manuscript. The initial sections present updated classification and terminology used for diagnosis and prognosis, which leads to the following topics, discussing the past and present treatments available for BC. Our review will generate interest in exploring the complexity of the cell cycle and its association with cancer biology as part of the plethora of target factors toward developing newer drugs and effective therapeutic management of BC.
Collapse
Affiliation(s)
- Jason Schick
- College of Osteopathic Medicine, Michigan State University, Clinton Township, MI, USA
| | - Raquel P Ritchie
- College of Osteopathic Medicine, Michigan State University, Clinton Township, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Carolina Restini
- College of Osteopathic Medicine, Michigan State University, Clinton Township, MI, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
50
|
Velagapudi UK, Patel BA, Shao X, Pathak SK, Ferraris DV, Talele TT. Recent development in the discovery of PARP inhibitors as anticancer agents: a patent update (2016-2020). Expert Opin Ther Pat 2021; 31:609-623. [PMID: 33554679 DOI: 10.1080/13543776.2021.1886275] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Discovery of small molecules that impede the activity of single-strand DNA repair enzyme, PARP1, has led to four marketed drugs for the treatment of advanced-stage cancers. Hence, there is a renewed enthusiasm in the PARP inhibitor discovery arena. To reduce nonspecific interactions or potential toxicities, and to understand the role of other minimally explored PARP enzymes, exciting new findings have emerged toward the development of selective inhibitors and targeted chemical biology probes. Importantly, the conventional PARP inhibitor design has evolved in a way that could potentially lead to multienzyme-targeting - a polypharmacological approach against aggressive cancers. AREAS COVERED This review comprises recent progress made in the development of PARP inhibitors, primarily focused on human cancers. Discovery of novel PARP inhibitors with pan, selective, and multi-target inhibition using in vitro and in vivo cancer models is summarized and critically evaluated. Emphasis is given to patents published during 2016-2020, excluding TNKS 1/2 inhibitors. EXPERT OPINION The outstanding success demonstrated by the FDA approved PARP inhibitors has fueled further clinical evaluations for expansion of their clinical utilities. The current clinical investigations include new candidates as well as marketed PARP-targeted drugs, both as single agents and in combination with other chemotherapeutics. Recent advances have also unveiled critical roles of other PARPs in oncogenic signal transduction, in addition to those of the well-documented PARP1/2 and TNKS1/2 enzymes. Further studies on lesser-known PARP members are urgently needed for functional annotations and for understanding their roles in cancer progression and other human diseases.
Collapse
Affiliation(s)
- Uday Kiran Velagapudi
- Pace Analytical Life Sciences, LLC, Suite 102, 19 Presidential Way, Woburn, MA, 01801, USA
| | - Bhargav A Patel
- Department of Chemistry and Biochemistry, The University of Notre Dame, 329 McCourtney Hall, Notre Dame, IN 46556, USA
| | - Xuwei Shao
- cFrontage Laboratories, Inc, 75 East Uwchlan Ave, Suite 100, Exton, PA, 19341, USA
| | - Sanjai Kumar Pathak
- dChemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY, 11367, USA.,eChemistry Doctoral Program, Biochemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA
| | - Dana V Ferraris
- fDepartment of Chemistry, McDaniel College, 2 College Hill, Westminster, MD, 21157, USA
| | - Tanaji T Talele
- gDepartment of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| |
Collapse
|