1
|
Akyol O, Demirgan S, Şengelen A, Güneyli HC, Oran DS, Yıldırım F, Haktanır D, Sevdi MS, Erkalp K, Selcan A. Mild Hypothermia via External Cooling Improves Lung Function and Alleviates Pulmonary Inflammatory Response and Damage in Two-Hit Rabbit Model of Acute Lung Injury. J INVEST SURG 2022; 35:1472-1483. [PMID: 35435080 DOI: 10.1080/08941939.2022.2064010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/26/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Targeted temperature management (TTM) with therapeutic hypothermia (TH) has an organ-protective effect by mainly reducing inflammatory response. Here, our objective was to determine, for the first time, whether mild TH with external cooling, a simple and inexpensive method, could be safe or even beneficial in two-hit rabbit model of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). METHODS Twenty-two New Zealand rabbits (6-month-old) were randomly divided into healthy control (HC) with conventional ventilation, but without injury, model group (ALI), and hypothermia group with external cooling (ALI-HT). After induction of ALI/ARDS through mild lung-lavages followed by non-protective ventilation, mild hypothermia was started in ALI-HT group (body temperature of 33-34 °C). All rabbits were conventionally ventilated for an additional 6-h by recording respiratory parameters. Finally, lung histopathology and inflammatory response were evaluated. RESULTS Hypothermia was associated with higher oxygen saturation, resulting in partial improvement in the P/F ratio (PaO2/FiO2), oxygenation index, mean airway pressure, and PaCO2, but did not affect lactate levels. The ALI-HT group had lower histopathological injury scores (hyperemia, edema, emphysema, atelectasis, and PMN infiltration). Further, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6 and -8 levels in lung tissue and serum samples markedly reduced due to hypothermia. CONCLUSION Mild TH with external cooling reduced lung inflammation and damage, whereas it resulted in partial improvement in gas exchanges. Our findings highlight that body temperature control may be a potentially supportive therapeutic option for regulating cytokine production and respiratory parameters in ALI/ARDS.
Collapse
Affiliation(s)
- Onat Akyol
- T.C. Health Ministry, University of Health Sciences, Bağcılar Training and Research Hospital, Anesthesiology and Reanimation Clinic, Istanbul, Turkey
| | - Serdar Demirgan
- T.C. Health Ministry, University of Health Sciences, Bağcılar Training and Research Hospital, Anesthesiology and Reanimation Clinic, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey
| | - Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey
| | - Hasan Cem Güneyli
- T.C. Health Ministry, University of Health Sciences, Bağcılar Training and Research Hospital, Anesthesiology and Reanimation Clinic, Istanbul, Turkey
| | - Duygu Sultan Oran
- T.C. Health Ministry, University of Health Sciences, Bağcılar Training and Research Hospital, Experimental Research and Skills Development Center, Istanbul, Turkey
| | - Funda Yıldırım
- Department of Pathology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Damla Haktanır
- Department of Pathology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Mehmet Salih Sevdi
- T.C. Health Ministry, University of Health Sciences, Bağcılar Training and Research Hospital, Anesthesiology and Reanimation Clinic, Istanbul, Turkey
| | - Kerem Erkalp
- Department of Anesthesiology and Reanimation, Istanbul University-Cerrahpaşa, Institute of Cardiology, Istanbul, Turkey
| | - Ayşin Selcan
- T.C. Health Ministry, University of Health Sciences, Bağcılar Training and Research Hospital, Anesthesiology and Reanimation Clinic, Istanbul, Turkey
| |
Collapse
|
2
|
Bauer K, Janke T, Schwarze R. Oxygen transport during liquid ventilation: an in vitro study. Sci Rep 2022; 12:1244. [PMID: 35075158 PMCID: PMC8786849 DOI: 10.1038/s41598-022-05105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 01/06/2022] [Indexed: 11/10/2022] Open
Abstract
An in vitro experiment on the dissolved oxygen transport during liquid ventilation by means of measuring global oxygen concentration fields is presented within this work. We consider the flow in an idealized four generation model of the human airways in a range of peak Reynolds numbers of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Re = 500$$\end{document}Re=500–3400 and Womersley numbers of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha = 3$$\end{document}α=3–5. Fluorescence quenching measurements were employed in order to visualize and quantify the oxygen distribution with high temporal and spatial resolution during the breathing cycle. Measurements with varying tidal volumes and oscillating frequencies reveal short living times of characteristic concentration patterns for all parameter variations. Similarities to typical velocity patterns in similar lung models persist only in early phases during each cycle. Concentration gradients are quickly homogenized by secondary motions within the lung model. A strong dependency of peak oxygen concentration on tidal volume is observed with considerably higher relative concentrations for higher tidal volumes.
Collapse
Affiliation(s)
- Katrin Bauer
- Institute of Mechanics and Fluid Dynamics, TU Bergakademie Freiberg, Freiberg, Germany.
| | | | - Rüdiger Schwarze
- Institute of Mechanics and Fluid Dynamics, TU Bergakademie Freiberg, Freiberg, Germany
| |
Collapse
|
3
|
Wang X, Liu F, Xu M, Wu L. Penehyclidine hydrochloride alleviates lipopolysaccharide‑induced acute respiratory distress syndrome in cells via regulating autophagy‑related pathway. Mol Med Rep 2020; 23:100. [PMID: 33300058 PMCID: PMC7723159 DOI: 10.3892/mmr.2020.11739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
Acute progressive hypoxic respiratory failure caused by various predisposing factors is known as acute respiratory distress syndrome (ARDS). Although penehyclidine hydrochloride (PHC), an anticholinergic drug, is widely applied in clinical practice, the specific mechanisms underlying PHC in the treatment of ARDS are not completely understood. In the present study, BEAS-2B cells were treated with 10 ng/ml lipopolysaccharide (LPS) to establish an ARDS cell model and a rat model of acute lung injury (ALI). The influences of PHC and/or autophagy inhibitor (3-methyladenine (3-MA)) on the morphology, autophagy, proliferation and apoptosis of cells and tissues were evaluated using hematoxylin and eosin staining, Cell Counting Kit-8 assays, Hoechst staining, TUNEL staining, flow cytometry, immunofluorescence assays, ELISAs and scanning electron microscopy. The expression levels of apoptosis- and autophagy-related proteins were measured via western blotting. The results indicated that PHC enhanced proliferation and autophagy, and decreased apoptosis and the inflammatory response in LPS-induced BEAS-2B cells and ALI model rats. In addition, 3-MA reversed the effects of PHC on proliferation, inflammation, apoptosis and autophagy in LPS-induced BEAS-2B cells. Therefore, the present study suggested that PHC demonstrated a protective effect in LPS-induced ARDS by regulating an autophagy-related pathway.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Department of Pediatrics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Fen Liu
- Department of Pediatrics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Min Xu
- Department of Pediatrics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Liangxia Wu
- Department of Pediatrics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
4
|
Miao J, Xie H, Zhang Y, Guo X, Cui M. Continuous positive pressure ventilation combined with pulmonary surfactant in the treatment of neonatal respiratory distress syndrome. Pak J Med Sci 2020; 36:647-651. [PMID: 32494249 PMCID: PMC7260922 DOI: 10.12669/pjms.36.4.1963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To analyze the clinical effect of nasal continuous positive airway pressure (CPAP) combined with pulmonary surfactant in the treatment of neonatal respiratory distress syndrome (NRDS). METHODS Eighty-two NRDS patients who received treatment from August 2017 to June 2019 in our hospital were selected and divided into a control group and an observation group using random number table, 41 in each group. The control group was treated with CPAP, and the observation group was treated with pulmonary surfactant injection besides CPAP. The therapeutic effect, blood gas index, mechanical ventilation parameters and occurrence of complications were compared between the two groups. RESULTS The total response rate of the observation group was 90.24%, which was significantly higher than 70.73% of the control group, and the difference had statistical significance (P<0.05). After treatment, the improvement of blood gas indexes of the observation group was better than that of the control group. The hospitalization time and duration of oxygen treatment of the observation group were shorter than those of the control group, and the hospitalization cost was higher than the control group (P<0.05). The difference of incidence of complications between the two groups was statistically significant (P<0.05). CONCLUSION Endotracheal injection of pulmonary surfactant combined with CPAP in the treatment of NRDS can enhance the efficacy, promote the recovery of blood gas index, and reduce the parameters of mechanical ventilation and the incidence of complications, which is conducive to improving the respiratory function of the newborn. The therapy is worth application in the treatment of NRDS patients.
Collapse
Affiliation(s)
- Jing Miao
- Jing Miao, Department of Pediatrics, Binzhou People’s Hospital, Shandong, 256610, China
| | - Haitao Xie
- Haitao Xie, Department of Pediatrics, Binzhou People’s Hospital, Shandong, 256610, China
| | - Yanping Zhang
- Yanping Zhang, Department of Pediatrics, Binzhou People’s Hospital, Shandong, 256610, China
| | - Xiaohui Guo
- Xiaohui Guo, Department of Pediatrics, Binzhou People’s Hospital, Shandong, 256610, China
| | - Min Cui
- Min Cui, Department of Pediatrics, Binzhou People’s Hospital, Shandong, 256610, China
| |
Collapse
|
5
|
Xiao Q, Zhang S, Yang C, Du R, Zhao J, Li J, Xu Y, Qin Y, Gao Y, Huang W. Ginsenoside Rg1 Ameliorates Palmitic Acid-Induced Hepatic Steatosis and Inflammation in HepG2 Cells via the AMPK/NF- κB Pathway. Int J Endocrinol 2019; 2019:7514802. [PMID: 31467529 PMCID: PMC6699274 DOI: 10.1155/2019/7514802] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/16/2019] [Accepted: 05/05/2019] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the common diseases in the world, and it can progress from simple lipid accumulation to sustained inflammation. The present study was designed to investigate the effects and underlying mechanisms of ginsenoside Rg1 (G-Rg1) treatment on NAFLD in vitro. HepG2 cells were treated with palmitic acid (PA) to induce steatosis and inflammation and then successively incubated with G-Rg1. Lipids accumulation was analyzed by Oil Red O staining and intracellular triglyceride (TG) quantification. Inflammatory conditions were examined by quantifying the levels of cell supernatant alanine transaminase/aspartate aminotransferase (ALT/AST) and secretory proinflammatory cytokines, including IL-1β, IL-6, and TNF-α in the cell supernatants. Quantitative RT-PCR and western blotting were used to measure the expressions of genes and proteins associated with lipogenic synthesis and inflammation, including AMP-activated protein kinase (AMPK) and nuclear factor-kappa B (NF-κB) pathways. HepG2 cells were pretreated with an AMPK inhibitor; then, Oil Red O staining and TG quantification were performed to study the lipid deposition. Phospho-AMPK (Thr172) (p-AMPK) and phospho-acetyl-CoA carboxylase (Ser79) (p-ACCα) were quantified by immunoblotting. Immunofluorescence was performed to demonstrate the nuclear translocation of NF-κB P65. The present study showed that PA markedly increased the intracellular lipid droplets accumulation and TG levels, but decreased AMPK phosphorylation and the expressions of its downstream lipogenic genes. However, G-Rg1 alleviated hepatic steatosis and reduced the intracellular TG content; these changes were accompanied by the activation of the AMPK pathway. In addition, blocking AMPK by using the AMPK inhibitor markedly abolished the G-Rg1-mediated protection against PA-induced lipid deposition in HepG2 cells. Furthermore, G-Rg1 reduced the ALT/AST levels and proinflammatory cytokines release, which were all enhanced by PA. These effects were correlated with the inactivation of the NF-κB pathway and translocation of P65 from the cytoplasm to the nucleus. Overall, these results suggest that G-Rg1 effectively ameliorates hepatic steatosis and inflammation, which might be associated with the AMPK/NF-κB pathway.
Collapse
Affiliation(s)
- Qing Xiao
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shujun Zhang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Cheng Yang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruoyang Du
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinqiu Zhao
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiajun Li
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yashu Xu
- Department of General Medicine, People's Hospital of Chongqing Bishan District, Chongqing, China
| | - Yuanyuan Qin
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Yue Gao
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxiang Huang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|