1
|
Chang CP, Yeh TK, Chen CT, Wang WP, Chen YT, Tsai CH, Chen YF, Ke YY, Wang JY, Chen CP, Hsieh TC, Wu MH, Huang CL, Chen YP, Zhuang H, Chi YH. Discovery of a Long Half-Life AURKA Inhibitor to Treat MYC-Amplified Solid Tumors as a Monotherapy and in Combination with Everolimus. Mol Cancer Ther 2024; 23:766-779. [PMID: 38592383 DOI: 10.1158/1535-7163.mct-23-0602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/20/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024]
Abstract
Aurora kinase inhibitors, such as alisertib, can destabilize MYC-family oncoproteins and have demonstrated compelling antitumor efficacy. In this study, we report 6K465, a novel pyrimidine-based Aurora A inhibitor, that reduces levels of c-MYC and N-MYC oncoproteins more potently than alisertib. In an analysis of the antiproliferative effect of 6K465, the sensitivities of small cell lung cancer (SCLC) and breast cancer cell lines to 6K465 were strongly associated with the protein levels of c-MYC and/or N-MYC. We also report DBPR728, an acyl-based prodrug of 6K465 bearing fewer hydrogen-bond donors, that exhibited 10-fold improved oral bioavailability. DBPR728 induced durable tumor regression of c-MYC- and/or N-MYC-overexpressing xenografts including SCLC, triple-negative breast cancer, hepatocellular carcinoma, and medulloblastoma using a 5-on-2-off or once-a-week dosing regimen on a 21-day cycle. A single oral dose of DBPR728 at 300 mg/kg induced c-MYC reduction and cell apoptosis in the tumor xenografts for more than 7 days. The inhibitory effect of DBPR728 at a reduced dosing frequency was attributed to its uniquely high tumor/plasma ratio (3.6-fold within 7 days) and the long tumor half-life of active moiety 6K465. Furthermore, DBPR728 was found to synergize with the mTOR inhibitor everolimus to suppress c-MYC- or N-MYC-driven SCLC. Collectively, these results suggest DBPR728 has the potential to treat cancers overexpressing c-MYC and/or N-MYC.
Collapse
Affiliation(s)
- Chun-Ping Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Wan-Ping Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yen-Ting Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Chia-Hua Tsai
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yan-Fu Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yi-Yu Ke
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Jing-Ya Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Ching-Ping Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Tsung-Chih Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Mine-Hsine Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Chen-Lung Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Ya-Ping Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Hong Zhuang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Ya-Hui Chi
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Tufail M, Wan WD, Jiang C, Li N. Targeting PI3K/AKT/mTOR signaling to overcome drug resistance in cancer. Chem Biol Interact 2024; 396:111055. [PMID: 38763348 DOI: 10.1016/j.cbi.2024.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
This review comprehensively explores the challenge of drug resistance in cancer by focusing on the pivotal PI3K/AKT/mTOR pathway, elucidating its role in oncogenesis and resistance mechanisms across various cancer types. It meticulously examines the diverse mechanisms underlying resistance, including genetic mutations, feedback loops, and microenvironmental factors, while also discussing the associated resistance patterns. Evaluating current therapeutic strategies targeting this pathway, the article highlights the hurdles encountered in drug development and clinical trials. Innovative approaches to overcome resistance, such as combination therapies and precision medicine, are critically analyzed, alongside discussions on emerging therapies like immunotherapy and molecularly targeted agents. Overall, this comprehensive review not only sheds light on the complexities of resistance in cancer but also provides a roadmap for advancing cancer treatment.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Parkman GL, Turapov T, Kircher DA, Burnett WJ, Stehn CM, O’Toole K, Culver KM, Chadwick AT, Elmer RC, Flaherty R, Stanley KA, Foth M, Lum DH, Judson-Torres RL, Friend JE, VanBrocklin MW, McMahon M, Holmen SL. Genetic Silencing of AKT Induces Melanoma Cell Death via mTOR Suppression. Mol Cancer Ther 2024; 23:301-315. [PMID: 37931033 PMCID: PMC10932877 DOI: 10.1158/1535-7163.mct-23-0474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Aberrant activation of the PI3K-AKT pathway is common in many cancers, including melanoma, and AKT1, 2 and 3 (AKT1-3) are bona fide oncoprotein kinases with well-validated downstream effectors. However, efforts to pharmacologically inhibit AKT have proven to be largely ineffective. In this study, we observed paradoxical effects following either pharmacologic or genetic inhibition of AKT1-3 in melanoma cells. Although pharmacological inhibition was without effect, genetic silencing of all three AKT paralogs significantly induced melanoma cell death through effects on mTOR. This phenotype was rescued by exogenous AKT1 expression in a kinase-dependent manner. Pharmacological inhibition of PI3K and mTOR with a novel dual inhibitor effectively suppressed melanoma cell proliferation in vitro and inhibited tumor growth in vivo. Furthermore, this single-agent-targeted therapy was well-tolerated in vivo and was effective against MAPK inhibitor-resistant patient-derived melanoma xenografts. These results suggest that inhibition of PI3K and mTOR with this novel dual inhibitor may represent a promising therapeutic strategy in this disease in both the first-line and MAPK inhibitor-resistant setting.
Collapse
Affiliation(s)
- Gennie L. Parkman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Tursun Turapov
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - David A. Kircher
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - William J. Burnett
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Christopher M. Stehn
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Kayla O’Toole
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Katie M. Culver
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Ashley T. Chadwick
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Riley C. Elmer
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Ryan Flaherty
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Karly A. Stanley
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Mona Foth
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - David H. Lum
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Robert L. Judson-Torres
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | | | - Matthew W. VanBrocklin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Martin McMahon
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Sheri L. Holmen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| |
Collapse
|
5
|
Gutiérrez M, Zamora I, Freeman MR, Encío IJ, Rotinen M. Actionable Driver Events in Small Cell Lung Cancer. Int J Mol Sci 2023; 25:105. [PMID: 38203275 PMCID: PMC10778712 DOI: 10.3390/ijms25010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Small cell lung cancer (SCLC) stands out as the most aggressive form of lung cancer, characterized by an extremely high proliferation rate and a very poor prognosis, with a 5-year survival rate that falls below 7%. Approximately two-thirds of patients receive their diagnosis when the disease has already reached a metastatic or extensive stage, leaving chemotherapy as the remaining first-line treatment option. Other than the recent advances in immunotherapy, which have shown moderate results, SCLC patients cannot yet benefit from any approved targeted therapy, meaning that this cancer remains treated as a uniform entity, disregarding intra- or inter-tumoral heterogeneity. Continuous efforts and technological improvements have enabled the identification of new potential targets that could be used to implement novel therapeutic strategies. In this review, we provide an overview of the most recent approaches for SCLC treatment, providing an extensive compilation of the targeted therapies that are currently under clinical evaluation and inhibitor molecules with promising results in vitro and in vivo.
Collapse
Affiliation(s)
- Mirian Gutiérrez
- Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.G.); (I.Z.)
| | - Irene Zamora
- Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.G.); (I.Z.)
| | - Michael R. Freeman
- Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ignacio J. Encío
- Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.G.); (I.Z.)
- IdiSNA, Navarre Institute for Health Research, 31006 Pamplona, Spain
| | - Mirja Rotinen
- Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.G.); (I.Z.)
- IdiSNA, Navarre Institute for Health Research, 31006 Pamplona, Spain
| |
Collapse
|
6
|
Krpina K, Vranić S, Tomić K, Samaržija M, Batičić L. Small Cell Lung Carcinoma: Current Diagnosis, Biomarkers, and Treatment Options with Future Perspectives. Biomedicines 2023; 11:1982. [PMID: 37509621 PMCID: PMC10377361 DOI: 10.3390/biomedicines11071982] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive malignancy characterized by rapid proliferation, early dissemination, acquired therapy resistance, and poor prognosis. Early diagnosis of SCLC is crucial since most patients present with advanced/metastatic disease, limiting the potential for curative treatment. While SCLC exhibits initial responsiveness to chemotherapy and radiotherapy, treatment resistance commonly emerges, leading to a five-year overall survival rate of up to 10%. New effective biomarkers, early detection, and advancements in therapeutic strategies are crucial for improving survival rates and reducing the impact of this devastating disease. This review aims to comprehensively summarize current knowledge on diagnostic options, well-known and emerging biomarkers, and SCLC treatment strategies and discuss future perspectives on this aggressive malignancy.
Collapse
Affiliation(s)
- Kristina Krpina
- Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Semir Vranić
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | - Krešimir Tomić
- Department of Oncology, University Clinical Hospital Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Miroslav Samaržija
- Clinic for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|