1
|
Shoombuatong W, Meewan I, Mookdarsanit L, Schaduangrat N. Stack-HDAC3i: A high-precision identification of HDAC3 inhibitors by exploiting a stacked ensemble-learning framework. Methods 2024; 230:147-157. [PMID: 39191338 DOI: 10.1016/j.ymeth.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
Epigenetics involves reversible modifications in gene expression without altering the genetic code itself. Among these modifications, histone deacetylases (HDACs) play a key role by removing acetyl groups from lysine residues on histones. Overexpression of HDACs is linked to the proliferation and survival of tumor cells. To combat this, HDAC inhibitors (HDACi) are commonly used in cancer treatments. However, pan-HDAC inhibition can lead to numerous side effects. Therefore, isoform-selective HDAC inhibitors, such as HDAC3i, could be advantageous for treating various medical conditions while minimizing off-target effects. To date, computational approaches that use only the SMILES notation without any experimental evidence have become increasingly popular and necessary for the initial discovery of novel potential therapeutic drugs. In this study, we develop an innovative and high-precision stacked-ensemble framework, called Stack-HDAC3i, which can directly identify HDAC3i using only the SMILES notation. Using an up-to-date benchmark dataset, we first employed both molecular descriptors and Mol2Vec embeddings to generate feature representations that cover multi-view information embedded in HDAC3i, such as structural and contextual information. Subsequently, these feature representations were used to train baseline models using nine popular ML algorithms. Finally, the probabilistic features derived from the selected baseline models were fused to construct the final stacked model. Both cross-validation and independent tests showed that Stack-HDAC3i is a high-accuracy prediction model with great generalization ability for identifying HDAC3i. Furthermore, in the independent test, Stack-HDAC3i achieved an accuracy of 0.926 and Matthew's correlation coefficient of 0.850, which are 0.44-6.11% and 0.83-11.90% higher than its constituent baseline models, respectively.
Collapse
Affiliation(s)
- Watshara Shoombuatong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Ittipat Meewan
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Lawankorn Mookdarsanit
- Business Information System, Faculty of Management Science, Chandrakasem Rajabhat University, Bangkok 10900, Thailand
| | - Nalini Schaduangrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
2
|
Lu J, Qian S, Sun Z. Targeting histone deacetylase in cardiac diseases. Front Physiol 2024; 15:1405569. [PMID: 38983721 PMCID: PMC11232433 DOI: 10.3389/fphys.2024.1405569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024] Open
Abstract
Histone deacetylases (HDAC) catalyze the removal of acetylation modifications on histones and non-histone proteins, which regulates gene expression and other cellular processes. HDAC inhibitors (HDACi), approved anti-cancer agents, emerge as a potential new therapy for heart diseases. Cardioprotective effects of HDACi are observed in many preclinical animal models of heart diseases. Genetic mouse models have been developed to understand the role of each HDAC in cardiac functions. Some of the findings are controversial. Here, we provide an overview of how HDACi and HDAC impact cardiac functions under physiological or pathological conditions. We focus on in vivo studies of zinc-dependent classical HDACs, emphasizing disease conditions involving cardiac hypertrophy, myocardial infarction (MI), ischemic reperfusion (I/R) injury, and heart failure. In particular, we review how non-biased omics studies can help our understanding of the mechanisms underlying the cardiac effects of HDACi and HDAC.
Collapse
Affiliation(s)
- Jiao Lu
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, United States
| | - Sichong Qian
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, United States
| | - Zheng Sun
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
3
|
Aravindraja C, Jeepipalli S, Duncan W, Vekariya KM, Bahadekar S, Chan EKL, Kesavalu L. Unique miRomics Expression Profiles in Tannerella forsythia-Infected Mandibles during Periodontitis Using Machine Learning. Int J Mol Sci 2023; 24:16393. [PMID: 38003583 PMCID: PMC10671577 DOI: 10.3390/ijms242216393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
T. forsythia is a subgingival periodontal bacterium constituting the subgingival pathogenic polymicrobial milieu during periodontitis (PD). miRNAs play a pivotal role in maintaining periodontal tissue homeostasis at the transcriptional, post-transcriptional, and epigenetic levels. The aim of this study was to characterize the global microRNAs (miRNA, miR) expression kinetics in 8- and 16-week-old T. forsythia-infected C57BL/6J mouse mandibles and to identify the miRNA bacterial biomarkers of disease process at specific time points. We examined the differential expression (DE) of miRNAs in mouse mandibles (n = 10) using high-throughput NanoString nCounter® miRNA expression panels, which provided significant advantages over specific candidate miRNA or pathway analyses. All the T. forsythia-infected mice at two specific time points showed bacterial colonization (100%) in the gingival surface, along with a significant increase in alveolar bone resorption (ABR) (p < 0.0001). We performed a NanoString analysis of specific miRNA signatures, miRNA target pathways, and gene network analysis. A total of 115 miRNAs were DE in the mandible tissue during 8 and 16 weeks The T. forsythia infection, compared with sham infection, and the majority (99) of DE miRNAs were downregulated. nCounter miRNA expression kinetics identified 67 downregulated miRNAs (e.g., miR-375, miR-200c, miR-200b, miR-34b-5p, miR-141) during an 8-week infection, whereas 16 upregulated miRNAs (e.g., miR-1902, miR-let-7c, miR-146a) and 32 downregulated miRNAs (e.g., miR-2135, miR-720, miR-376c) were identified during a 16-week infection. Two miRNAs, miR-375 and miR-200c, were highly downregulated with >twofold change during an 8-week infection. Six miRNAs in the 8-week infection (miR-200b, miR-141, miR-205, miR-423-3p, miR-141-3p, miR-34a-5p) and two miRNAs in the 16-week infection (miR-27a-3p, miR-15a-5p) that were downregulated have also been reported in the gingival tissue and saliva of periodontitis patients. This preclinical in vivo study identified T. forsythia-specific miRNAs (miR-let-7c, miR-210, miR-146a, miR-423-5p, miR-24, miR-218, miR-26b, miR-23a-3p) and these miRs have also been reported in the gingival tissues and saliva of periodontitis patients. Further, several DE miRNAs that are significantly upregulated (e.g., miR-101b, miR-218, miR-127, miR-24) are also associated with many systemic diseases such as atherosclerosis, Alzheimer's disease, rheumatoid arthritis, osteoarthritis, diabetes, obesity, and several cancers. In addition to DE analysis, we utilized the XGBoost (eXtreme Gradient boost) and Random Forest machine learning (ML) algorithms to assess the impact that the number of miRNA copies has on predicting whether a mouse is infected. XGBoost found that miR-339-5p was most predictive for mice infection at 16 weeks. miR-592-5p was most predictive for mice infection at 8 weeks and also when the 8-week and 16-week results were grouped together. Random Forest predicted miR-592 as most predictive at 8 weeks as well as the combined 8-week and 16-week results, but miR-423-5p was most predictive at 16 weeks. In conclusion, the expression levels of miR-375 and miR-200c family differed significantly during disease process, and these miRNAs establishes a link between T. forsythia and development of periodontitis genesis, offering new insights regarding the pathobiology of this bacterium.
Collapse
Affiliation(s)
- Chairmandurai Aravindraja
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - Syam Jeepipalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - William Duncan
- Department of Community Dentistry, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Krishna Mukesh Vekariya
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - Sakshee Bahadekar
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32610, USA;
| | - Edward K. L. Chan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
4
|
Guo F, Yang H, Bai X, Li J, Han W, Li W. Probing the mechanisms of hydrazide-based HDAC inhibitors binding to HDAC3 using Gaussian accelerated molecular dynamics (GaMD) simulations. J Biomol Struct Dyn 2023:1-14. [PMID: 37937774 DOI: 10.1080/07391102.2023.2278085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023]
Abstract
Histone deacetylases (HDACs) have emerged as promising targets for anticancer drug development. They regulate gene expression by removing acetyl groups from lysine residues on histone tails, leading to chromatin condensation. A hydrazide-based HDAC inhibitor, N-(4-(2-Propylhydrazine-1-carbonyl)benzyl)-1H-indole-2-carboxamide (11h), has been reported to exhibit significant in vivo antitumor activity. In comparison to the lead compound N-(4-(2-Propylhydrazine-1-carbonyl)benzyl)cinnamamide (17), compound 11h demonstrates 2- to 5-fold higher HDAC inhibition and cell-based antitumor activity. However, the inhibitory mechanism of 11h remains insufficiently explored. In this study, we conducted 500 ns Gaussian Accelerated Molecular Dynamics (GaMD) simulations on Histone deacetylase 3 (HDAC3) and two complex systems (HDAC3-17 and HDAC3-11h). Our findings revealed that upon inhibitor binding, the active pocket volume of HDAC3 undergone alterations, and the movement of the L6-loop toward the active site impeded substrate entry. Moreover, we observed a destabilization of the α-helix in the aa75-89 region of HDAC3 compared to the two complex systems, indicating partial unwinding. Notably, 11h exhibited a closer proximity of its carbonyl oxygen to the active pocket's Zn2+ metal compared to 17, increasing the likelihood of coordination with the Zn2+ metal. The analysis of protein-ligand interactions highlighted a greater number of hydrogen bonds and other interactions between 11h and the receptor protein when compared to 17, underscoring the stronger binding of 11h to HDAC3. In conclusion, our study provided theoretical insights into the inhibitory mechanism of hydrazide-based HDAC inhibitors on HDAC3, thereby contributing to the development of improved drug targets for cancer therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fangfang Guo
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Hengzheng Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Xue Bai
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Jiaying Li
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Wannan Li
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
5
|
Madè A, Bibi A, Garcia-Manteiga JM, Tascini AS, Piella SN, Tikhomirov R, Voellenkle C, Gaetano C, Leszek P, Castelvecchio S, Menicanti L, Martelli F, Greco S. circRNA-miRNA-mRNA Deregulated Network in Ischemic Heart Failure Patients. Cells 2023; 12:2578. [PMID: 37947656 PMCID: PMC10648415 DOI: 10.3390/cells12212578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Noncoding RNAs (ncRNAs), which include circular RNAs (circRNAs) and microRNAs (miRNAs), regulate the development of cardiovascular diseases (CVD). Notably, circRNAs can interact with miRNAs, influencing their specific mRNA targets' levels and shaping a competing endogenous RNAs (ceRNA) network. However, these interactions and their respective functions remain largely unexplored in ischemic heart failure (IHF). This study is aimed at identifying circRNA-centered ceRNA networks in non-end-stage IHF. Approximately 662 circRNA-miRNA-mRNA interactions were identified in the heart by combining state-of-the-art bioinformatics tools with experimental data. Importantly, KEGG terms of the enriched mRNA indicated CVD-related signaling pathways. A specific network centered on circBPTF was validated experimentally. The levels of let-7a-5p, miR-18a-3p, miR-146b-5p, and miR-196b-5p were enriched in circBPTF pull-down experiments, and circBPTF silencing inhibited the expression of HDAC9 and LRRC17, which are targets of miR-196b-5p. Furthermore, as suggested by the enriched pathway terms of the circBPTF ceRNA network, circBPTF inhibition elicited endothelial cell cycle arrest. circBPTF expression increased in endothelial cells exposed to hypoxia, and its upregulation was confirmed in cardiac samples of 36 end-stage IHF patients compared to healthy controls. In conclusion, circRNAs act as miRNA sponges, regulating the functions of multiple mRNA targets, thus providing a novel vision of HF pathogenesis and laying the theoretical foundation for further experimental studies.
Collapse
Affiliation(s)
- Alisia Madè
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Alessia Bibi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
- Department of Biosciences, University of Milan, 20122 Milan, Italy
| | - Jose Manuel Garcia-Manteiga
- Center for Omics Sciences COSR, BioInformatics Laboratory, San Raffaele Scientific Institute, 20132 Milan, Italy; (J.M.G.-M.); (A.S.T.)
| | - Anna Sofia Tascini
- Center for Omics Sciences COSR, BioInformatics Laboratory, San Raffaele Scientific Institute, 20132 Milan, Italy; (J.M.G.-M.); (A.S.T.)
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Santiago Nicolas Piella
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Roman Tikhomirov
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy;
| | - Przemyslaw Leszek
- Department of Heart Failure and Transplantology, National Institute of Cardiology, 04-628 Warsaw, Poland;
| | - Serenella Castelvecchio
- Department of Adult Cardiac Surgery, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (S.C.); (L.M.)
| | - Lorenzo Menicanti
- Department of Adult Cardiac Surgery, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (S.C.); (L.M.)
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| |
Collapse
|
6
|
Li K, Ma L, Lu Z, Yan L, Chen W, Wang B, Xu H, Asemi Z. Apoptosis and heart failure: The role of non-coding RNAs and exosomal non-coding RNAs. Pathol Res Pract 2023; 248:154669. [PMID: 37422971 DOI: 10.1016/j.prp.2023.154669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Heart failure is a condition that affects the cardio vascular system and occurs if the heart cannot adequately pump the oxygen and blood to the body. Myocardial infarction, reperfusion injury, and this disease is the only a few examples of the numerous cardiovascular illnesses that are impacted by the closely controlled cell deletion process known as apoptosis. Attention has been paid to the creation of alternative diagnostic and treatment modalities for the condition. Recent evidences have shown that some non-coding RNAs (ncRNAs) influence the stability of proteins, control of transcription factors, and HF apoptosis through a variety of methods. Exosomes make a significant paracrine contribution to the regulation of illnesses as well as to the communication between nearby and distant organs. However, it has not yet been determined whether exosomes regulate the cardiomyocyte-tumor cell interaction in ischemia HF to limit the vulnerability of malignancy to ferroptosis. Here, we list the numerous ncRNAs in HF that are connected to apoptosis. In addition, we emphasize the significance of exosomal ncRNAs in the HF.
Collapse
Affiliation(s)
- Ketao Li
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Liping Ma
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Zhiwei Lu
- Hangzhou Heyunjia Hospital, Hangzhou, Zhe'jiang 310000, China
| | - Laixing Yan
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Wan Chen
- Department of Cardiology, Jiulongpo First People's Hospital, Chongqing 400051, China
| | - Bing Wang
- Department of cardiology, Zouping People's Hospital, Zouping, Shandong 256299, China
| | - Huiju Xu
- Department of cardiology, Hangzhou Mingzhou Hospital, Hangzhou, Zhe'jiang 311215, China.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
7
|
Pan Y, Yang J, Dai J, Xu X, Zhou X, Mao W. TFRC in cardiomyocytes promotes macrophage infiltration and activation during the process of heart failure through regulating Ccl2 expression mediated by hypoxia inducible factor-1α. Immun Inflamm Dis 2023; 11:e835. [PMID: 37647427 PMCID: PMC10461419 DOI: 10.1002/iid3.835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Cardiac hypertrophy is an initiating link to Heart failure (HF) which still seriously endangers human health. Transferrin receptor (TFRC), which promotes iron uptake through the transferrin cycle, is essential for cardiac function. However, whether TFRC is involved in the process of pathological cardiac hypertrophy is not clear. METHODS Transverse aortic constriction (TAC) mouse model and mice primary cardiomyocytes treated with isoproterenol (ISO) or phenylephrine (PHE) were used to mimic cardiac hypertrophy in vivo and in vitro. Single cell RNA sequence data from heart tissues of TAC-model mice was obtained from the Gene Expression Omnibus (GEO) database, and was analyzed with R package Seurat. TFRC expression and macrophage infiltration in the heart tissue were tested by immunofluorescent staining. Macrophage polarization was detected by Flow Cytometry. TFRC expressions were detected by qRT-PCR, Western blot, and ELISA. RESULTS TFRC expression is increased in the pathological cardiac hypertrophy of mice model and positively associated with macrophage infiltration. Furthermore, TFRC in cardiomyocytes recruits and activates macrophages by secreting C-C motif ligand 2 (Ccl2) in the mice heart tissue with TAC surgery or in the primary cardiomyocytes stimulated with ISO or PHE to induce myocardial hypertrophy in vitro. Moreover, we find that TFRC promotes Ccl2 expression in cardiomyocytes via regulating signal transducer and activator of transcription 3 (STAT3). In addition, we find that increased TFRC expression in the HF tissue is regulated by hypoxia-inducible factor-1α (HIF-1α). CONCLUSION This in-depth study shows that TFRC in cardiomyocytes promotes HF development through inducing macrophage infiltration and activation via the STAT3-Ccl2 signaling, and TFRC expression in cardiomyocytes is regulated by HIF-1α during HF. This study first uncovers the role of TFRC in cardiomyocytes on macrophage infiltration and activation during HF.
Collapse
Affiliation(s)
- Yanyun Pan
- Department of CardiologyThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouZhejiang ProvinceP. R. China
| | - Jinxiu Yang
- Department of Cardiology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiang ProvinceP. R. China
| | - Jin Dai
- Department of CardiologyThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouZhejiang ProvinceP. R. China
| | - Xiaoming Xu
- Department of CardiologyThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouZhejiang ProvinceP. R. China
| | - Xinbin Zhou
- Department of CardiologyThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouZhejiang ProvinceP. R. China
| | - Wei Mao
- Department of CardiologyThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouZhejiang ProvinceP. R. China
| |
Collapse
|
8
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
9
|
He R, Liu B, Geng B, Li N, Geng Q. The role of HDAC3 and its inhibitors in regulation of oxidative stress and chronic diseases. Cell Death Discov 2023; 9:131. [PMID: 37072432 PMCID: PMC10113195 DOI: 10.1038/s41420-023-01399-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 04/20/2023] Open
Abstract
HDAC3 is a specific and crucial member of the HDAC family. It is required for embryonic growth, development, and physiological function. The regulation of oxidative stress is an important factor in intracellular homeostasis and signal transduction. Currently, HDAC3 has been found to regulate several oxidative stress-related processes and molecules dependent on its deacetylase and non-enzymatic activities. In this review, we comprehensively summarize the knowledge of the relationship of HDAC3 with mitochondria function and metabolism, ROS-produced enzymes, antioxidant enzymes, and oxidative stress-associated transcription factors. We also discuss the role of HDAC3 and its inhibitors in some chronic cardiovascular, kidney, and neurodegenerative diseases. Due to the simultaneous existence of enzyme activity and non-enzyme activity, HDAC3 and the development of its selective inhibitors still need further exploration in the future.
Collapse
Affiliation(s)
- Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Boxin Geng
- School of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
HDAC Inhibitors Alleviate Uric Acid-Induced Vascular Endothelial Cell Injury by Way of the HDAC6/FGF21/PI3K/AKT Pathway. J Cardiovasc Pharmacol 2023; 81:150-164. [PMID: 36607630 PMCID: PMC9901848 DOI: 10.1097/fjc.0000000000001372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
ABSTRACT Uric acid (UA) accumulation triggers endothelial dysfunction, oxidative stress, and inflammation. Histone deacetylase (HDAC) plays a vital role in regulating the pathological processes of various diseases. However, the influence of HDAC inhibitor on UA-induced vascular endothelial cell injury (VECI) remains undefined. Hence, this study aimed to investigate the effect of HDACs inhibition on UA-induced vascular endothelial cell dysfunction and its detailed mechanism. UA was used to induce human umbilical vein endothelial cell (HUVEC) injury. Meanwhile, potassium oxonate-induced and hypoxanthine-induced hyperuricemia mouse models were also constructed. A broad-spectrum HDAC inhibitor trichostatin A (TSA) or selective HDAC6 inhibitor TubastatinA (TubA) was given to HUVECs or mice to determine whether HDACs can affect UA-induced VECI. The results showed pretreatment of HUVECs with TSA or HDAC6 knockdown-attenuated UA-induced VECI and increased FGF21 expression and phosphorylation of AKT, eNOS, and FoxO3a. These effects could be reversed by FGF21 knockdown. In vivo, both TSA and TubA reduced inflammation and tissue injury while increased FGF21 expression and phosphorylation of AKT, eNOS, and FoxO3a in the aortic and renal tissues of hyperuricemia mice. Therefore, HDACs, especially HDAC6 inhibitor, alleviated UA-induced VECI through upregulating FGF21 expression and then activating the PI3K/AKT pathway. This suggests that HDAC6 may serve as a novel therapeutic target for treating UA-induced endothelial dysfunction.
Collapse
|
11
|
Chen H, Jiang R, Huang W, Chen K, Zeng R, Wu H, Yang Q, Guo K, Li J, Wei R, Liao S, Tse HF, Sha W, Zhuo Z. Identification of energy metabolism-related biomarkers for risk prediction of heart failure patients using random forest algorithm. Front Cardiovasc Med 2022; 9:993142. [PMID: 36304554 PMCID: PMC9593065 DOI: 10.3389/fcvm.2022.993142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Energy metabolism plays a crucial role in the improvement of heart dysfunction as well as the development of heart failure (HF). The current study is designed to identify energy metabolism-related diagnostic biomarkers for predicting the risk of HF due to myocardial infarction. Methods Transcriptome sequencing data of HF patients and non-heart failure (NF) people (GSE66360 and GSE59867) were obtained from gene expression omnibus (GEO) database. Energy metabolism-related differentially expressed genes (DEGs) were screened between HF and NF samples. The subtyping consistency analysis was performed to enable the samples to be grouped. The immune infiltration level among subtypes was assessed by single sample gene set enrichment analysis (ssGSEA). Random forest algorithm (RF) and support vector machine (SVM) were applied to identify diagnostic biomarkers, and the receiver operating characteristic curves (ROC) was plotted to validate the accuracy. Predictive nomogram was constructed and validated based on the result of the RF. Drug screening and gene-miRNA network were analyzed to predict the energy metabolism-related drugs and potential molecular mechanism. Results A total of 22 energy metabolism-related DEGs were identified between HF and NF patients. The clustering analysis showed that HF patients could be classified into two subtypes based on the energy metabolism-related genes, and functional analyses demonstrated that the identified DEGs among two clusters were mainly involved in immune response regulating signaling pathway and lipid and atherosclerosis. ssGSEA analysis revealed that there were significant differences in the infiltration levels of immune cells between two subtypes of HF patients. Random-forest and support vector machine algorithm eventually identified ten diagnostic markers (MEF2D, RXRA, PPARA, FOXO1, PPARD, PPP3CB, MAPK14, CREB1, MEF2A, PRMT1) for risk prediction of HF patients, and the proposed nomogram resulted in good predictive performance (GSE66360, AUC = 0.91; GSE59867, AUC = 0.84) and the clinical usefulness in HF patients. More importantly, 10 drugs and 15 miRNA were predicted as drug target and hub miRNA that associated with energy metabolism-related genes, providing further information on clinical HF treatment. Conclusion This study identified ten energy metabolism-related diagnostic markers using random forest algorithm, which may help optimize risk stratification and clinical treatment in HF patients.
Collapse
Affiliation(s)
- Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,School of Medicine, South China University of Technology, Guangzhou, China,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China,*Correspondence: Hao Chen
| | - Rui Jiang
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,School of Medicine, South China University of Technology, Guangzhou, China
| | - Wentao Huang
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Kequan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huihuan Wu
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,School of Medicine, South China University of Technology, Guangzhou, China
| | - Qi Yang
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kehang Guo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jingwei Li
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Rui Wei
- Cardiology Division, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Songyan Liao
- Cardiology Division, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China,Hung-Fat Tse
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,School of Medicine, South China University of Technology, Guangzhou, China,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China,Weihong Sha
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,Zewei Zhuo
| |
Collapse
|
12
|
Angiotensin receptor/Neprilysin inhibitor effects in CRTd non-responders: From epigenetic to clinical beside. Pharmacol Res 2022; 182:106303. [PMID: 35697289 DOI: 10.1016/j.phrs.2022.106303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVES We evaluated whether Angiotensin receptor/Neprilysin inhibitors (ARNI) reduce heart failure (HF) hospitalizations and deaths in cardiac resynchronization therapy with defibrillator (CRTd) non-responders patients at 12 months of follow-up, modulating microRNAs (miRs) implied in adverse cardiac remodeling. BACKGROUND adverse cardiac remodeling characterized by left ventricle ejection fraction (LVEF) reduction, left ventricular end-systolic volume (LVESv) increase, and the 6-minute walking test (6MWT) reduction are relevant pathological mechanisms in CRTd non-responders and could be linked to changes in miRNAs (miRs), regulating cardiac fibrosis, apoptosis, and hypertrophy. METHODS miRs levels and clinical outcomes (LVEF, cardiac deaths, and 6MWT) were evaluated at baseline and one year of follow-up in CRTd non-responders divided into ARNI-users and Non-ARNI users. RESULTS At baseline, there were no differences in levels of inflammatory markers, miR-18, miR-145, and miR-181 (p > 0.05) between Non-ARNI users (n 106) and ARNI-users (n 312). At one year of follow-up, ARNI-users vs. Non-ARNI users showed lowest inflammatory markers (p < 0.01) and miR-181 levels (p < 0.01) and higher values of miR-18 (p < 0.01)and miR-145 (p < 0.01). At one year of follow-up, ARNI-users had a higher increase of LVEF (p < 0.01) and 6MWT (p < 0.01) along with a more significant reduction of LVESv (p < 0.01) compared to Non-ARNI users. Cox regression analysis evidenced that ARNI-based therapies increase the probability of anti-remodeling effects of CRTd. Based on symptomatic improvements, echocardiographic and functional classification improvements, 37 (34.9%) patients among ARNI-users became responders, while only twenty (6.4%) patients became responders among Non-ARNi-users. CONCLUSIONS ARNI might influence epigenetic mechanisms modulating miRs implicated in the adverse cardiac remodeling responses to CRTd.
Collapse
|
13
|
Ginkgolide A alleviates cardiac remodeling in mice with myocardial infarction via binding to matrix metalloproteinase-9 to attenuate inflammation. Eur J Pharmacol 2022; 923:174932. [DOI: 10.1016/j.ejphar.2022.174932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 12/21/2022]
|
14
|
Li M, Lan F, Li C, Li N, Chen X, Zhong Y, Yang Y, Shao Y, Kong Y, Li X, Wu D, Zhang J, Chen W, Li Z, Zhu X. Expression and Regulation Network of HDAC3 in Acute Myeloid Leukemia and the Implication for Targeted Therapy Based on Multidataset Data Mining. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4703524. [PMID: 35371279 PMCID: PMC8966751 DOI: 10.1155/2022/4703524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
Abstract
Background Histone deacetylase 3 (HDAC3) plays an important role in the development and progression of a variety of cancers, but its regulatory mechanism in acute myeloid leukemia (LAML) is not entirely understood. Methods We analyzed the expression of HDAC3 in normal and cancerous tissues using Oncomine, UALCAN, and GEO databases. Changes of the HDAC3 gene were analyzed by cBioPortal. The genes coexpressed with HDAC3 were analyzed by WebGestalt, and the predicted signaling pathways in KEGG were discussed. Results We discovered that the expression of HDAC3 was elevated in some types of acute myeloid leukemia. The HDAC3 gene has a strong positive correlation with SLC25A5, NDUFA2, Cox4I1, and EIF3K, which regulate cell growth and development. HDAC3 transcription is higher in patients with FLT3 mutation than in healthy people. HDAC3 can be directly involved in regulating the thyroid hormone signaling pathway. MEF2D is directly involved in the cGMP-PKG signaling pathway, and the HDAC3 gene has a strong synergistic relationship with MEF2D. HDAC3 is indirectly involved in the cGMP-PKG signaling pathway, thereby indirectly regulating the expression levels of p53 and p21 genes in patients with LAML. Genomics of Drug Sensitivity in Cancer (GDSC) database analysis revealed that the application of the HDAC3 inhibitor can inhibit the proliferation of leukemia cells. Conclusions Therefore, our data suggest that HDAC3 may be a possible therapeutic target for acute myeloid leukemia.
Collapse
Affiliation(s)
- Minhua Li
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Zhu's Group, Guangdong Medical University, Zhanjiang, China
| | - Feifei Lan
- Medical Genetics Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, 14195 Berlin, Germany
| | - Ning Li
- Zhu's Group, Guangdong Medical University, Zhanjiang, China
| | - Xiaojie Chen
- Zhu's Group, Guangdong Medical University, Zhanjiang, China
| | - Yueyuan Zhong
- Zhu's Group, Guangdong Medical University, Zhanjiang, China
| | - Yue Yang
- Zhu's Group, Guangdong Medical University, Zhanjiang, China
| | - Yingqi Shao
- Zhu's Group, Guangdong Medical University, Zhanjiang, China
| | - Yi Kong
- Zhu's Group, Guangdong Medical University, Zhanjiang, China
| | - Xinming Li
- Zhu's Group, Guangdong Medical University, Zhanjiang, China
| | - Danny Wu
- Zhu's Group, Guangdong Medical University, Zhanjiang, China
| | - Jingyu Zhang
- Zhu's Group, Guangdong Medical University, Zhanjiang, China
| | - Wenqing Chen
- Zhu's Group, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Xiao Zhu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Zhu's Group, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
15
|
Kumbhar N, Nimal S, Barale S, Kamble S, Bavi R, Sonawane K, Gacche R. Identification of novel leads as potent inhibitors of HDAC3 using ligand-based pharmacophore modeling and MD simulation. Sci Rep 2022; 12:1712. [PMID: 35110603 PMCID: PMC8810932 DOI: 10.1038/s41598-022-05698-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/03/2022] [Indexed: 02/08/2023] Open
Abstract
In the landscape of epigenetic regulation, histone deacetylase 3 (HDAC3) has emerged as a prominent therapeutic target for the design and development of candidate drugs against various types of cancers and other human disorders. Herein, we have performed ligand-based pharmacophore modeling, virtual screening, molecular docking, and MD simulations to design potent and selective inhibitors against HDAC3. The predicted best pharmacophore model 'Hypo 1' showed excellent correlation (R2 = 0.994), lowest RMSD (0.373), lowest total cost value (102.519), and highest cost difference (124.08). Hypo 1 consists of four salient pharmacophore features viz. one hydrogen bond acceptor (HBA), one ring aromatic (RA), and two hydrophobic (HYP). Hypo 1 was validated by Fischer's randomization with a 95% of confidence level and the external test set of 60 compounds with a good correlation coefficient (R2 = 0.970). The virtual screening of chemical databases, drug-like properties calculations followed by molecular docking resulted in identifying 22 representative hit compounds. Performed 50 ns of MD simulations on top three hits were retained the salient π-stacking, Zn2+ coordination, hydrogen bonding, and hydrophobic interactions with catalytic residues from the active site pocket of HDAC3. Total binding energy calculated by MM-PBSA showed that the Hit 1 and Hit 2 formed stable complexes with HDAC3 as compared to reference TSA. Further, the PLIP analysis showed a close resemblance between the salient pharmacophore features of Hypo 1 and the presence of molecular interactions in co-crystallized FDA-approved drugs. We conclude that the screened hit compounds may act as potent inhibitors of HDAC3 and further preclinical and clinical studies may pave the way for developing them as effective therapeutic agents for the treatment of different cancers and neurodegenerative disorders.
Collapse
Affiliation(s)
- Navanath Kumbhar
- Department of Biotechnology, Savitribai Phule Pune University Pune, Pune, Maharashtra (MS), 411007, India
| | - Snehal Nimal
- Department of Biotechnology, Savitribai Phule Pune University Pune, Pune, Maharashtra (MS), 411007, India
| | - Sagar Barale
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra (MS), 416004, India
| | - Subodh Kamble
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, Maharashtra (MS), 416004, India
| | - Rohit Bavi
- School of Chemical Science, Punyashlok Ahilyadevi Holkar Solapur University, Solapur, Maharashtra (MS), 413255, India
| | - Kailas Sonawane
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra (MS), 416004, India
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, Maharashtra (MS), 416004, India
| | - Rajesh Gacche
- Department of Biotechnology, Savitribai Phule Pune University Pune, Pune, Maharashtra (MS), 411007, India.
| |
Collapse
|
16
|
Rusu-Nastase EG, Lupan AM, Marinescu CI, Neculachi CA, Preda MB, Burlacu A. MiR-29a Increase in Aging May Function as a Compensatory Mechanism Against Cardiac Fibrosis Through SERPINH1 Downregulation. Front Cardiovasc Med 2022; 8:810241. [PMID: 35118144 PMCID: PMC8804242 DOI: 10.3389/fcvm.2021.810241] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
Deregulation of microRNA (miRNA) profile has been reportedly linked to the aging process, which is a dominant risk factor for many pathologies. Among the miRNAs with documented roles in aging-related cardiac diseases, miR-18a, -21a, -22, and -29a were mainly associated with hypertrophy and/or fibrosis; however, their relationship to aging was not fully addressed before. The purpose of this paper was to evaluate the variations in the expression levels of these miRNAs in the aging process. To this aim, multiple organs were harvested from young (2–3-months-old), old (16–18-months-old), and very old (24–25-months-old) mice, and the abundance of the miRNAs was evaluated by quantitative real-time (RT)-PCR. Our studies demonstrated that miR-21a, miR-22, and miR-29a were upregulated in the aged heart. Among them, miR-29a was highly expressed in many other organs, i.e., the brain, the skeletal muscle, the pancreas, and the kidney, and its expression was further upregulated during the natural aging process. Western blot, immunofluorescence, and xCELLigence analyses concurrently indicated that overexpression of miR-29a in the muscle cells decreased the collagen levels as well as cell migration and proliferation. Computational prediction analysis and overexpression studies identified SERPINH1, a specific chaperone of procollagens, as a potential miR-29a target. Corroborating to this, significantly downregulated SERPINH1 levels were found in the skeletal muscle, the heart, the brain, the kidney, and the pancreas harvested from very old animals, thereby indicating the role of the miR-29a-SERPINH1 axis in the aging process. In vitro analysis of miR-29a effects on fibroblast and cardiac muscle cells pointed toward a protective role of miR-29a on aging-related fibrosis, by reducing cell migration and proliferation. In conclusion, our study indicates an adaptive increase of miR-29 in the natural aging process and suggests its role as a transcriptional repressor of SERPINH1, with a potential therapeutic value against adverse matrix remodeling and aging-associated tissue fibrosis.
Collapse
|
17
|
Ning L, Rui X, Bo W, Qing G. The critical roles of histone deacetylase 3 in the pathogenesis of solid organ injury. Cell Death Dis 2021; 12:734. [PMID: 34301918 PMCID: PMC8302660 DOI: 10.1038/s41419-021-04019-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Histone deacetylase 3 (HDAC3) plays a crucial role in chromatin remodeling, which, in turn, regulates gene transcription. Hence, HDAC3 has been implicated in various diseases, including ischemic injury, fibrosis, neurodegeneration, infections, and inflammatory conditions. In addition, HDAC3 plays vital roles under physiological conditions by regulating circadian rhythms, metabolism, and development. In this review, we summarize the current knowledge of the physiological functions of HDAC3 and its role in organ injury. We also discuss the therapeutic value of HDAC3 in various diseases.
Collapse
Affiliation(s)
- Li Ning
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Xiong Rui
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Wang Bo
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Geng Qing
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| |
Collapse
|