1
|
Zhu XY, Liu WT, Hou XJ, Zong C, Yu W, Shen ZM, Qu SP, Tao M, Xue MM, Zhou DY, Bai HR, Gao L, Jiang JH, Zhao QD, Wei LX, Yang X, Han ZP, Zhang L. CD34 +CLDN5 + tumor associated senescent endothelial cells through IGF2-IGF2R signaling increased cholangiocellular phenotype in hepatocellular carcinoma. J Adv Res 2024:S2090-1232(24)00564-2. [PMID: 39674501 DOI: 10.1016/j.jare.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/02/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024] Open
Abstract
INTRODUCTION The heterogeneity of hepatocellular carcinoma (HCC) is linked to tumor malignancy and poor prognosis. Nevertheless, the precise mechanisms underlying the development of the cholangiocellular phenotype (CCA) within HCC remain unclear. Emerging studies support that the cross-talk among the host cells within tumor microenvironment (TME) sustains the cancer cell plasticity. OBJECTIVES This study sought to identify the specific cell types involved in the formation of CCA and to elucidate their functional roles in the progression of HCC. METHODS Single-cell RNA sequencing was employed to identify the specific cell types involved in the formation of CCA. Both in vitro and vivo analyses were used to identify the tumor-associated senescent ECs and investigate the function in TME. The diethylnitrosamine-induced model was utilized to investigate the interaction between senescent ECs and MSCs, aiming to elucidate their synergistic contributions to the progression of CCA. RESULTS Using single-cell RNA sequencing, we identified a distinct senescent-associated subset of endothelial cells (ECs), namely CD34+CLDN5+ ECs, which mainly enriched in tumor tissue. Further, the senescent ECs were observed to secrete IGF2, which recruited mesenchymal stem cells (MSCs) into the TME through IGF2R/MAPK signaling. In primary liver cancer model, MSCs exhibited a strong tumor-promoting effect, increasing the CCA and tumor malignancy after HCC formation. Interestingly, knockdown of IGF2R expression in MSCs inhibited the increase of CCA caused by MSCs in HCC. Meanwhile, it was revealed that MSCs released multiple inflammatory and trophic-related cytokines to enhance the cancer stem cell-like characteristics in HCC cells. Finally, we demonstrated that CEBPβ up-regulated IGF2 expression in tumor senescent ECs by combining with Igf2-promtor-sequence. CONCLUSIONS Together, our findings illustrated that tumor associated senescent ECs in HCC recruited the MSCs into TME, enhancing cancer stem cell (CSC)-like features of HCC cells and contributing to the CCA formation.
Collapse
Affiliation(s)
- Xin-Yu Zhu
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China; Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Wen-Ting Liu
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China; Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiao-Juan Hou
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Chen Zong
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Wei Yu
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China; Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Zhe-Min Shen
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Shu-Ping Qu
- Department of Hepatic Surgery, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Min Tao
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China; Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Meng-Meng Xue
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China; Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Dao-Yu Zhou
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China; Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Hao-Ran Bai
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Gao
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Jing-Hua Jiang
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Qiu-Dong Zhao
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Li-Xin Wei
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Xue Yang
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China.
| | - Zhi-Peng Han
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China; Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Li Zhang
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China.
| |
Collapse
|
2
|
Chu KJ, Kawaguchi Y, Wang H, Jiang XQ, Hasegawa K. Update on the Diagnosis and Treatment of Combined Hepatocellular Cholangiocarcinoma. J Clin Transl Hepatol 2024; 12:210-217. [PMID: 38343605 PMCID: PMC10851068 DOI: 10.14218/jcth.2023.00189] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/15/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2024] Open
Abstract
Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a unique type of liver tumor that contains both hepatocellular carcinoma and cholangiocarcinoma components within a single tumor. The fifth edition of the World Health Organization classification provides a definition and diagnostic criteria for cHCC-CCA. However, the heterogeneous histomorphology and presentation resulting from variation of the proportion of each component poses challenges for clinical diagnosis and treatment. A diagnosis of cHCC-CCA may be suggested by the synchronous elevation of serum tumor markers for hepatocellular carcinoma and cholangiocarcinoma, a mixed enhancement pattern on imaging, and a discrepancy between the elevation of tumor marker and the imaging enhancement pattern. Histopathological examination using hematoxylin and eosin staining is considered the gold standard for diagnosing cHCC-CCA, and comprehensive examination of resection or biopsy specimens is crucial for an accurate diagnosis. Currently, there is no standard treatment for cHCC-CCA, and surgery is the mainstay. Anatomic hepatectomy with lymphadenectomy is among the recommended surgical procedures. The role of liver transplantation in the management of cHCC-CCA is still uncertain. Transarterial chemoembolization may be effective for unresectable cHCC-CCA, particularly for hypervascular tumors. However, the available evidence does not support systemic therapy for advanced cHCC-CCA. The prognosis of cHCC-CCA is generally poor, and there is no established staging system. Further research is needed to better understand the histogenesis and clinical management of cHCC-CCA. This review provides an overview of the current literature on cHCC-CCA with a focus on its clinical characteristics, pathological diagnosis, and management.
Collapse
Affiliation(s)
- Kai-Jian Chu
- Biliary Surgical Department No. 1, Eastern Hepatobiliary Surgical Hospital, The Naval Medical University, Shanghai, China
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshikuni Kawaguchi
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Han Wang
- Department of Pathology, Eastern Hepatobiliary Surgical Hospital, The Naval Medical University, Shanghai, China
| | - Xiao-Qing Jiang
- Biliary Surgical Department No. 1, Eastern Hepatobiliary Surgical Hospital, The Naval Medical University, Shanghai, China
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Ye L, Schneider JS, Ben Khaled N, Schirmacher P, Seifert C, Frey L, He Y, Geier A, De Toni EN, Zhang C, Reiter FP. Combined Hepatocellular-Cholangiocarcinoma: Biology, Diagnosis, and Management. Liver Cancer 2024; 13:6-28. [PMID: 38344449 PMCID: PMC10857821 DOI: 10.1159/000530700] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/03/2023] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Combined hepatocellular-cholangiocarcinoma (cHCC-iCCA) is a rare type of primary liver cancer displaying characteristics of both hepatocytic and cholangiocytic differentiation. SUMMARY Because of its aggressive nature, patients with cHCC-iCCA exhibit a poorer prognosis than those with HCC. Surgical resection and liver transplantation may be considered curative treatment approaches; however, only a minority of patients are eligible at the time of diagnosis, and postoperative recurrence rates are high. For cases that are not eligible for surgery, locoregional and systemic therapy are often administered based on treatment protocols applied for HCC or iCCA. Owing to the rarity of this cancer, there are still no established standard treatment protocols; therefore, the choice of therapy is often personalized and guided by the suspected predominant component. Further, the genomic and molecular heterogeneity of cHCC-iCCA can severely compromise the efficacy of the available therapies. KEY MESSAGES In the present review, we summarize the latest advances in cHCC-iCCA and attempt to clarify its terminology and molecular biology. We provide an overview of the etiology of cHCC-iCCA and present new insights into the molecular pathology of this disease that could contribute to further studies aiming to improve the patient outcomes through new systemic therapies.
Collapse
Affiliation(s)
- Liangtao Ye
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Julia S. Schneider
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Najib Ben Khaled
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | | | - Carolin Seifert
- Institute for Pathology, University Würzburg, Würzburg, Germany
| | - Lea Frey
- Institute for Pathology, University Würzburg, Würzburg, Germany
| | - Yulong He
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Andreas Geier
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Enrico N. De Toni
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Changhua Zhang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Florian P. Reiter
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Holczbauer Á, Wangensteen KJ, Shin S. Cellular origins of regenerating liver and hepatocellular carcinoma. JHEP Rep 2022; 4:100416. [PMID: 35243280 PMCID: PMC8873941 DOI: 10.1016/j.jhepr.2021.100416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant primary cancer arising from the liver and is one of the major causes of cancer-related mortality worldwide. The cellular origin of HCC has been a topic of great interest due to conflicting findings regarding whether it originates in hepatocytes, biliary cells, or facultative stem cells. These cell types all undergo changes during liver injury, and there is controversy about their contribution to regenerative responses in the liver. Most HCCs emerge in the setting of chronic liver injury from viral hepatitis, fatty liver disease, alcohol, and environmental exposures. The injuries are marked by liver parenchymal changes such as hepatocyte regenerative nodules, biliary duct cellular changes, expansion of myofibroblasts that cause fibrosis and cirrhosis, and inflammatory cell infiltration, all of which may contribute to carcinogenesis. Addressing the cellular origin of HCC is the key to identifying the earliest events that trigger it. Herein, we review data on the cells of origin in regenerating liver and HCC and the implications of these findings for prevention and treatment. We also review the origins of childhood liver cancer and other rare cancers of the liver.
Collapse
|
5
|
Chen S, Wu H, Wang Z, Jia M, Guo J, Jin J, Li X, Meng D, Lin L, He AR, Zhou P, Zhi X. Loss of SPTBN1 Suppresses Autophagy Via SETD7-mediated YAP Methylation in Hepatocellular Carcinoma Initiation and Development. Cell Mol Gastroenterol Hepatol 2021; 13:949-973.e7. [PMID: 34737104 PMCID: PMC8864474 DOI: 10.1016/j.jcmgh.2021.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Loss of Spectrin beta, non-erythrocytic 1 (SPTBN1) plays an important role in the carcinogenesis of hepatocellular carcinoma (HCC); however, the mechanisms underlying its involvement remain poorly understood. Defects in autophagy contribute to hepatic tumor formation. Hence, in this study, we explored the role and mechanism of SPTBN1 in the autophagy of hepatic stem cells (HSCs) and HCC cells. METHODS Expansion, autophagy, and malignant transformation of HSCs were detected in the injured liver of Sptbn1+/- mice induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine treatment. Hippo pathway and Yes-associated protein (YAP) stabilization were examined in isolated HSCs, Huh-7, and PLC/PRF/5 HCC cells and hepatocytes with or without loss of SPTBN1. RESULTS We found that heterozygous SPTBN1 knockout accelerated liver tumor development with 3,5-diethoxycarbonyl-1,4-dihydrocollidine induction. Rapamycin promoted autophagy in murine HSCs and reversed the increased malignant transformation induced by heterozygous SPTBN1 deletion. Loss of SPTBN1 also decreased autophagy and increased YAP stability and nuclear localization in human HCC cells and tissues, whereas YAP inhibition attenuated the effects of SPTBN1 deficiency on autophagy. Finally, we found that SPTBN1 positively regulated the expression of suppressor of variegation 3-9-enhancer of zeste-trithorax domain containing lysine methyltransferase 7 to promote YAP methylation, which may lead to YAP degradation and inactivation. CONCLUSIONS Our findings provide the first demonstration that loss of SPTBN1 impairs autophagy of HSCs to promote expansion and malignant transformation during hepatocarcinogenesis. SPTBN1 also cooperates with suppressor of variegation 3-9-enhancer of zeste-trithorax domain containing lysine methyltransferase 7 to inactive YAP, resulting in enhanced autophagy of HCC cells. These results may open new avenues targeting SPTBN1 for the prevention and treatment of HCC.
Collapse
Affiliation(s)
- Shuyi Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huijie Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhengyang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mengping Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jieyu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiayu Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaobo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ling Lin
- Department of Medicine and Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Aiwu Ruth He
- Department of Medicine and Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.
| | - Ping Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Sirica AE, Strazzabosco M, Cadamuro M. Intrahepatic cholangiocarcinoma: Morpho-molecular pathology, tumor reactive microenvironment, and malignant progression. Adv Cancer Res 2020; 149:321-387. [PMID: 33579427 PMCID: PMC8800451 DOI: 10.1016/bs.acr.2020.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a relatively rare, but highly lethal and biologically complex primary biliary epithelial cancer arising within liver. After hepatocellular carcinoma, iCCA is the second most common primary liver cancer, accounting for approximately 10-20% of all primary hepatic malignancies. Over the last 10-20 years, iCCA has become the focus of increasing concern largely due to its rising incidence and high mortality rates in various parts of the world, including the United States. The challenges posed by iCCA are daunting and despite recent progress in the standard of care and management options for iCCA, the prognosis for this cancer continues to be dismal. In an effort to provide a framework for advancing our understanding of iCCA malignant aggressiveness and therapy resistance, this review will highlight key etiological, biological, molecular, and microenvironmental factors hindering more effective management of this hepatobiliary cancer. Particular focus will be on critically reviewing the cell origins and morpho-molecular heterogeneity of iCCAs, providing mechanistic insights into high risk fibroinflammatory cholangiopathies associated with iCCA development, and notably discussing the deleterious role played by the tumor reactive desmoplastic stroma in regulating iCCA malignant progression, lymphangiogenesis, and tumor immunobiology.
Collapse
Affiliation(s)
- Alphonse E Sirica
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Mario Strazzabosco
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
7
|
Lee HY, Hong IS. Targeting Liver Cancer Stem Cells: An Alternative Therapeutic Approach for Liver Cancer. Cancers (Basel) 2020; 12:cancers12102746. [PMID: 32987767 PMCID: PMC7598600 DOI: 10.3390/cancers12102746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
The first report of cancer stem cell (CSC) from Bruce et al. has demonstrated the relatively rare population of stem-like cells in acute myeloid leukemia (AML). The discovery of leukemic CSCs prompted further identification of CSCs in multiple types of solid tumor. Recently, extensive research has attempted to identity CSCs in multiple types of solid tumors in the brain, colon, head and neck, liver, and lung. Based on these studies, we hypothesize that the initiation and progression of most malignant tumors rely largely on the CSC population. Recent studies indicated that stem cell-related markers or signaling pathways, such as aldehyde dehydrogenase (ALDH), CD133, epithelial cell adhesion molecule (EpCAM), Wnt/β-catenin signaling, and Notch signaling, contribute to the initiation and progression of various liver cancer types. Importantly, CSCs are markedly resistant to conventional therapeutic approaches and current targeted therapeutics. Therefore, it is believed that selectively targeting specific markers and/or signaling pathways of hepatic CSCs is an effective therapeutic strategy for treating chemotherapy-resistant liver cancer. Here, we provide an overview of the current knowledge on the hepatic CSC hypothesis and discuss the specific surface markers and critical signaling pathways involved in the development and maintenance of hepatic CSC subpopulations.
Collapse
Affiliation(s)
- Hwa-Yong Lee
- Department of Biomedical Science, Jungwon University, 85 Goesan-eup, Munmu-ro, Goesan-gun, Chungcheongbuk-do 367700, Korea;
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406840, Korea
- Correspondence: ; Tel.: +82-32-899-6315; Fax: +82-32-899-6350
| |
Collapse
|
8
|
Abstract
Primary liver cancer (PLC) is a fatal disease that affects millions of lives worldwide. PLC is the leading cause of cancer-related deaths and the incidence rate is predicted to rise in the coming decades. PLC can be categorized into three major histological subtypes: hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), and combined HCC-ICC. These subtypes are distinct with respect to epidemiology, clinicopathological features, genetic alterations, and clinical managements, which are thoroughly summarized in this review. The state of treatment strategies for each subtype, including the currently approved drugs and the potential novel therapies, are also discussed.
Collapse
Affiliation(s)
- Mei Feng
- Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China
| | - Yisheng Pan
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China
| | - Ruirui Kong
- Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Shaokun Shu
- Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China
- Department of Biomedical Engineering, Peking University, Beijing 100871, China
- Peking University Cancer Hospital, Beijing 100142, China
| |
Collapse
|