1
|
Wang Z, Yang C, Gao W, Sun W, Sun J, Wang H, Yan S, Xu D. Systemic lupus erythematosus-specific CD14 +IFITM3 + monocyte: Implications for disease activity and progression. Int Immunopharmacol 2024; 146:113916. [PMID: 39733642 DOI: 10.1016/j.intimp.2024.113916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/31/2024]
Abstract
Interferon-inducible transmembrane (IFITM) family members (IFITM1, IFITM2, IFITM3) are extensively expressed in T cells and are involved in adaptive immunity. However, little is known about the expression of IFITM1, IFITM2 and IFITM3 in monocytes and their roles in systemic lupus erythematosus (SLE). Our study has shown that the expression of IFITM1, IFITM2, and IFITM3 in peripheral blood mononuclear cells (PBMCs) of SLE patients was dysregulated, and the expression of IFITM3 in SLE was significantly higher than that of healthy controls. Besides, the percentage of CD14+IFITM3+ monocyte in the peripheral circulation of SLE patients was significantly increased, which was significantly correlated with inflammatory and immune indexes (ESR, CRP, PLT, urine-β2M, and urine mALB) of SLE. Most importantly, the percentage of CD14+IFITM3+ monocyte was positively associated with the SLEDAI score, suggesting it predictive role in SLE disease activity. In summary, we have found that IFITM3 may serve as a SLE-specific marker and the dysregulation of CD14+IFITM3+ monocyte may affect the disease activity and progression of SLE.
Collapse
Affiliation(s)
- Zhangxue Wang
- Department of Rheumatology and Immunology, Weifang People's Hospital, Shandong Second Medical University, Weifang 261000, Shandong, China
| | - Chunjuan Yang
- Department of Rheumatology and Immunology, Weifang People's Hospital, Shandong Second Medical University, Weifang 261000, Shandong, China; Medical Research Center, Weifang People's Hospital, Shandong Second Medical University, Weifang 261000, Shandong, China
| | - Wenfeng Gao
- Department of Rheumatology and Immunology, Affiliated Hospital of Shandong Second Medical University, Weifang 261000, Shandong, China
| | - Wenchang Sun
- Medical Research Center, Weifang People's Hospital, Shandong Second Medical University, Weifang 261000, Shandong, China
| | - Jiamei Sun
- Medical Research Center, Weifang People's Hospital, Shandong Second Medical University, Weifang 261000, Shandong, China.
| | - Hui Wang
- Medical Research Center, Weifang People's Hospital, Shandong Second Medical University, Weifang 261000, Shandong, China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery, Affiliated Hospital of Shandong Second Medical University, Weifang 261000, Shandong, China.
| | - Donghua Xu
- Department of Rheumatology and Immunology, Weifang People's Hospital, Shandong Second Medical University, Weifang 261000, Shandong, China; Medical Research Center, Weifang People's Hospital, Shandong Second Medical University, Weifang 261000, Shandong, China.
| |
Collapse
|
2
|
Khaitin AM, Guzenko VV, Bachurin SS, Demyanenko SV. c-Myc and FOXO3a-The Everlasting Decision Between Neural Regeneration and Degeneration. Int J Mol Sci 2024; 25:12621. [PMID: 39684331 DOI: 10.3390/ijms252312621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The transcription factors c-Myc and FoxO3a play significant roles in neurodegenerative processes, yet their interaction in neurological disorders remains largely unexplored. In contrast, much of the available information about their relationship comes from cancer research. While it is well-established that FoxO3a inhibits c-Myc activity, this interaction represents only a basic understanding of a far more complex dynamic, which includes exceptions under specific conditions and the involvement of additional regulatory factors. Given the critical need to address this gap for the treatment and prevention of neurodegenerative disorders, this review consolidates current knowledge on the joint roles of these two factors in neuropathology. It also highlights their conformational flexibility, post-translational modifications, and outlines potential directions for future research.
Collapse
Affiliation(s)
- Andrey M Khaitin
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don 344090, Russia
| | - Valeria V Guzenko
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don 344090, Russia
| | - Stanislav S Bachurin
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don 344090, Russia
| | - Svetlana V Demyanenko
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don 344090, Russia
| |
Collapse
|
3
|
Jin M, Zhang G, Wang S, Zhao R, Zhang H. ISL1 and AQP5 complement each other to enhance gastric cancer cell stemness by regulating CD44 expression. Transl Cancer Res 2024; 13:5484-5496. [PMID: 39525012 PMCID: PMC11543036 DOI: 10.21037/tcr-24-248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024]
Abstract
Background Gastric cancer, a prevalent and life-threatening malignancy, is believed to involve cancer stem cells (CSCs) as a contributing factor to tumor progression. Insulin gene enhancer binding protein-1 (ISL1) is a transcription factor, and it has not been elucidated how ISL1 regulates gastric carcinogenesis. The aim of this paper is to investigate the role of ISL1 in gastric cancer development. Methods In this study, we investigated the effects of ISL1 on the stem-like properties of human gastric cancer cells by applying transcriptional, flow, and immunofluorescence techniques. Results In human gastric cancer samples, there is an observed elevation in ISL1 expression, which correlates with the expression of stem cell markers, notably LGR5. Functionally, ISL1 fosters the self-renewal, cell proliferation, migration, and the clonogenic potential of gastric cancer cells in vitro. Furthermore, it enhances the ability of these cells to form tumors and metastasize in vivo. Additionally, ISL1 collaborates with AQP5, collectively intensifying the tumorigenicity of gastric cancer cells. Mechanistically, transcriptomic analysis of cells overexpressing ISL1 unveils a notable activation of the forkhead box O (FOXO) pathway. This activation leads to increased nuclear expression of forkhead box O3 (FOXO3), subsequently resulting in elevated expression of the stemness-associated gene CD44 in gastric cancer cells. Conclusions These findings shed light on the role of ISL1 in promoting the stem-like characteristics of gastric cancer cells and emphasize the connection between ISL1 and AQP5 as a novel therapeutic target for individuals with gastric cancer.
Collapse
Affiliation(s)
- Meng Jin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Guowei Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Shouqi Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Rou Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Haitao Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Lee HH, Chuang HY, Lin K, Yeh CT, Wang YM, Chi HC, Lin KH. RNASE4 promotes malignant progression and chemoresistance in hypoxic glioblastoma via activation of AXL/AKT and NF-κB/cIAPs signaling pathways. Am J Cancer Res 2024; 14:4320-4336. [PMID: 39417186 PMCID: PMC11477813 DOI: 10.62347/udbj5986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/15/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor frequently characterized by a hypoxic microenvironment. In this investigation, we unveiled unprecedented role of Ribonuclease 4 (RNASE4) in GBM pathogenesis through integrative methodologies. Leveraging The Cancer Genome Atlas (TCGA) dataset and clinical specimens from normal brain tissues, low- and high-grade gliomas, alongside rigorous in vitro and in vivo functional analyses, we identified a consistent upregulation of RNASE4 correlating with advanced GBM pathological stages and poor clinical survival outcomes. Functional assays corroborated the pivotal influences of RNASE4 on key tumorigenic processes such as cell proliferation, migration, invasion, stemness properties and temozolomide (TMZ) resistance. Further, Gene Set Enrichment Analysis (GSEA) illuminated the involvement of RNASE4 in modulating epithelial-mesenchymal transition (EMT) via activation of AXL, AKT and NF-κB signaling pathways. Furthermore, recombinant human RNASE4 (hRNASE4)-mediated NF-κB activation through IκBα phosphorylation and degradation could result in the upregulation of inhibitors of apoptosis proteins (IAPs), such as cIAP1, cIAP2, and SURVIVIN. Notably, treating RNASE4-induced TMZ-resistant cells with the SURVIVIN inhibitor YM-155 significantly restored cellular sensitivity to TMZ therapy. Herein, this study positions RNASE4 as a potent prognostic biomarker and therapeutic target, offering new insights into molecular pathogenesis of GBM and new avenues for future therapeutic interventions.
Collapse
Affiliation(s)
- Hsun-Hua Lee
- Department of Neurology, Taipei Medical University Hospital, Taipei Medical UniversityTaipei 110, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei 110, Taiwan
- Dizziness and Balance Disorder Center, Taipei Medical University Hospital, Taipei Medical UniversityTaipei 110, Taiwan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical UniversityNew Taipei 23561, Taiwan
- Dizziness and Balance Disorder Center, Shuang Ho Hospital, Taipei Medical UniversityNew Taipei 23561, Taiwan
| | - Hao-Yu Chuang
- School of Medicine, China Medical UniversityTaichung 40447, Taiwan
- Translational Cell Therapy Center, Tainan Municipal An-Nan Hospital-China Medical UniversityTainan 709204, Taiwan
- Division of Neurosurgery, Tainan Municipal An-Nan Hospital-China Medical UniversityTainan 709204, Taiwan
- Division of Neurosurgery, China Medical University Beigang HospitalBeigang Township, Yunlin 65152, Taiwan
| | - Kent Lin
- Northern Clinical School, Faculty of Medicine and Health, The University of SydneyNSW 2006, Australia
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan 330, Taiwan
| | - Yi-Min Wang
- Department of Neurosurgery, An Nan Hospital, China Medical UniversityTainan 709204, Taiwan
| | - Hsiang-Cheng Chi
- Institute of Biochemistry and Molecular Biology, China Medical UniversityTaichung 404333, Taiwan
- Chinese Medicine Research Center, China Medical UniversityTaichung 40447, Taiwan
| | - Kwang-Huei Lin
- Liver Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan 330, Taiwan
- Department of Biochemistry, College of Medicine, Chang-Gung UniversityTaoyuan 330, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung UniversityTaoyuan 330, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and TechnologyTaoyuan 330, Taiwan
| |
Collapse
|
5
|
Bian Y, Shi J, Chen Z, Fang J, Chen W, Zou Y, Yao H, Tu J, Liao Y, Xie X, Shen J. A diagnostic signature developed based on the necroptosis-related genes and its association with immune infiltration in osteosarcoma. Heliyon 2024; 10:e35719. [PMID: 39253245 PMCID: PMC11381599 DOI: 10.1016/j.heliyon.2024.e35719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction Osteosarcoma is a bone-derived malignancy that often leads to lung metastasis and death. Material and methods The RNA-seq data of TARGET-osteosarcoma were collected from TARGET database. GSE16088 and GSE12865 datasets of osteosarcoma x from Gene Expression Database (GEO) were donwloaded. ConsensusClusterPlus was used for molecular subtype classification. Univariate Cox and Lasso regression was employed to develop a risk model. To analyze the regulatory effects of model feature genes on the malignant phenotype of osteosarcoma cell lines, qRT-PCR, Transwell and wound healing assays were performed. The abundance of immune cell infiltration was assessed using MCP-Counter, Gene Set Enrichment Analysis (GSEA), and ESTIMATE. The Tumor Immune Dysfunction and Exclusion (TIDE) software was employed to evaluate immunotherapy and response to conventional chemotherapy drugs. Results Three clusters (C1, C2 and C3) were classified using 39 necroptosis score-associated genes. In general, C1 and C2 showed better prognosis outcome and lower death rate than C3. Specifically, C2 could benefit more from immunotherapy, while C3 was more sensitive to traditional medicines, and C1 had higher immune cell infiltration. Next, an 8-gene signature and a risk score model were developed, with a low risk score indicating better survival and immune cell infiltration. ROC analysis showed that 1-, 3-, and 5-year overall survival of osteosarcoma could be correctly predicted by the risk score model. Cellular experiments revealed that the model feature gene IFITM3 promoted the osteosarcoma cell migration and invasion. Furthermore, the overall survival of osteosarcoma patients from TARGET and validation datasets can be accurately evaluated using the nomogram model. Conclusions Our prognostic model developed using necroptosis genes could facilitate the prognostic prediction for patients suffering from osteosarcoma, offering potential osteosarcoma targets.
Collapse
Affiliation(s)
- Yiying Bian
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jixiang Shi
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ziyun Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ji Fang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Weidong Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yutong Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Yao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jian Tu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Liao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
6
|
Otálora-Otálora BA, Payán-Gómez C, López-Rivera JJ, Pedroza-Aconcha NB, Aristizábal-Guzmán C, Isaza-Ruget MA, Álvarez-Moreno CA. Global transcriptomic network analysis of the crosstalk between microbiota and cancer-related cells in the oral-gut-lung axis. Front Cell Infect Microbiol 2024; 14:1425388. [PMID: 39228892 PMCID: PMC11368877 DOI: 10.3389/fcimb.2024.1425388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024] Open
Abstract
Background The diagnosis and treatment of lung, colon, and gastric cancer through the histologic characteristics and genomic biomarkers have not had a strong impact on the mortality rates of the top three global causes of death by cancer. Methods Twenty-five transcriptomic analyses (10 lung cancer, 10 gastric cancer, and 5 colon cancer datasets) followed our own bioinformatic pipeline based on the utilization of specialized libraries from the R language and DAVID´s gene enrichment analyses to identify a regulatory metafirm network of transcription factors and target genes common in every type of cancer, with experimental evidence that supports its relationship with the unlocking of cell phenotypic plasticity for the acquisition of the hallmarks of cancer during the tumoral process. The network's regulatory functional and signaling pathways might depend on the constant crosstalk with the microbiome network established in the oral-gut-lung axis. Results The global transcriptomic network analysis highlighted the impact of transcription factors (SOX4, TCF3, TEAD4, ETV4, and FOXM1) that might be related to stem cell programming and cancer progression through the regulation of the expression of genes, such as cancer-cell membrane receptors, that interact with several microorganisms, including human T-cell leukemia virus 1 (HTLV-1), the human papilloma virus (HPV), the Epstein-Barr virus (EBV), and SARS-CoV-2. These interactions can trigger the MAPK, non-canonical WNT, and IFN signaling pathways, which regulate key transcription factor overexpression during the establishment and progression of lung, colon, and gastric cancer, respectively, along with the formation of the microbiome network. Conclusion The global transcriptomic network analysis highlights the important interaction between key transcription factors in lung, colon, and gastric cancer, which regulates the expression of cancer-cell membrane receptors for the interaction with the microbiome network during the tumorigenic process.
Collapse
Affiliation(s)
| | - César Payán-Gómez
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz, Colombia
| | - Juan Javier López-Rivera
- Grupo de Investigación INPAC, Specialized Laboratory, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá, Colombia
| | | | - Claudia Aristizábal-Guzmán
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá, Colombia
| | - Mario Arturo Isaza-Ruget
- Keralty, Sanitas International Organization, Grupo de Investigación INPAC, Fundación Universitaria Sanitas, Bogotá, Colombia
| | | |
Collapse
|
7
|
Chi HC, Lin YH, Wu YH, Chang CC, Wu CH, Yeh CT, Hsieh CC, Lin KH. CCL16 is a pro-tumor chemokine that recruits monocytes and macrophages to promote hepatocellular carcinoma progression. Am J Cancer Res 2024; 14:3600-3613. [PMID: 39113854 PMCID: PMC11301285 DOI: 10.62347/vctw6889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Intricate signaling cascades involving chemokines and their cognate receptors on neoplastic and immune constituents within tumor microenvironment have garnered substantial research interest. Our investigation delineates the contribution of Chemokine (C-C motif) ligand 16 (CCL16) to the clinico-pathological features and tumorigenesis of hepatocellular carcinoma (HCC). Analysis of 237 pairs of HCC specimens unraveled a significant association between CCL16 expression and vascular invasion, early-stage clinicopathological features, and diminished recurrence-free survival among HCC patients. Immunohistochemical (IHC) assays of the clinical HCC specimens indicated elevated CCL16 in tumorous versus normal hepatic tissues. Our in vivo experiments demonstrated CCL16 overexpression fostered tumor proliferation, whereas in vitro assays elucidated that CCL16-mediated chemotactic recruitment of monocytes and M2 macrophages was orchestrated via CCR1 and CCR5. In contrast to previous claims that CCL16 is physiologically irrelevant and has minimal affinity for its receptors (CCR1, CCR2, CCR5, CCR8), our findings unravel that inhibition of CCL16/CCR1 and CCL16/CCR5 interactions through receptor-specific antagonists markedly impeded CCL16-directed chemotaxis, migration, adhesion, and leukocyte recruitment. Moreover, CCL16-overexpression in HCCs significantly augmented levels of several cytokines implicated in tumor progression, namely IL-6, IL-10 and VEGFA. IHC analysis of CCL16-overexpressing xenografts elicited greatly enhanced levels of VEGFA and IL-6, while assessments of HCC specimens confirmed a positive correlation between CCL16 expression and IL-6 and VEGFA levels. Collectively, our study highlights oncogenic role of CCL16 in hepatocarcinogenesis and provides a foundational basis for novel therapeutic interventions targeting the CCL16/CCR1/CCR5 axis.
Collapse
Affiliation(s)
- Hsiang-Cheng Chi
- Institute of Biochemistry and Molecular Biology, China Medical UniversityTaichung 404, Taiwan
- Chinese Medicine Research Center, China Medical UniversityTaichung 404, Taiwan
| | - Yang-Hsiang Lin
- Liver Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan 333, Taiwan
| | - Yuh-Harn Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung UniversityTainan 70101, Taiwan
| | - Cheng-Chih Chang
- Department of General Surgery, Chang Gung Memorial HospitalChiayi 613016, Taiwan
| | - Cheng-Heng Wu
- Division of Hepatogastroenterology, Department of Internal Medicine, Chang Gung Memorial HospitalLinkou Branch, Taoyuan 333, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan 333, Taiwan
| | - Ching-Chuan Hsieh
- Department of General Surgery, Chang Gung Memorial HospitalChiayi 613016, Taiwan
| | - Kwang-Huei Lin
- Liver Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan 333, Taiwan
- Department of Biochemistry, College of Medicine, Chang-Gung UniversityTaoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung UniversityTaoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and TechnologyTaoyuan 333, Taiwan
| |
Collapse
|
8
|
Wang LM, Zhang WW, Qiu YY, Wang F. Ferroptosis regulating lipid peroxidation metabolism in the occurrence and development of gastric cancer. World J Gastrointest Oncol 2024; 16:2781-2792. [PMID: 38994139 PMCID: PMC11236228 DOI: 10.4251/wjgo.v16.i6.2781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Gastric cancer is one of the most common malignant tumors in the world, and its occurrence and development involve complex biological processes. Iron death, as a new cell death mode, has attracted wide attention in recent years. However, the regulatory mechanism of iron death in gastric cancer and its effect on lipid peroxidation metabolism remain unclear. AIM To explore the role of iron death in the development of gastric cancer, reveal its relationship with lipid peroxidation, and provide a new theoretical basis for revealing the molecular mechanism of the occurrence and development of gastric cancer. METHODS The process of iron death in gastric cancer cells was simulated by cell culture model, and the occurrence of iron death was detected by fluorescence microscopy and flow cytometry. The changes of gene expression related to iron death and lipid peroxidation metabolism were analyzed by high-throughput sequencing technology. In addition, a mouse model of gastric cancer was established, and the role of iron death in vivo was studied by histology and immunohistochemistry, and the level of lipid peroxidation was detected. These methods comprehensively and deeply reveal the regulatory mechanism of iron death on lipid peroxidation metabolism in the occurrence and development of gastric cancer. RESULTS Iron death was significantly activated in gastric cancer cells, and at the same time, associated lipid peroxidation levels increased significantly. Through high-throughput sequencing analysis, it was found that iron death regulated the expression of several genes related to lipid metabolism. In vivo experiments demonstrated that increased iron death in gastric cancer mice was accompanied by a significant increase in lipid peroxidation. CONCLUSION This study confirmed the important role of iron death in regulating lipid peroxidation metabolism in the occurrence and development of gastric cancer. The activation of iron death significantly increased lipid peroxidation levels, revealing its regulatory mechanism inside the cell.
Collapse
Affiliation(s)
- Lan-Mei Wang
- Department of Clinical Laboratory, Anqiu People's Hospital, Weifang 262123, Shandong Province, China
| | - Wei-Wei Zhang
- Department of Gastroenterology, Feicheng People's Hospital, Tai’an 271600, Shandong Province, China
| | - Ying-Yang Qiu
- Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore
| | - Fang Wang
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| |
Collapse
|
9
|
Buckenmeyer MJ, Brooks EA, Taylor MS, Yang L, Holewinski RJ, Meyer TJ, Galloux M, Garmendia-Cedillos M, Pohida TJ, Andresson T, Croix B, Wolf MT. Engineering Tumor Stroma Morphogenesis Using Dynamic Cell-Matrix Spheroid Assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585805. [PMID: 38903106 PMCID: PMC11188064 DOI: 10.1101/2024.03.19.585805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The tumor microenvironment consists of resident tumor cells organized within a compositionally diverse, three-dimensional (3D) extracellular matrix (ECM) network that cannot be replicated in vitro using bottom-up synthesis. We report a new self-assembly system to engineer ECM-rich 3D MatriSpheres wherein tumor cells actively organize and concentrate microgram quantities of decellularized ECM dispersions which modulate cell phenotype. 3D colorectal cancer (CRC) MatriSpheres were created using decellularized small intestine submucosa (SIS) as an orthotopic ECM source that had greater proteomic homology to CRC tumor ECM than traditional ECM formulations such as Matrigel. SIS ECM was rapidly concentrated from its environment and assembled into ECM-rich 3D stroma-like regions by mouse and human CRC cell lines within 4-5 days via a mechanism that was rheologically distinct from bulk hydrogel formation. Both ECM organization and transcriptional regulation by 3D ECM cues affected programs of malignancy, lipid metabolism, and immunoregulation that corresponded with an in vivo MC38 tumor cell subpopulation identified via single cell RNA sequencing. This 3D modeling approach stimulates tumor specific tissue morphogenesis that incorporates the complexities of both cancer cell and ECM compartments in a scalable, spontaneous assembly process that may further facilitate precision medicine.
Collapse
Affiliation(s)
- Michael J. Buckenmeyer
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Elizabeth A. Brooks
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Madison S. Taylor
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Liping Yang
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Ronald J. Holewinski
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mélissa Galloux
- Independent Bioinformatician, Marseille, Provence-Alpes-Côte d’Azur, France
| | - Marcial Garmendia-Cedillos
- Instrumentation Development and Engineering Application Solutions, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas J. Pohida
- Instrumentation Development and Engineering Application Solutions, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Brad Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Matthew T. Wolf
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| |
Collapse
|
10
|
Xiong Z, Xu X, Zhang Y, Ma C, Hou C, You Z, Shu L, Ke Y, Liu Y. IFITM3 promotes glioblastoma stem cell-mediated angiogenesis via regulating JAK/STAT3/bFGF signaling pathway. Cell Death Dis 2024; 15:45. [PMID: 38218875 PMCID: PMC10787840 DOI: 10.1038/s41419-023-06416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/15/2024]
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) has been previously verified to be an endosomal protein that prevents viral infection. Recent findings suggested IFITM3 as a key factor in tumor invasion and progression. To clarify the role and molecular mechanism of IFITM3 in Glioblastoma multiforme (GBM) progression, we investigated the expression of IFITM3 in glioma datasets culled from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA). Primary GBM stem cells (GSCs) were cultured and identified in vitro. Loss-of-function and gain-of-function experiments were established by using shRNAs and lentiviral vectors targeting IFITM3. Co-culture system of GSCs and vascular endothelial cells was constructed in a Transwell chamber. Tube formation and spheroid-based angiogenesis assays were performed to determine the angiogenic capacity of endothelial cells. Results revealed that IFITM3 is elevated in GBM samples and predictive of adverse outcome. Mechanistically, GSCs-derived IFITM3 causes activation of Jak2/STAT3 signaling and leads to robust secretion of bFGF into tumor environment, which eventually results in enhanced angiogenesis. Taken together, these evidence indicated IFITM3 as an essential factor in GBM angiogenesis. Our findings provide a new insight into mechanism by which IFITM3 modulates GBM angiogenesis.
Collapse
Affiliation(s)
- Zhangsheng Xiong
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510060, PR China
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou, 510060, PR China
| | - Xiangdong Xu
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510060, PR China
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou, 510060, PR China
| | - Yuxuan Zhang
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510060, PR China
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou, 510060, PR China
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Chengcheng Ma
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510060, PR China
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou, 510060, PR China
| | - Chongxian Hou
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510060, PR China
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou, 510060, PR China
| | - Zhongsheng You
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510060, PR China
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou, 510060, PR China
| | - Lingling Shu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Guangzhou, PR China.
| | - Yiquan Ke
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510060, PR China.
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou, 510060, PR China.
| | - Yang Liu
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510060, PR China.
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou, 510060, PR China.
| |
Collapse
|
11
|
Ma J, Tu Z, Du S, Zhang X, Wang J, Guo J, Feng Y, He H, Wang H, Li C, Tu C, Liu Y. IFITM3 restricts RABV infection through inhibiting viral entry and mTORC1- dependent autophagy. Vet Microbiol 2023; 284:109823. [PMID: 37392666 DOI: 10.1016/j.vetmic.2023.109823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Rabies, which caused by rabies virus (RABV), is a zoonotic and life-threatening disease with 100% mortality, and there is no effective treatment thus far due to the unclear pathogenesis and less of treatment targets. Interferon-induced transmembrane protein 3 (IFITM3) has recently been identified as an important anti-viral host effector induced by type I interferon. However, the role of IFITM3 in RABV infection has not been elucidated. In this study, we demonstrated that IFITM3 is a crucial restriction factor for RABV, the viral-induced IFITM3 significantly inhibited RABV replication, while knockdown of IFITM3 had the opposite effect. We then identified that IFNβ induces the upregulation of IFITM3 in the absence or presence of RABV infection, meanwhile, IFITM3 positively regulates RABV-triggered production of IFNβ in a feedback manner. In-depth research we found that IFITM3 not only inhibits the virus absorb and entry, but also inhibits viral replication through mTORC1-dependent autophagy. All these findings broaden our understanding of IFITM3 function and uncover a novel mechanism against RABV infection.
Collapse
Affiliation(s)
- Jiaqi Ma
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhongzhong Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Shouwen Du
- Department of infectious diseases, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Xinying Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Jie Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; Engineering Research Center of Glycoconjugates of Ministry of Education, Jinlin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jianxiong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Ye Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Chang Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
| | - Yan Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
| |
Collapse
|
12
|
Zhang Y, Lu Y, Li X, Zhang S, Liu P, Hao X, Han J. The novel role of IFITM1-3 in myogenic differentiation of C2C12 cells. Intractable Rare Dis Res 2023; 12:180-190. [PMID: 37662621 PMCID: PMC10468414 DOI: 10.5582/irdr.2023.01050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/15/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs 1, 2, and 3) play a critical role in preventing pathogen infection in vertebrates. They are also involved in the occurrence and prognosis of cancer. Myogenesis is a complex process regulated by several factors. This study disclosed that Ifitm1-3 were upregulated in the process of myogenic differentiation of C2C12 myoblasts on days 3, 5, and 7. This positively correlated with the expression of differentiation factors MyoD, myogenin, Mrf5, and desmin. Furthermore, knockdown of Ifitm1-3 by their individual siRNAs inhibited myogenesis of C2C12 myoblasts, with relative downregulation of MyoD, myogenin, Mrf5, and desmin. Subsequently, myotube formation and fusion percentage decreased. Co-immunoprecipitation combined with LC-MS/MS analysis uncovered the interaction proteins of IFITM1 and IFITM3 in C2C12 myoblasts. A total of 84 overlapped interaction proteins of IFITM1 and IFITM3 were identified, and one of the clusters was engaged in cytoskeletal and sarcomere proteins, including desmin, myosin, actin, vimentin, nestin, ankycorbin, and nucleolin. Hence, we hypothesize that these interacting proteins may function as scaffolds for IFITM1-3, possibly through the interaction protein desmin to initiate further interaction with other proteins to participate in myogenesis; however, the molecular mechanisms remain unclear. Our study may contribute to the development of novel therapeutics for myopathic diseases.
Collapse
Affiliation(s)
- Yongtao Zhang
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Science College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Yanqin Lu
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Science College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Xianxian Li
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Science College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Shanshan Zhang
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Science College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Pengchao Liu
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Science College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Xiaoyang Hao
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Science College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Jinxiang Han
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Science College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| |
Collapse
|
13
|
Liu Y, Zhang H, Mao Y, Shi Y, Wang X, Shi S, Hu D, Liu S. Bulk and single-cell RNA-sequencing analyses along with abundant machine learning methods identify a novel monocyte signature in SKCM. Front Immunol 2023; 14:1094042. [PMID: 37304304 PMCID: PMC10248046 DOI: 10.3389/fimmu.2023.1094042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Background Global patterns of immune cell communications in the immune microenvironment of skin cutaneous melanoma (SKCM) haven't been well understood. Here we recognized signaling roles of immune cell populations and main contributive signals. We explored how multiple immune cells and signal paths coordinate with each other and established a prognosis signature based on the key specific biomarkers with cellular communication. Methods The single-cell RNA sequencing (scRNA-seq) dataset was downloaded from the Gene Expression Omnibus (GEO) database, in which various immune cells were extracted and re-annotated according to cell markers defined in the original study to identify their specific signs. We computed immune-cell communication networks by calculating the linking number or summarizing the communication probability to visualize the cross-talk tendency in different immune cells. Combining abundant analyses of communication networks and identifications of communication modes, all networks were quantitatively characterized and compared. Based on the bulk RNA sequencing data, we trained specific markers of hub communication cells through integration programs of machine learning to develop new immune-related prognostic combinations. Results An eight-gene monocyte-related signature (MRS) has been built, confirmed as an independent risk factor for disease-specific survival (DSS). MRS has great predictive values in progression free survival (PFS) and possesses better accuracy than traditional clinical variables and molecular features. The low-risk group has better immune functions, infiltrated with more lymphocytes and M1 macrophages, with higher expressions of HLA, immune checkpoints, chemokines and costimulatory molecules. The pathway analysis based on seven databases confirms the biological uniqueness of the two risk groups. Additionally, the regulon activity profiles of 18 transcription factors highlight possible differential regulatory patterns between the two risk groups, suggesting epigenetic event-driven transcriptional networks may be an important distinction. MRS has been identified as a powerful tool to benefit SKCM patients. Moreover, the IFITM3 gene has been identified as the key gene, validated to express highly at the protein level via the immunohistochemical assay in SKCM. Conclusion MRS is accurate and specific in evaluating SKCM patients' clinical outcomes. IFITM3 is a potential biomarker. Moreover, they are promising to improve the prognosis of SKCM patients.
Collapse
Affiliation(s)
- Yuyao Liu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Haoxue Zhang
- Department of Dermatovenerology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Yan Mao
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yangyang Shi
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xu Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shaomin Shi
- Department of Dermatology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Delin Hu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shengxiu Liu
- Department of Dermatovenerology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
14
|
Hashemi M, Zandieh MA, Talebi Y, Rahmanian P, Shafiee SS, Nejad MM, Babaei R, Sadi FH, Rajabi R, Abkenar ZO, Rezaei S, Ren J, Nabavi N, Khorrami R, Rashidi M, Hushmandi K, Entezari M, Taheriazam A. Paclitaxel and docetaxel resistance in prostate cancer: Molecular mechanisms and possible therapeutic strategies. Biomed Pharmacother 2023; 160:114392. [PMID: 36804123 DOI: 10.1016/j.biopha.2023.114392] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Prostate cancer is among most malignant tumors around the world and this urological tumor can be developed as result of genomic mutations and their accumulation during progression towards advanced stage. Due to lack of specific symptoms in early stages of prostate cancer, most cancer patients are diagnosed in advanced stages that tumor cells display low response to chemotherapy. Furthermore, genomic mutations in prostate cancer enhance the aggressiveness of tumor cells. Docetaxel and paclitaxel are suggested as well-known compounds for chemotherapy of prostate tumor and they possess a similar function in cancer therapy that is based on inhibiting depolymerization of microtubules, impairing balance of microtubules and subsequent delay in cell cycle progression. The aim of current review is to highlight mechanisms of paclitaxel and docetaxel resistance in prostate cancer. When oncogenic factors such as CD133 display upregulation and PTEN as tumor-suppressor shows decrease in expression, malignancy of prostate tumor cells enhances and they can induce drug resistance. Furthermore, phytochemicals as anti-tumor compounds have been utilized in suppressing chemoresistance in prostate cancer. Naringenin and lovastatin are among the anti-tumor compounds that have been used for impairing progression of prostate tumor and enhancing drug sensitivity. Moreover, nanostructures such as polymeric micelles and nanobubbles have been utilized in delivery of anti-tumor compounds and decreasing risk of chemoresistance development. These subjects are highlighted in current review to provide new insight for reversing drug resistance in prostate cancer.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Yasmin Talebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sareh Sadat Shafiee
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Melina Maghsodlou Nejad
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Roghayeh Babaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Hasani Sadi
- General Practitioner, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
15
|
Taurodeoxycholic acid-YAP1 upregulates OTX1 in promoting gallbladder cancer malignancy through IFITM3-dependent AKT activation. Oncogene 2023; 42:1466-1477. [PMID: 36928361 DOI: 10.1038/s41388-023-02660-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Orthodenticle homeobox (OTX1) is reported to be involved in numerous cancers, but the expression level and molecular function of OTX1 in gallbladder cancer (GBC) remain unknown. Here, we found the elevated level of OTX1 associated with poor prognosis in human gallbladder cancer. In vitro and in vivo studies of human gallbladder cancer cell lines demonstrated that overexpression of OTX1 promoted cell proliferation, whereas the downregulation inhibited it. Additionally, we found a tight correlation between the serum level of taurodeoxycholic acid (TDCA) and OTX1 expression. TDCA-induced activation of YAP1 by phosphorylation inhibition contributed to the transcriptional activation of OTX1. Mechanistically, we identified that OTX1 activated AKT signaling pathway by transactivating the expression of IFITM3 and thus promoted the proliferation of GBC cells. Taken together, our results showed that TDCA-YAP1-dependent expression of OTX1 regulated IFITM3 and affected GBC proliferation via the AKT signaling pathway. Our experiments also suggested that OTX1 is a novel therapeutic target for GBC.
Collapse
|
16
|
Gastric cancer derived mesenchymal stem cells promoted DNA repair and cisplatin resistance through up-regulating PD-L1/Rad51 in gastric cancer. Cell Signal 2023; 106:110639. [PMID: 36842523 DOI: 10.1016/j.cellsig.2023.110639] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023]
Abstract
Chemotherapy resistance in advanced gastric cancer (GC) patients has largely limited the effectiveness of therapy, resulting in disease recurrence and poor prognosis. Gastric cancer derived mesenchymal stem cells (GCMSC) are widely believed to promote GC invasion, metastasis and immune escape via up-regulating programmed death ligand 1 (PD-L1). However, the mechanism by which PD-L1 mediated by GCMSC might regulate the chemoresistance is unknown in GC. Herein, higher half maximal inhibitory concentrations (IC50) and less apoptotic rate were observed in GCMSC conditioned medium (GCMSC-CM) treated GC cells exposed to cisplatin (DDP), along with high expression of multi-drug resistance 1 (MDR1) and DNA repair related genes such as Rad51. The knockdown of PD-L1 reversed the increase of Rad51 mediated by GCMSC-CM, resulting in the increased sensitivity of GC cells to DDP. In addition, inhibition of heat shock protein 90 (HSP90) regulated the expression of PD-L1 and Rad51, revealing the important role of HSP90 in GCMSC-CM mediated DDP resistance. Consistent with the observations in vitro, analysis of patient samples and xenograft models further confirmed that reduction of PD-L1 or HSP90 weakened DDP tolerance mediated by GCMSC-CM, along with decrease of Rad51 and MDR1. In conclusion, we demonstrated that GCMSC-CM enhanced DDP resistance in GC cells through regulating PD-L1-Rad51. It is the first to report this particular mechanism of DDP resistance induced by GCMSC in GC, suggesting a potential therapeutic targets for DDP resistant GC cells.
Collapse
|