1
|
Zhou T, Boettger M, Knopp J, Lange M, Heep A, Chase JG. Model-based subcutaneous insulin for glycemic control of pre-term infants in the neonatal intensive care unit. Comput Biol Med 2023; 160:106808. [PMID: 37163965 DOI: 10.1016/j.compbiomed.2023.106808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/02/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Hyperglycaemia is a common problem in neonatal intensive care units (NICUs). Achieving good control can result in better outcomes for patients. However, good control is difficult, where poor control and resulting hypoglycaemia reduces outcomes and confounds results. Clinically validated models can provide good control, and subcutaneous insulin delivery can provide more options for insulin therapy for clinicians. However, this combination has only been significantly utilised in adult outpatient diabetes, but could hold benefit for treating NICU infants. This research combines a well-validated NICU metabolic model with subcutaneous insulin kinetics models to assess the feasibility of a model-based approach. Clinical data from 12 very/extremely pre-mature infants was collected for an average study duration of 10.1 days. Blood glucose, interstitial and plasma insulin, as well as subcutaneous and local insulin were modelled, and patient-specific insulin sensitivity profiles were identified for each patient. Modelling error was low, where the cohort median [IQR] mean percentage error was 0.8 [0.3 3.4] %. For external validation, insulin sensitivity was compared to previous NICU cohorts using the same metabolic model, where overall levels of insulin sensitivity were similar. Overall, the combined system model accurately captured observed glucose and insulin dynamics, showing the potential for a model-based approach to glycaemic control using subcutaneous insulin in this cohort. The results justify further model validation and clinical trial research to explore a model-based protocol.
Collapse
|
2
|
Yahia A, Szlávecz Á, Knopp JL, Norfiza Abdul Razak N, Abu Samah A, Shaw G, Chase JG, Benyo B. Estimating Enhanced Endogenous Glucose Production in Intensive Care Unit Patients with Severe Insulin Resistance. J Diabetes Sci Technol 2022; 16:1208-1219. [PMID: 34078114 PMCID: PMC9445352 DOI: 10.1177/19322968211018260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Critically ill ICU patients frequently experience acute insulin resistance and increased endogenous glucose production, manifesting as stress-induced hyperglycemia and hyperinsulinemia. STAR (Stochastic TARgeted) is a glycemic control protocol, which directly manages inter- and intra- patient variability using model-based insulin sensitivity (SI). The model behind STAR assumes a population constant for endogenous glucose production (EGP), which is not otherwise identifiable. OBJECTIVE This study analyses the effect of estimating EGP for ICU patients with very low SI (severe insulin resistance) and its impact on identified, model-based insulin sensitivity identification, modeling accuracy, and model-based glycemic clinical control. METHODS Using clinical data from 717 STAR patients in 3 independent cohorts (Hungary, New Zealand, and Malaysia), insulin sensitivity, time of insulin resistance, and EGP values are analyzed. A method is presented to estimate EGP in the presence of non-physiologically low SI. Performance is assessed via model accuracy. RESULTS Results show 22%-62% of patients experience 1+ episodes of severe insulin resistance, representing 0.87%-9.00% of hours. Episodes primarily occur in the first 24 h, matching clinical expectations. The Malaysian cohort is most affected. In this subset of hours, constant model-based EGP values can bias identified SI and increase blood glucose (BG) fitting error. Using the EGP estimation method presented in these constrained hours significantly reduced BG fitting errors. CONCLUSIONS Patients early in ICU stay may have significantly increased EGP. Increasing modeled EGP in model-based glycemic control can improve control accuracy in these hours. The results provide new insight into the frequency and level of significantly increased EGP in critical illness.
Collapse
Affiliation(s)
- Anane Yahia
- Department of Control Engineering and Information Technology, Budapest University of Technology and Economics, Budapest, Hungary
- Anane Yahia, Department of Control Engineering and Information Technology, Budapest University of Technology and Economics, 2. Magyar tudosok Blvd., Budapest, H-1117, Hungary.
| | - Ákos Szlávecz
- Department of Control Engineering and Information Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Jennifer L. Knopp
- Mechanical Engineering, Centre of Bio-Engineering, University of Canterbury, Christchurch, NZ
| | | | - Asma Abu Samah
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan Ikram-UNITEN, Kajang, Selangor, Malaysia
| | - Geoff Shaw
- Mechanical Engineering, Centre of Bio-Engineering, University of Canterbury, Christchurch, NZ
| | - J. Geoffrey Chase
- Mechanical Engineering, Centre of Bio-Engineering, University of Canterbury, Christchurch, NZ
| | - Balazs Benyo
- Department of Control Engineering and Information Technology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
3
|
Hagve M, Simbo SY, Ruebush LE, Engelen MPKJ, Gutierrez-Osuna R, Mortazavi BJ, Cote GL, Deutz NEP. Postprandial concentration of circulating branched chain amino acids are able to predict the carbohydrate content of the ingested mixed meal. Clin Nutr 2021; 40:5020-5029. [PMID: 34365036 DOI: 10.1016/j.clnu.2021.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/14/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND The amount of the macronutrients protein and carbohydrate (CHO) in a mixed meal is known to affect each other's digestion, absorption, and subsequent metabolism. While the effect of the amount of dietary protein and fat on the glycemic response is well studied, the ability of postprandial plasma amino acid patterns to predict the meal composition is unknown. OBJECTIVE To study the postprandial plasma amino acid patterns in relation to the protein, CHO, and fat content of different mixed meals and to investigate if these patterns can predict the macronutrient meal composition. DESIGN Ten older adults were given 9 meals with 3 different levels (low, medium, and high) of protein, CHO, and fat in different combinations, taking the medium content as that of a standardized western meal. We monitored the postprandial plasma response for amino acids, glucose, insulin, and triglycerides for 8 h and the areas under the curve (AUC) were subsequently calculated. Multiple regression analysis was performed to determine if amino acid patterns could predict the meal composition. RESULTS Increasing meal CHO content reduced the postprandial plasma response of several amino acids including all branched chain amino acids (BCAA) (leucine; q < 0.0001, isoleucine; q = 0.0035, valine; q = 0.0022). The plasma BCAA patterns after the meal significantly predicted the meal's CHO content (leucine; p < 0.0001, isoleucine; p = 0.0003, valine; p = 0.0008) along with aspartate (p < 0.0001), tyrosine (p < 0.0001), methionine (p = 0.0159) and phenylalanine (p = 0.0332). Plasma citrulline predicted best the fat content of the meal (p = 0.0024). CONCLUSIONS The postprandial plasma BCAA patterns are lower with increasing meal CHO content and are strong predictors of a mixed meal protein and CHO composition, as are plasma citrulline for the fat content. We hypothesize that postprandial plasma amino acid concentrations can be used to predict the meal's macronutrient composition.
Collapse
Affiliation(s)
- Martin Hagve
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, USA.
| | - Sunday Y Simbo
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, USA.
| | - Laura E Ruebush
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, USA.
| | - Marielle P K J Engelen
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, USA.
| | - Ricardo Gutierrez-Osuna
- Department of Computer Science & Engineering, Texas A&M University, College Station, TX, USA.
| | - Bobak J Mortazavi
- Department of Computer Science & Engineering, Texas A&M University, College Station, TX, USA.
| | - Gerard L Cote
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
4
|
The goldilocks problem: Nutrition and its impact on glycaemic control. Clin Nutr 2021; 40:3677-3687. [PMID: 34130014 DOI: 10.1016/j.clnu.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/25/2021] [Accepted: 05/01/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Glucose intolerance and insulin resistance manifest as hyperglycaemia in intensive care, which is associated with mortality and morbidities. Glycaemic control (GC) may improve outcomes, though safe and effective control has proven elusive. Nutritional glucose intake affects blood glucose (BG) outcomes, but few protocols actively control it. This study aims to examine BG outcomes in the context of nutritional management during GC. METHODS Retrospective cohort analysis of 5 glycaemic control cohorts spanning 4 years (n = 273) from Christchurch Hospital Intensive Care Unit (ICU). GC is delivered using a single model-based protocol (STAR), with default 4.4-8.0 mmol/L target range via. modulation of insulin and nutrition. Clinical adaptations/cohorts include variations on upper target (UL-9 with 9.0 mmol/L, reducing workload and nutrition responsiveness), and insulin only (IO) with clinically set nutrition at 3 glucose concentrations (71 g/L vs. 120 and 180 g/L in the TARGET study). RESULTS Percent of BG hours in the 4.4-8.0 mmol/L range highest under standard STAR conditions (78%), and was lower at 64% under UL-9, likely due to reduced time-responsiveness of nutrition-insulin changes. By comparison, IO only resulted in 64-69% BG in range across different nutrition types. A subset of patients receiving high glucose nutrition under IO were persistently hyperglycaemic, indicating patient-specific glucose tolerance. CONCLUSION STAR GC is most effective when nutrition and insulin are modulated together with timely responsiveness to persistent hyperglycaemia. Results imply modulation of nutrition alongside insulin improves GC, particularly in patients with persistent hyperglycaemia/low glucose tolerance.
Collapse
|
5
|
Parente JD, Chase JG, Moeller K, Shaw GM. High Inter-Patient Variability in Sepsis Evolution: A Hidden Markov Model Analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 201:105956. [PMID: 33561709 DOI: 10.1016/j.cmpb.2021.105956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Severe sepsis and septic shock are common in the intensive care unit (ICU) and contribute significantly to cost and mortality. Early treatment is critical but is confounded by the difficulty of real-time diagnosis. This study uses hidden Markov models (HMMs) to examine whether the time evolution of sepsis can add diagnostic accuracy or value using a proven set of bio-signals. METHODS Clinical data (N=36 patients; 6071 hours), including an hourly personalised insulin sensitivity metric. A two hidden state HMM is created to discriminate diagnosed cases (Severe Sepsis, Septic Shock) from controls (SIRS, Sepsis) states. Diagnostic performance is measured by ROC curves, likelihood ratios (LHRs), sensitivity/specificity, and diagnostic odds-ratios (DOR), for a best-case resubstitution estimate and a worst-case 80/20% repeated holdout analysis. RESULTS The HMM delivered near perfect results (95% Sensitivity; 96% Specificity) for best-case resubstitution estimates, but was comparatively poor (59% Sensitivity; 61% Specificity) for worst-case repeated holdout estimations. Adding the time evolution of sepsis did not add to the accuracy of diagnosis from using the signals alone without time history. CONCLUSIONS These potentially surprising results indicate significant inter-patient variability in the time evolution of sepsis, preventing effective diagnosis in the context of the bio-signals, data, and HMM topology used. Efforts for improved real-time, early sepsis diagnosis should concentrate on the robustness and efficacy of the bio-signals and data used, as well as the level of model complexity, to create more effective real-time classifiers.
Collapse
Affiliation(s)
| | | | | | - Geoffrey M Shaw
- Otago University School of Medicine; and ICU, Christchurch Hospital; Christchurch, New Zealand.
| |
Collapse
|
6
|
Uyttendaele V, Chase JG, Knopp JL, Gottlieb R, Shaw GM, Desaive T. Insulin sensitivity in critically ill patients: are women more insulin resistant? Ann Intensive Care 2021; 11:12. [PMID: 33475909 PMCID: PMC7818291 DOI: 10.1186/s13613-021-00807-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background Glycaemic control (GC) in intensive care unit is challenging due to significant inter- and intra-patient variability, leading to increased risk of hypoglycaemia. Recent work showed higher insulin resistance in female preterm neonates. This study aims to determine if there are differences in inter- and intra-patient metabolic variability between sexes in adults, to gain in insight into any differences in metabolic response to injury. Any significant difference would suggest GC and randomised trial design should consider sex differences to personalise care. Methods Insulin sensitivity (SI) levels and variability are identified from retrospective clinical data for men and women. Data are divided using 6-h blocks to capture metabolic evolution over time. In total, 91 male and 54 female patient GC episodes of minimum 24 h are analysed. Hypothesis testing is used to determine whether differences are significant (P < 0.05), and equivalence testing is used to assess whether these differences can be considered equivalent at a clinical level. Data are assessed for the raw cohort and in 100 Monte Carlo simulations analyses where the number of men and women are equal. Results Demographic data between females and males were all similar, including GC outcomes (safety from hypoglycaemia and high (> 50%) time in target band). Females had consistently significantly lower SI levels than males, and this difference was not clinically equivalent. However, metabolic variability between sexes was never significantly different and always clinically equivalent. Thus, inter-patient variability was significantly different between males and females, but intra-patient variability was equivalent. Conclusion Given equivalent intra-patient variability and significantly greater insulin resistance, females can receive the same benefit from safe, effective GC as males, but may require higher insulin doses to achieve the same glycaemia. Clinical trials should consider sex differences in protocol design and outcome analyses.
Collapse
Affiliation(s)
- Vincent Uyttendaele
- GIGA-In silico Medicine,, University of Liège, Allée du 6 Août 19, Bât. B5a, 4000, Liège, Belgium. .,Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
| | - J Geoffrey Chase
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Jennifer L Knopp
- GIGA-In silico Medicine,, University of Liège, Allée du 6 Août 19, Bât. B5a, 4000, Liège, Belgium
| | - Rebecca Gottlieb
- Medtronic Diabetes, 18000 Devonshire St, Northridge, CA, 91325, USA
| | - Geoffrey M Shaw
- Christchurch Hospital, Dept of Intensive Care, Christchurch, New Zealand and University of Otago, School of Medicine, Christchurch, New Zealand
| | - Thomas Desaive
- GIGA-In silico Medicine,, University of Liège, Allée du 6 Août 19, Bât. B5a, 4000, Liège, Belgium
| |
Collapse
|
7
|
Uyttendaele V, Chase JG, Knopp JL, Gottlieb R, Shaw GM, Desaive T. Insulin sensitivity in critically ill patients: are women more insulin resistant? Ann Intensive Care 2021. [PMID: 33475909 DOI: 10.1186/s13613-021-00807-7.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Glycaemic control (GC) in intensive care unit is challenging due to significant inter- and intra-patient variability, leading to increased risk of hypoglycaemia. Recent work showed higher insulin resistance in female preterm neonates. This study aims to determine if there are differences in inter- and intra-patient metabolic variability between sexes in adults, to gain in insight into any differences in metabolic response to injury. Any significant difference would suggest GC and randomised trial design should consider sex differences to personalise care. METHODS Insulin sensitivity (SI) levels and variability are identified from retrospective clinical data for men and women. Data are divided using 6-h blocks to capture metabolic evolution over time. In total, 91 male and 54 female patient GC episodes of minimum 24 h are analysed. Hypothesis testing is used to determine whether differences are significant (P < 0.05), and equivalence testing is used to assess whether these differences can be considered equivalent at a clinical level. Data are assessed for the raw cohort and in 100 Monte Carlo simulations analyses where the number of men and women are equal. RESULTS Demographic data between females and males were all similar, including GC outcomes (safety from hypoglycaemia and high (> 50%) time in target band). Females had consistently significantly lower SI levels than males, and this difference was not clinically equivalent. However, metabolic variability between sexes was never significantly different and always clinically equivalent. Thus, inter-patient variability was significantly different between males and females, but intra-patient variability was equivalent. CONCLUSION Given equivalent intra-patient variability and significantly greater insulin resistance, females can receive the same benefit from safe, effective GC as males, but may require higher insulin doses to achieve the same glycaemia. Clinical trials should consider sex differences in protocol design and outcome analyses.
Collapse
Affiliation(s)
- Vincent Uyttendaele
- GIGA-In silico Medicine,, University of Liège, Allée du 6 Août 19, Bât. B5a, 4000, Liège, Belgium. .,Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
| | - J Geoffrey Chase
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Jennifer L Knopp
- GIGA-In silico Medicine,, University of Liège, Allée du 6 Août 19, Bât. B5a, 4000, Liège, Belgium
| | - Rebecca Gottlieb
- Medtronic Diabetes, 18000 Devonshire St, Northridge, CA, 91325, USA
| | - Geoffrey M Shaw
- Christchurch Hospital, Dept of Intensive Care, Christchurch, New Zealand and University of Otago, School of Medicine, Christchurch, New Zealand
| | - Thomas Desaive
- GIGA-In silico Medicine,, University of Liège, Allée du 6 Août 19, Bât. B5a, 4000, Liège, Belgium
| |
Collapse
|
8
|
Parente JD, Chase JG, Moeller K, Shaw GM. Quantifying misclassification and bias errors due to hierarchical sepsis scores in real-time sepsis diagnosis. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Abdul Razak A, Abu-Samah A, Abdul Razak NN, Jamaludin U, Suhaimi F, Ralib A, Mat Nor MB, Pretty C, Knopp JL, Chase JG. Assessment of Glycemic Control Protocol (STAR) Through Compliance Analysis Amongst Malaysian ICU Patients. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2020; 13:139-149. [PMID: 32607009 PMCID: PMC7282801 DOI: 10.2147/mder.s231856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose This paper presents an assessment of an automated and personalized stochastic targeted (STAR) glycemic control protocol compliance in Malaysian intensive care unit (ICU) patients to ensure an optimized usage. Patients and Methods STAR proposes 1–3 hours treatment based on individual insulin sensitivity variation and history of blood glucose, insulin, and nutrition. A total of 136 patients recorded data from STAR pilot trial in Malaysia (2017–quarter of 2019*) were used in the study to identify the gap between chosen administered insulin and nutrition intervention as recommended by STAR, and the real intervention performed. Results The results show the percentage of insulin compliance increased from 2017 to first quarter of 2019* and fluctuated in feed administrations. Overall compliance amounted to 98.8% and 97.7% for administered insulin and feed, respectively. There was higher average of 17 blood glucose measurements per day than in other centres that have been using STAR, but longer intervals were selected when recommended. Control safety and performance were similar for all periods showing no obvious correlation to compliance. Conclusion The results indicate that STAR, an automated model-based protocol is positively accepted among the Malaysian ICU clinicians to automate glycemic control and the usage can be extended to other hospitals already. Performance could be improved with several propositions.
Collapse
Affiliation(s)
| | - Asma Abu-Samah
- Department of Electrical, Electronics and Systems, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | | | - Ummu Jamaludin
- Department of Mechanical Engineering, Universiti Malaysia Pahang, Kuantan, Malaysia
| | - Fatanah Suhaimi
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Azrina Ralib
- Department of Anesthesiology, International Islamic University Malaysia, Kuantan, Malaysia
| | - Mohd Basri Mat Nor
- Intensive Care Unit, International Islamic University Medical Centre, Kuantan, Malaysia
| | - Christopher Pretty
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Jennifer Laura Knopp
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - James Geoffrey Chase
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
10
|
Parente JD, Chase JG, Möller K, Shaw GM. Kernel density estimates for sepsis classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 188:105295. [PMID: 31918193 DOI: 10.1016/j.cmpb.2019.105295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Severe sepsis is a leading cause of intensive care unit (ICU) admission, length of stay, mortality, and cost. systemic inflammatory response syndrome (SIRS) and organ failure due to infection define it, but also make it hard to diagnose. Early diagnosis reduces morbidity, mortality and cost, and diagnosis is often significantly delayed due to a lack of effective biomarkers. This research employs kernel density estimation (KDE) methods fusing a personalized, model-based insulin sensitivity (SI) metric with standard bedside measures of: temperature, heart rate, respiratory rate, systolic and diastolic blood pressure, and SIRS, as these measures are available hourly or more frequently. METHODS Model-based SI is a derived metric, identified using clinical data and a clinically validated metabolic model. The KDE classifier discriminates severe sepsis and septic shock from moderate sepsis using accepted consensus sepsis scores. A best case in-sample estimate, a worst case independent cross validation estimate, and an accepted .632 bootstrap estimate are calculated to assess performance using multi-level likelihood ratios, and sensitivity and specificity. Performance is assessed against clinically and statistically defined thresholds denoted for the minimum acceptable level as: "high accuracy, often providing useful information, and clinical significance," and similar definitions for greater or lesser quality. RESULTS The .632 bootstrap estimate performs near clinically defined levels of high accuracy, often providing useful information, and clinical significance based on sensitivity, specificity, and multilevel likelihood ratios. CONCLUSION AND SIGNIFICANCE The classifier created and this overall approach is useful for clinical decision making in diagnosing severe sepsis and septic shock in real time, for both case and control hours. However, improvements could be made with larger clinical data sets.
Collapse
Affiliation(s)
- Jacquelyn Dawn Parente
- Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany.
| | - J Geoffrey Chase
- Centre of Bioengineering, University of Canterbury, Christchurch, New Zealand.
| | - Knut Möller
- Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany.
| | - Geoffrey M Shaw
- Intensive Care Unit, Canterbury District Health Board, Christchurch, New Zealand.
| |
Collapse
|
11
|
Uyttendaele V, Knopp JL, Shaw GM, Desaive T, Chase JG. Risk and reward: extending stochastic glycaemic control intervals to reduce workload. Biomed Eng Online 2020; 19:26. [PMID: 32349750 PMCID: PMC7191799 DOI: 10.1186/s12938-020-00771-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/17/2020] [Indexed: 01/08/2023] Open
Abstract
Background STAR is a model-based, personalised, risk-based dosing approach for glycaemic control (GC) in critically ill patients. STAR provides safe, effective control to nearly all patients, using 1–3 hourly measurement and intervention intervals. However, the average 11–12 measurements per day required can be a clinical burden in many intensive care units. This study aims to significantly reduce workload by extending STAR 1–3 hourly intervals to 1 to 4-, 5-, and 6-hourly intervals, and evaluate the impact of these longer intervals on GC safety and efficacy, using validated in silico virtual patients and trials methods. A Standard STAR approach was used which allowed more hyperglycaemia over extended intervals, and a STAR Upper Limit Controlled approach limited nutrition to mitigate hyperglycaemia over longer intervention intervals. Results Extending STAR from 1–3 hourly to 1–6 hourly provided high safety and efficacy for nearly all patients in both approaches. For STAR Standard, virtual trial results showed lower % blood glucose (BG) in the safe 4.4–8.0 mmol/L target band (from 83 to 80%) as treatment intervals increased. Longer intervals resulted in increased risks of hyper- (15% to 18% BG > 8.0 mmol/L) and hypo- (2.1% to 2.8% of patients with min. BG < 2.2 mmol/L) glycaemia. These results were achieved with slightly reduced insulin (3.2 [2.0 5.0] to 2.5 [1.5 3.0] U/h) and nutrition (100 [85 100] to 90 [75 100] % goal feed) rates, but most importantly, with significantly reduced workload (12 to 8 measurements per day). The STAR Upper Limit Controlled approach mitigated hyperglycaemia and had lower insulin and significantly lower nutrition administration rates. Conclusions The modest increased risk of hyper- and hypo-glycaemia, and the reduction in nutrition delivery associated with longer treatment intervals represent a significant risk and reward trade-off in GC. However, STAR still provided highly safe, effective control for nearly all patients regardless of treatment intervals and approach, showing this unique risk-based dosing approach, modulating both insulin and nutrition, to be robust in its design. Clinical pilot trials using STAR with different measurement timeframes should be undertaken to confirm these results clinically.
Collapse
Affiliation(s)
- Vincent Uyttendaele
- GIGA-In Silico Medicine, University of Liège, Allée Du 6 Août 19, Bât. B5a, 4000, Liège, Belgium. .,Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
| | - Jennifer L Knopp
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Geoffrey M Shaw
- Dept of Intensive Care, Christchurch Hospital, Christchurch, New Zealand.,School of Medicine, University of Otago, Christchurch, New Zealand
| | - Thomas Desaive
- GIGA-In Silico Medicine, University of Liège, Allée Du 6 Août 19, Bât. B5a, 4000, Liège, Belgium
| | - J Geoffrey Chase
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| |
Collapse
|
12
|
Uyttendaele V, Knopp JL, Pirotte M, Morimont P, Lambermont B, Shaw GM, Desaive T, Chase JG. STAR-Liège Clinical Trial Interim Results: Safe and Effective Glycemic Control for All. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:277-280. [PMID: 31945895 DOI: 10.1109/embc.2019.8856303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
While the benefits of glycemic control for critically ill patients are increasingly demonstrated, the ability to deliver safe, effective control to intermediate target ranges is widely debated due to the increased risk of hypoglycemia. This study analyzes interim clinical trial results of the fully computerized model-based Stochastic TARgeted (STAR) glycemic control framework at the University Hospital of Liège, Belgium. Patients with dysglycemia were randomly assigned to the full version of STAR, modulating both insulin and nutrition inputs, or STAR-IO, an insulin only version of STAR. Both arms target the normoglycemic 80-145 mg/dL (4.4-8.0 mmol/L) band. Results are further compared to retrospective data from 20 patients under the standard unit protocol targeting a higher 100-150 mg/dL (5.6-8.3 mmol/L) band. Much higher time in target band is provided under the full version of STAR, with similar safety and significantly lower incidence of mild hyperglycemia (blood glucose > 145 mg/dL or 8.0 mmol/L) and severe hyperglycemia (blood glucose > 180 mg/dL or 10.0 mmol/L). As a result, lower median blood glucose levels are safely and consistently achieved with lower glycemic variability, suggesting STAR's potential to improve clinical outcomes. These interim results show the possibility to achieve safe, effective control for all patients using STAR, and suggest glycemic control to lower targets could be beneficial.
Collapse
|
13
|
3D kernel-density stochastic model for more personalized glycaemic control: development and in-silico validation. Biomed Eng Online 2019; 18:102. [PMID: 31640720 PMCID: PMC6805453 DOI: 10.1186/s12938-019-0720-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 10/09/2019] [Indexed: 01/08/2023] Open
Abstract
Background The challenges of glycaemic control in critically ill patients have been debated for 20 years. While glycaemic control shows benefits inter- and intra-patient metabolic variability results in increased hypoglycaemia and glycaemic variability, both increasing morbidity and mortality. Hence, current recommendations for glycaemic control target higher glycaemic ranges, guided by the fear of harm. Lately, studies have proven the ability to provide safe, effective control for lower, normoglycaemic, ranges, using model-based computerised methods. Such methods usually identify patient-specific physiological parameters to personalize titration of insulin and/or nutrition. The Stochastic-Targeted (STAR) glycaemic control framework uses patient-specific insulin sensitivity and a stochastic model of its future variability to directly account for both inter- and intra-patient variability in a risk-based insulin-dosing approach. Results In this study, a more personalized and specific 3D version of the stochastic model used in STAR is compared to the current 2D stochastic model, both built using kernel-density estimation methods. Fivefold cross validation on 681 retrospective patient glycaemic control episodes, totalling over 65,000 h of control, is used to determine whether the 3D model better captures metabolic variability, and the potential gain in glycaemic outcome is assessed using validated virtual trials. Results show that the 3D stochastic model has similar forward predictive power, but provides significantly tighter, more patient-specific, prediction ranges, showing the 2D model over-conservative > 70% of the time. Virtual trial results show that overall glycaemic safety and performance are similar, but the 3D stochastic model reduced median blood glucose levels (6.3 [5.7, 7.0] vs. 6.2 [5.6, 6.9]) with a higher 61% vs. 56% of blood glucose within the 4.4–6.5 mmol/L range. Conclusions This improved performance is achieved with higher insulin rates and higher carbohydrate intake, but no loss in safety from hypoglycaemia. Thus, the 3D stochastic model developed better characterises patient-specific future insulin sensitivity dynamics, resulting in improved simulated glycaemic outcomes and a greater level of personalization in control. The results justify inclusion into ongoing clinical use of STAR.
Collapse
|
14
|
Stewart KW, Chase JG, Pretty CG, Shaw GM. Nutrition delivery, workload and performance in a model-based ICU glycaemic control system. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 166:9-18. [PMID: 30415721 DOI: 10.1016/j.cmpb.2018.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 08/20/2018] [Accepted: 09/10/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND OBJECTIVE Hyperglycaemia is commonplace in the adult intensive care unit (ICU), and has been associated with increased morbidity and mortality. Effective glycaemic control (GC) can reduce morbidity and mortality, but has proven difficult. STAR is a model-based GC protocol that uniquely maintains normoglycaemia by changing both insulin and nutrition interventions, and has been proven effective in controlling blood glucose (BG) in the ICU. However, most ICU GC protocols only change insulin interventions, making the variable nutrition aspect of STAR less clinically desirable. This paper compares the performance of STAR modulating only insulin, with three simpler alternative nutrition protocols in clinically evaluated virtual trials. METHODS Alternative nutrition protocols are fixed nutrition rate (100% caloric goal), CB (Cahill et al. best) stepped nutrition rate (60%, 80% and 100% caloric goal for the first 3 days of GC, and 100% thereafter) and SLQ (STAR lower quartile) stepped nutrition rate (65%, 75% and 85% caloric goal for the first 3 days of GC, and 85% thereafter). Each nutrition protocol is simulated with the STAR insulin protocol on a 221 patient virtual cohort, and GC performance, safety and total intervention workload are assessed. RESULTS All alternative nutrition protocols considerably reduced total intervention workload (14.6-19.8%) due to reduced numbers of nutrition changes. However, only the stepped nutrition protocols achieved similar GC performance to the current variable nutrition protocol. Of the two stepped nutrition protocols, the SLQ nutrition protocol also improved GC safety, almost halving the number of severe hypoglycaemic cases (5 vs. 9, P = 0.42). CONCLUSIONS Overall, the SLQ nutrition protocol was the best alternative to the current variable nutrition protocol, but either stepped nutrition protocol could be adapted by STAR to reduce workload and make it more clinically acceptable, while maintaining its proven performance and safety.
Collapse
Affiliation(s)
- Kent W Stewart
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand.
| | - J Geoffrey Chase
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand.
| | - Christopher G Pretty
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand.
| | - Geoffrey M Shaw
- Department of Intensive Care, Christchurch Hospital, Christchurch, New Zealand.
| |
Collapse
|
15
|
Jamaludin UK, M Suhaimi F, Abdul Razak NN, Md Ralib A, Mat Nor MB, Pretty CG, Humaidi L. Performance of Stochastic Targeted Blood Glucose Control Protocol by virtual trials in the Malaysian intensive care unit. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 162:149-155. [PMID: 29903481 DOI: 10.1016/j.cmpb.2018.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Blood glucose variability is common in healthcare and it is not related or influenced by diabetes mellitus. To minimise the risk of high blood glucose in critically ill patients, Stochastic Targeted Blood Glucose Control Protocol is used in intensive care unit at hospitals worldwide. Thus, this study focuses on the performance of stochastic modelling protocol in comparison to the current blood glucose management protocols in the Malaysian intensive care unit. Also, this study is to assess the effectiveness of Stochastic Targeted Blood Glucose Control Protocol when it is applied to a cohort of diabetic patients. METHODS Retrospective data from 210 patients were obtained from a general hospital in Malaysia from May 2014 until June 2015, where 123 patients were having comorbid diabetes mellitus. The comparison of blood glucose control protocol performance between both protocol simulations was conducted through blood glucose fitted with physiological modelling on top of virtual trial simulations, mean calculation of simulation error and several graphical comparisons using stochastic modelling. RESULTS Stochastic Targeted Blood Glucose Control Protocol reduces hyperglycaemia by 16% in diabetic and 9% in nondiabetic cohorts. The protocol helps to control blood glucose level in the targeted range of 4.0-10.0 mmol/L for 71.8% in diabetic and 82.7% in nondiabetic cohorts, besides minimising the treatment hour up to 71 h for 123 diabetic patients and 39 h for 87 nondiabetic patients. CONCLUSION It is concluded that Stochastic Targeted Blood Glucose Control Protocol is good in reducing hyperglycaemia as compared to the current blood glucose management protocol in the Malaysian intensive care unit. Hence, the current Malaysian intensive care unit protocols need to be modified to enhance their performance, especially in the integration of insulin and nutrition intervention in decreasing the hyperglycaemia incidences. Improvement in Stochastic Targeted Blood Glucose Control Protocol in terms of uen model is also a must to adapt with the diabetic cohort.
Collapse
Affiliation(s)
- Ummu K Jamaludin
- Universiti Malaysia Pahang, Faculty of Mechanical Engineering, 26600 Pekan, Pahang, Malaysia.
| | - Fatanah M Suhaimi
- Universiti Sains Malaysia, Advanced Medical and Dental Institute, 13200 Bertam, Kepala Batas, Penang, Malaysia
| | - Normy Norfiza Abdul Razak
- Universiti Tenaga Nasional, College of Engineering, Putrajaya Campus, 43000 Kajang, Selangor, Malaysia
| | - Azrina Md Ralib
- International Islamic University Malaysia, Kuliyyah of Medicine, 25200 Kuantan, Pahang, Malaysia
| | - Mohd Basri Mat Nor
- International Islamic University Malaysia, Kuliyyah of Medicine, 25200 Kuantan, Pahang, Malaysia
| | - Christopher G Pretty
- University of Canterbury, Department of Mechanical Engineering, Private Bag 4800, Christchurch 8041, New Zealand
| | - Luqman Humaidi
- Universiti Malaysia Pahang, Faculty of Mechanical Engineering, 26600 Pekan, Pahang, Malaysia
| |
Collapse
|