1
|
Li Y, Wang X, Huang M, Wang X, Li C, Li S, Tang Y, Yu S, Wang Y, Song W, Wu W, Liu Y, Chen YG. BMP suppresses Wnt signaling via the Bcl11b-regulated NuRD complex to maintain intestinal stem cells. EMBO J 2024; 43:6032-6051. [PMID: 39433900 PMCID: PMC11612440 DOI: 10.1038/s44318-024-00276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
Lgr5+ intestinal stem cells (ISCs) are crucial for the intestinal epithelium renewal and regeneration after injury. However, the mechanism underlying the interplay between Wnt and BMP signaling in this process is not fully understood. Here we report that Bcl11b, which is downregulated by BMP signaling, enhances Wnt signaling to maintain Lgr5+ ISCs and thus promotes the regeneration of the intestinal epithelium upon injury. Loss of Bcl11b function leads to a significant decrease of Lgr5+ ISCs in both intestinal crypts and cultured organoids. Mechanistically, BMP suppresses the expression of Bcl11b, which can positively regulate Wnt target genes by inhibiting the function of the Nucleosome Remodeling and Deacetylase (NuRD) complex and facilitating the β-catenin-TCF4 interaction. Bcl11b can also promote intestinal epithelium repair after injuries elicited by both irradiation and DSS-induced inflammation. Furthermore, Bcl11b deletion prevents proliferation and tumorigenesis of colorectal cancer cells. Together, our findings suggest that BMP suppresses Wnt signaling via Bcl11b regulation, thus balancing homeostasis and regeneration in the intestinal epithelium.
Collapse
Affiliation(s)
- Yehua Li
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaodan Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Meimei Huang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xu Wang
- Guangzhou National Laboratory, Guangzhou, 510700, China
| | - Chunlin Li
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Siqi Li
- Guangzhou National Laboratory, Guangzhou, 510700, China
| | - Yuhui Tang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shicheng Yu
- Guangzhou National Laboratory, Guangzhou, 510700, China
| | - Yalong Wang
- Guangzhou National Laboratory, Guangzhou, 510700, China
| | - Wanglu Song
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Wu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Guangzhou National Laboratory, Guangzhou, 510700, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
2
|
Lou R, Song W, Yu S, Wang X, Liu Y, Chen YG, Wang Y. Identification of feature genes in intestinal epithelial cell types. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:24. [PMID: 39542983 PMCID: PMC11564585 DOI: 10.1186/s13619-024-00208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
The intestine, is responsible for food digestion, nutrient absorption, endocrine secretion, food residue excretion, and immune defense. These function performances are based on the intricate composition of intestinal epithelial cells, encompassing differentiated mature cells, rapidly proliferative cells, and intestinal stem cells. Although the characteristics of these cell types are well-documented, in-depth exploration of their representative markers and transcription factors is critical for comprehensive cell fate trajectory analysis. Here, we unveiled the feature genes in different cell types of the human and mouse gut through single-cell RNA sequencing analysis. Further, the locations of some specific transcription factors and membrane proteins were determined by immunofluorescence staining, and their role in regulating the proliferation and differentiation of intestinal epithelial cells were explored by CRISPR/Cas9 knockout. Therefore, this study not only reports new markers for various intestinal epithelial cell types but also elucidates the involvement of relevant genes in the determination of epithelial cell fate and maintenance of stem cell homeostasis, which facilitates the tracing and functional elucidation of intestinal epithelial cells.
Collapse
Affiliation(s)
- Ruoyu Lou
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wanlu Song
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shicheng Yu
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Xiaodan Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Guangzhou National Laboratory, Guangzhou, 510005, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Yalong Wang
- Guangzhou National Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
3
|
Huang M, Wang X, Zhang M, Liu Y, Chen YG. METTL3 restricts RIPK1-dependent cell death via the ATF3-cFLIP axis in the intestinal epithelium. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:14. [PMID: 39093347 PMCID: PMC11297012 DOI: 10.1186/s13619-024-00197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Intestinal epithelial cells (IECs) are pivotal for maintaining intestinal homeostasis through self-renewal, proliferation, differentiation, and regulated cell death. While apoptosis and necroptosis are recognized as distinct pathways, their intricate interplay remains elusive. In this study, we report that Mettl3-mediated m6A modification maintains intestinal homeostasis by impeding epithelial cell death. Mettl3 knockout induces both apoptosis and necroptosis in IECs. Targeting different modes of cell death with specific inhibitors unveils that RIPK1 kinase activity is critical for the cell death triggered by Mettl3 knockout. Mechanistically, this occurs via the m6A-mediated transcriptional regulation of Atf3, a transcription factor that directly binds to Cflar, the gene encoding the anti-cell death protein cFLIP. cFLIP inhibits RIPK1 activity, thereby suppressing downstream apoptotic and necroptotic signaling. Together, these findings delineate the essential role of the METTL3-ATF3-cFLIP axis in homeostatic regulation of the intestinal epithelium by blocking RIPK1 activity.
Collapse
Affiliation(s)
- Meimei Huang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Guangzhou National Laboratory, Guangzhou, 510700, China
| | - Xiaodan Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Mengxian Zhang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- Guangzhou National Laboratory, Guangzhou, 510700, China.
| |
Collapse
|
4
|
Wang Y, Tan R, Chen YG. Organoid Culture of Different Intestinal Segments from Human and Mouse. Methods Mol Biol 2024. [PMID: 38647862 DOI: 10.1007/7651_2024_542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The intestine comprises distinct segments, each characterized by unique cell populations and functions. Intestinal organoids faithfully replicate the cellular composition and functions of the intestine. Over the past decade, the organoid model has garnered considerable attention for its application in investigation of organ development, renewal and functional performance. While the organoid culture systems for mouse small intestine and human large intestine have widely adopted, a comparison summary for different segments of the human or mouse intestine is lacking. In this study, we present a systematically detailed culture methodology for intestinal organoids, encompassing both the small intestine and the large intestine from humans or mice. This method provides a robust in vitro tool for intestinal research, and expands the possible clinical application of organoids.
Collapse
Affiliation(s)
- Yalong Wang
- Guangzhou National Laboratory, Guangzhou, China
| | - Ronghui Tan
- Guangzhou National Laboratory, Guangzhou, China
| | - Ye-Guang Chen
- Guangzhou National Laboratory, Guangzhou, China.
- The State Key Laboratory of Membrane Biology Tsinghua-Peking Center for Life Sciences School of Life Sciences, Tsinghua University, Beijing, China.
- Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
5
|
Wang Y, Huang M, Mu X, Song W, Guo Q, Zhang M, Liu Y, Chen YG, Ge L. TMED10-mediated unconventional secretion of IL-33 regulates intestinal epithelium differentiation and homeostasis. Cell Res 2024; 34:258-261. [PMID: 38185700 PMCID: PMC10907340 DOI: 10.1038/s41422-023-00891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/13/2023] [Indexed: 01/09/2024] Open
Affiliation(s)
- Yang Wang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Meimei Huang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiangyue Mu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wanlu Song
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qing Guo
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Min Zhang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yuan Liu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Ye-Guang Chen
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, China.
- School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
6
|
Chen C, Beloqui A, Xu Y. Oral nanomedicine biointeractions in the gastrointestinal tract in health and disease. Adv Drug Deliv Rev 2023; 203:115117. [PMID: 37898337 DOI: 10.1016/j.addr.2023.115117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Oral administration is the preferred route of administration based on the convenience for and compliance of the patient. Oral nanomedicines have been developed to overcome the limitations of free drugs and overcome gastrointestinal (GI) barriers, which are heterogeneous across healthy and diseased populations. This review aims to provide a comprehensive overview and comparison of the oral nanomedicine biointeractions in the gastrointestinal tract (GIT) in health and disease (GI and extra-GI diseases) and highlight emerging strategies that exploit these differences for oral nanomedicine-based treatment. We introduce the key GI barriers related to oral delivery and summarize their pathological changes in various diseases. We discuss nanomedicine biointeractions in the GIT in health by describing the general biointeractions based on the type of oral nanomedicine and advanced biointeractions facilitated by advanced strategies applied in this field. We then discuss nanomedicine biointeractions in different diseases and explore how pathological characteristics have been harnessed to advance the development of oral nanomedicine.
Collapse
Affiliation(s)
- Cheng Chen
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium; WEL Research Institute, avenue Pasteur, 6, 1300 Wavre, Belgium.
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Wang Y, Lou R, Zhang Z, Xiao C, Yu S, Wei S, Liu Y, Fu W, Li B, Chen YG. Stromal BMP signaling regulates mucin production in the large intestine via interleukin-1/17. SCIENCE ADVANCES 2023; 9:eadi1827. [PMID: 37889976 PMCID: PMC10610902 DOI: 10.1126/sciadv.adi1827] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Bone morphogenic protein (BMP) signaling is critical for intestinal development, homeostasis, and function performance. Although the function of BMP signaling in the intestinal epithelium is well appreciated, the direct effect of BMP on intestinal stromal cells is poorly understood. Here, we show that disruption of BMP signaling by genetic ablation of Alk3 or Smad4 expands the stromal cell pool, the mucosa tumefaction, and colonic polyposis in the large intestine. Interleukin (IL) secretion by stromal cells is notably increased, including IL-1, IL-11, and IL-17. Specifically, IL-1 and IL-17a hyperactivate the mucin production by goblet cells through nuclear factor κB signaling, and abnormal mucin accumulation results in the morphological changes, epithelial barrier destruction, and polyposis development. Together, our results provide an insight into the role of BMP signaling in intestinal stromal cells to regulate epithelium function. This study further highlights the role of mucin-producing goblet cells in intestinal homeostasis and colitis development.
Collapse
Affiliation(s)
- Yalong Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Ruoyu Lou
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhe Zhang
- Guangzhou National Laboratory, Guangzhou 510005, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Chuyu Xiao
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shicheng Yu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Siting Wei
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Fu
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Guangzhou National Laboratory, Guangzhou 510005, China
- School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
8
|
Wang Y, Lin H, Zhao L, Hong F, Hao J, Zhang Z, Sheng W, Song L, Deng CX, Zhao B, Cao J, Wang L, Wang L, Liang L, Chen WK, Yu C, Sun Z, Yang Y, Wang C, Zhang Y, Li Q, Li K, Ma A, Zhao T, Hua G, Chen YG. Standard: Human intestinal organoids. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:23. [PMID: 37314549 DOI: 10.1186/s13619-023-00168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organoids have attracted great interest for disease modelling, drug discovery and development, and tissue growth and homeostasis investigations. However, lack of standards for quality control has become a prominent obstacle to limit their translation into clinic and other applications. "Human intestinal organoids" is the first guideline on human intestinal organoids in China, jointly drafted and agreed by the experts from the Chinese Society for Cell Biology and its branch society: the Chinese Society for Stem Cell Research. This standard specifies terms and definitions, technical requirements, test methods, inspection rules for human intestinal organoids, which is applicable to quality control during the process of manufacturing and testing of human intestinal organoids. It was originally released by the Chinese Society for Cell Biology on 24 September 2022. We hope that the publication of this standard will guide institutional establishment, acceptance and execution of proper practical protocols and accelerate the international standardization of human intestinal organoids for applications.
Collapse
Affiliation(s)
- Yalong Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Guangzhou Laboratory, Guangzhou, 510005, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangzhou Hua Yi Regeneration Technology Co., Ltd, Huangpu District, Guangzhou, 510700, China
| | - Hanqing Lin
- D1Med Technology (Shanghai) Inc, Shanghai, 201802, China
| | - Lianzheng Zhao
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fan Hong
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Zhen Zhang
- Department of Radiation Oncology and Cancer Institute, Fudan University Shanghai Cancer Center Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China
| | - Weiqi Sheng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Linhong Song
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Chu-Xia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, 999078, SAR, China
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Lei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Liu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Lingmin Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Wenli Kelly Chen
- China Innovation Center of Roche, Li Shi Zhen Road, Pudong, Shanghai, 201203, China
| | - Chunping Yu
- Eli Lilly and Company, Pudong, Shanghai, 201203, China
| | - Zhijian Sun
- K2 Oncology Co., Ltd, KeChuang Street, Beijing, 100176, China
| | | | - Changlin Wang
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
- China National Institute of Standardization, Beijing, 100191, China
| | - Yong Zhang
- Chinese Society for Stem Cell Research, Shanghai, 200032, China
- HHLIFE Co., Inc, Shenzhen, 518040, China
| | - Qiyuan Li
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
- China National GeneBank, Shenzhen, 518000, China
| | - Ka Li
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
- Chinese Society for Stem Cell Research, Shanghai, 200032, China
| | - Aijin Ma
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
- Beijing Technology and Business University, Beijing, 100048, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| | - Guoqiang Hua
- D1Med Technology (Shanghai) Inc, Shanghai, 201802, China.
- Department of Radiation Oncology and Cancer Institute, Fudan University Shanghai Cancer Center Fudan University, Shanghai, 200032, China.
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Guangzhou Laboratory, Guangzhou, 510005, China.
- School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
9
|
Kasprzak A. Autophagy and the Insulin-like Growth Factor (IGF) System in Colonic Cells: Implications for Colorectal Neoplasia. Int J Mol Sci 2023; 24:ijms24043665. [PMID: 36835075 PMCID: PMC9959216 DOI: 10.3390/ijms24043665] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies worldwide. Along with apoptosis and inflammation, autophagy is one of three important mechanisms in CRC. The presence of autophagy/mitophagy in most normal mature intestinal epithelial cells has been confirmed, where it has mainly protective functions against reactive oxygen species (ROS)-induced DNA and protein damage. Autophagy regulates cell proliferation, metabolism, differentiation, secretion of mucins and/or anti-microbial peptides. Abnormal autophagy in intestinal epithelial cells leads to dysbiosis, a decline in local immunity and a decrease in cell secretory function. The insulin-like growth factor (IGF) signaling pathway plays an important role in colorectal carcinogenesis. This is evidenced by the biological activities of IGFs (IGF-1 and IGF-2), IGF-1 receptor type 1 (IGF-1R) and IGF-binding proteins (IGF BPs), which have been reported to regulate cell survival, proliferation, differentiation and apoptosis. Defects in autophagy are found in patients with metabolic syndrome (MetS), inflammatory bowel diseases (IBD) and CRC. In neoplastic cells, the IGF system modulates the autophagy process bidirectionally. In the current era of improving CRC therapies, it seems important to investigate the exact mechanisms not only of apoptosis, but also of autophagy in different populations of tumor microenvironment (TME) cells. The role of the IGF system in autophagy in normal as well as transformed colorectal cells still seems poorly understood. Hence, the aim of the review was to summarize the latest knowledge on the role of the IGF system in the molecular mechanisms of autophagy in the normal colon mucosa and in CRC, taking into account the cellular heterogeneity of the colonic and rectal epithelium.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland
| |
Collapse
|
10
|
Gomez-Bris R, Saez A, Herrero-Fernandez B, Rius C, Sanchez-Martinez H, Gonzalez-Granado JM. CD4 T-Cell Subsets and the Pathophysiology of Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:2696. [PMID: 36769019 PMCID: PMC9916759 DOI: 10.3390/ijms24032696] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an umbrella term for the chronic immune-mediated idiopathic inflammation of the gastrointestinal tract, manifesting as Crohn's disease (CD) or ulcerative colitis (UC). IBD is characterized by exacerbated innate and adaptive immunity in the gut in association with microbiota dysbiosis and the disruption of the intestinal barrier, resulting in increased bacterial exposure. In response to signals from microorganisms and damaged tissue, innate immune cells produce inflammatory cytokines and factors that stimulate T and B cells of the adaptive immune system, and a prominent characteristic of IBD patients is the accumulation of inflammatory T-cells and their proinflammatory-associated cytokines in intestinal tissue. Upon antigen recognition and activation, CD4 T-cells differentiate towards a range of distinct phenotypes: T helper(h)1, Th2, Th9, Th17, Th22, T follicular helper (Tfh), and several types of T-regulatory cells (Treg). T-cells are generated according to and adapt to microenvironmental conditions and participate in a complex network of interactions among other immune cells that modulate the further progression of IBD. This review examines the role of the CD4 T-cells most relevant to IBD, highlighting how these cells adapt to the environment and interact with other cell populations to promote or inhibit the development of IBD.
Collapse
Affiliation(s)
- Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Angela Saez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Pozuelo de Alarcón, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Cristina Rius
- Department of History of Science and Information Science, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- UISYS Research Unit, University of Valencia, 46010 Valencia, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Hector Sanchez-Martinez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| |
Collapse
|