1
|
Larsen AL, Pedersen T, Sundsfjord A, Ross TA, Guleng AD, Haug JB, Pöntinen AK, Samuelsen Ø. Hospital toilets and drainage systems as a reservoir for a long-term polyclonal outbreak of clinical infections with multidrug-resistant Klebsiella oxytoca species complex. Infect Prev Pract 2025; 7:100430. [PMID: 39868417 PMCID: PMC11760810 DOI: 10.1016/j.infpip.2024.100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/29/2024] [Indexed: 01/28/2025] Open
Abstract
Background Nosocomial outbreaks with multidrug-resistant bacteria with a probable reservoir in hospital toilets and drainage systems have been increasingly reported. Aim To investigate an increase in bacteraemia with extended-spectrum β-lactamase (ESBL)-producing Klebsiella oxytoca at our hospital in 2021; the epidemiology of the outbreak suggested an environmental source. Methods Available clinical K. oxytoca isolates from patient with infection or rectal carriage from 2019 to 2022 were collected. Clinical information was gathered from included patients and sampled sinks, shower drains, and toilet water. Short- and long-read whole-genome sequencing (WGS) was performed on patient and environmental isolates to assess phylogenetic relationships, antibiotic resistance genes/mutations, and plasmid profiles. Results WGS revealed four clusters and a polyclonal population consisting of ESBL-producing K. oxytoca and Klebsiella michiganensis. All clusters contained both clinical and environmental isolates. The environmental sampling revealed widespread contamination of the outbreak strains in the outbreak ward, and plasmid analyses indicated possible transfer of plasmids between species and clones. Most environmental findings in the outbreak ward were from toilet water, and enhanced cleaning of bathrooms and toilets was introduced. The following year, a decrease in outbreak strains in systemic infections was observed. Conclusion This investigation uncovered a polyclonal outbreak of multidrug-resistant K. oxytoca and K. michiganensis and unveiled a persistent reservoir of outbreak clones in the drainage system and toilet water, facilitating exchange of resistance genes. The risk of toilet water as a source of clinical infections warrants further investigation.
Collapse
Affiliation(s)
| | - Torunn Pedersen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Arnfinn Sundsfjord
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Theodor A. Ross
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Jon Birger Haug
- Department of Infection Control, Østfold Hospital Trust, Sarpsborg, Norway
| | - Anna K. Pöntinen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ørjan Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
2
|
Sleiman L, Dananché C, Gardes S, Fredenucci I, Duval C, Durieu I, Zoulim F, Vanhems P, Cassier P, Elias C. Identification of carbapenemase-producing Enterobacteriaceae reservoirs in wet hospital environments as a potential factor in patient acquisition: A cross-sectional study in a French university hospital in 2023. Infect Dis Now 2024; 54:104998. [PMID: 39490809 DOI: 10.1016/j.idnow.2024.104998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVES Wet hospital environments have been documented as potential reservoirs for Carbapenemase-producing Enterobacteriaceae (CPE), possibly contributing to outbreaks among inpatients. Our objectives were to assess the prevalence of CPE reservoirs in a hospital's wet environments and to investigate the contamination of adjacent dry surfaces. METHODS From March to August 2023, we conducted a cross-sectional study in two hospital wards experiencing ongoing large outbreaks. Sampling of the environment was undertaken in two distinct phases. During phase 1, 38 shower drains and 38 toilet bowls, defined as the wet environment, were sampled using swabs. Phase 2 consisted in sampling adjacent dry surfaces, using wipes in rooms that had tested positive during phase 1. Samples were plated on a selective medium (chromID®CARBASMART, bioMérieux). Species were identified using the matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) technique. Carbapenemases were detected by OKNVI RESIST-5® (CORIS BioConcept). RESULTS From the 38 patient rooms, 76 samples were taken during phase 1. All in all, 33 (86.8%) rooms presented at least one CPE reservoir in the wet environment; there were 32 (84.2%) contaminated shower drains and six (15.8%) contaminated toilet bowls. Among 57 identified CPEs, the most frequent strain was Enterobacter cloacae VIM (13, 22.8%). During phase 2, 11 (8.3%) out of 132 samples tested positive for CPE. Enterobacter cloacae complex VIM accounted for six (54.5%) of the CPE strains. CONCLUSION These findings suggest that the wet hospital environments were broadly contaminated with CPE, mostly Enterobacter cloacae VIM. The spread of CPE from wet environments to dry surfaces seemed limited.
Collapse
Affiliation(s)
- Léna Sleiman
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Cédric Dananché
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France; Hospices Civils de Lyon, Service Hygiène, Epidémiologie, Infectiovigilance et Prévention, Lyon, France
| | - Sophie Gardes
- Hospices Civils de Lyon, Service Hygiène, Epidémiologie, Infectiovigilance et Prévention, Lyon, France
| | | | - Camille Duval
- Hospices Civils de Lyon, Service Hygiène, Epidémiologie, Infectiovigilance et Prévention, Lyon, France
| | - Isabelle Durieu
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service de médecine interne et vasculaire, 69495 Pierre-Bénite, France
| | - Fabien Zoulim
- Hospices Civils de Lyon, Hôpital de la Croix-Rousse, Service d'hépatologie et gastroentérologie, 69317 Lyon Cedex 4, France
| | - Philippe Vanhems
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France; Hospices Civils de Lyon, Service Hygiène, Epidémiologie, Infectiovigilance et Prévention, Lyon, France
| | - Pierre Cassier
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, 69317 Lyon, France
| | - Christelle Elias
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France; Hospices Civils de Lyon, Service Hygiène, Epidémiologie, Infectiovigilance et Prévention, Lyon, France.
| |
Collapse
|
3
|
Eisenberg S, Cai C. Reducing the particles generated by flushing institutional toilets. Part II: Assessing a portable and reusable toilet cover in U.S. hospitals. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2024; 21:847-856. [PMID: 39353190 DOI: 10.1080/15459624.2024.2398752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Flushing uncovered toilets in hospitals has been shown to produce toilet plume aerosols (TPA) in a wide size ranging from nanometers to micrometers. Studies have shown that TPA can carry infectious pathogens and hazardous drugs used in cancer treatment. To mitigate the risk of exposure, some researchers have recommended covering the toilet during flushing, and guidelines from the Oncology Nursing Society have specifically recommended covering the toilet when flushing excreta from patients receiving chemotherapy. Because existing literature primarily focused on controlled laboratory settings or small case studies, there has been a need for a real-world, multi-center study in clinical settings to measure TPA by flushing both covered and un-covered toilets. To address this gap, the authors initiated a multicenter study to measure TPA in clinical settings and to assess the effectiveness of a commercially available, portable, and reusable toilet cover. The study enrolled 15 hospital centers (145 toilets) in nine U.S. states which included seven National Cancer Institute (NCI)-designated comprehensive cancer centers. The particle number concentrations were measured using a TSI optical particle counter (TSI 9306) with six size bins (0.3 to 25.0 µm) positioned 22 inches above the floor. The results showed that the ambient particle number concentrations in the HEPA-filtered floor bathrooms (376 ± 857#/L) are significantly lower than the non-HEPA-filtered ones (7,432 ± 9,207#/L). The mean particle number concentrations generated by flushing are 3,951 ± 8,606#/L with a median of 1,916#/L, ranging from 136#/L to 71,959#/L. Results with cover demonstrated a reduction in the total number of particles of 101 ± 11% regardless of the HEPA filter usage (p = 0.0002 in the Mann-Whitney U test). Mixed-effects modeling revealed that the overall level of particle reduction is substantial regardless of state (nine total), floor levels, flush volumes, and inpatient versus outpatient. This study provides evidence supporting the use of the tested portable toilet cover as an intervention to reduce healthcare workers', patients', and visitors' exposure to toilet plume aerosols in clinical settings.
Collapse
Affiliation(s)
| | - Changjie Cai
- Department of Occupational and Environmental Health, Hudson College of Public Health, The University of Oklahoma Health Sciences Center, The University of Oklahoma, Oklahoma City, Oklahoma
| |
Collapse
|
4
|
Kaple CE, Memic S, Cadnum JL, Donskey CJ. Evaluation of an automated far ultraviolet-C light technology for decontamination of surfaces and aerosolized viruses in bathrooms. Antimicrob Resist Infect Control 2024; 13:114. [PMID: 39343973 PMCID: PMC11441258 DOI: 10.1186/s13756-024-01473-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Aerosols generated during toilet flushing are a potential source for transmission of viral and bacterial pathogens in bathrooms. However, manual decontamination of bathrooms after each use is not feasible. METHODS We tested the efficacy of a wall-mounted far ultraviolet-C (UV-C) light technology that only delivers far UV-C when people are not present for decontamination of surfaces and aerosolized viral particles in an unoccupied hospital bathroom. A quantitative disk carrier test method was used to test efficacy against organisms on steel disk carriers placed in 9 sites in the bathroom with an exposure time of 45 min and 2 h; Clostridioides difficile spores were also exposed for 24 h. Efficacy against aerosolized bacteriophage MS2 was tested with a 45-minute exposure. RESULTS The far UV-C technology reduced methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), Candida auris, and bacteriophage MS2 on steel disk carriers by ≥ 1.2 log10 (range, 1.2 to 4.2 log10) at all test sites after 2 h of exposure. The technology reduced C. difficile spores by < 1 log10 after 2 h exposure, but 4 of 9 test locations had ≥ 2 log10 reductions after 24 h exposure. Aerosolized bacteriophage MS2 was reduced by 4 log10 plaque-forming units in 45 min. CONCLUSIONS The far UV-C light technology could potentially be useful for automated decontamination of air and surfaces in bathrooms in healthcare and community settings.
Collapse
Affiliation(s)
- Claire E Kaple
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Samir Memic
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Department of Systems Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jennifer L Cadnum
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Curtis J Donskey
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Geriatric Research, Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
- Infectious Diseases Section 1110W, Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH, 44106, USA.
| |
Collapse
|
5
|
Shin S, Yoon WS, Lee HS, Jo JH, Byeon SH. Airborne concentrations of bacteria and mold in Korean public-use facilities: measurement, systematic review, meta-analysis, and probabilistic human inhalation risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54854-54872. [PMID: 39215918 DOI: 10.1007/s11356-024-34749-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Bioaerosols adversely affect human health posing risk to users of public facilities in Korea. Between October 2021 and May 2022, airborne bacteria and mold were measured in 1,243 public-use facilities across 23 categories. A systematic review and meta-analysis were performed on these and other studies from June 2004 to May 2021, and the non-carcinogenic risks to humans were assessed using Monte Carlo simulations. For bacteria, the maximum 95th percentile concentration was 584.4 cfu/m3 and 1384.8 cfu/m3 for mold. The heterogeneity statistic I2 was over 50% in all facilities, and for subway station bacteria, there was a significant difference according to the measurement method. The 95th percentile of hazard by population group was 8.83 × 10-2 to 3.42 × 10-1 for bacteria, and 1.31 × 10-1 to 3.55 × 10-1 for mold. The probability of a hazard quotient exceeding 1 for some population groups was derived from exposure to bacteria and mold in the air resulting from the use of all public facilities. The most powerful explanatory factor for risk was exposure time to the facility, both within (up to 0.922 for bacteria and up to 0.960 for mold) and between populations (up to 0.543 for bacteria and 0.483 for mold). This study identified populations at risk of bioaerosol exposure in Korean public-use facilities and estimated the influencing factors, highlighting the need for comprehensive improvement in bioaerosol control in public-use facilities.
Collapse
Affiliation(s)
- Saemi Shin
- Research Institute of Health Sciences, Korea University, Seoul, Korea
| | - Won Suck Yoon
- Allergy and Immunology Center, Korea University, Seoul, Korea
| | - Hyo Seon Lee
- Allergy and Immunology Center, Korea University, Seoul, Korea
| | - Jeong Heum Jo
- National Institute of Environmental Research, Incheon, Korea
| | - Sang-Hoon Byeon
- School of Health and Environmental Science, Korea University, Seoul, Korea.
| |
Collapse
|
6
|
Rath A, Kieninger B, Hahn J, Edinger M, Holler E, Kratzer A, Fritsch J, Eichner A, Caplunik-Pratsch A, Schneider-Brachert W. Retrospective genome-oriented analysis reveals low transmission rate of multidrug-resistant Pseudomonas aeruginosa from contaminated toilets at a bone marrow transplant unit. J Hosp Infect 2024; 150:96-104. [PMID: 38830540 DOI: 10.1016/j.jhin.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Prevention of toilet-to-patient transmission of multidrug-resistant Pseudomonas aeruginosa (MDR PA) poses management-related challenges at many bone marrow transplant units (BMTUs). AIM To conduct a longitudinal retrospective analysis of the toilet-to-patient transmission rate for MDR PA under existing infection control (IC) measures at a BMTU with persistent MDR PA toilet colonization. METHODS The local IC bundle comprised: (1) patient education regarding IC; (2) routine patient screening; (3) toilet flushing volume of 9 L; (4) bromination of toilet water tanks, and (5) toilet decontamination using hydrogen peroxide. Toilet water was sampled periodically between 2016 and 2021 (minimum every three months: 26 intervals). Upon MDR PA detection, disinfection and re-sampling were repeated until ≤3 cfu/100 mL was reached. Whole-genome sequencing (WGS) was performed retrospectively on all available MDR PA isolates (90 out of 117 positive environmental samples, 10 out of 14 patients, including nine nosocomial). FINDINGS WGS of patient isolates identified six sequence types (STs), with ST235/CT1352/FIM-1 and ST309/CT3049/no-carbapenemase being predominant (three isolates each). Environmental sampling consistently identified MDR PA ST235 (65.5% ST235/CT1352/FIM-1), showing low genetic diversity (difference of ≤29 alleles by core-genome multi-locus sequence typing (cgMLST)). This indicates that direct toilet-to-patient transmission was infrequent although MDR PA was widespread (detection on 79 occasions, detection in every toilet). Only three MDR PA patient isolates can be attributed to the ST235/CT1352/FIM-1 toilet MRD PA population over six years. CONCLUSION Stringent targeted toilet disinfection can reduce the potential risk for MDR PA acquisition by patients.
Collapse
Affiliation(s)
- A Rath
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany.
| | - B Kieninger
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - J Hahn
- Department of Internal Medicine III, Haematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - M Edinger
- Department of Internal Medicine III, Haematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - E Holler
- Department of Internal Medicine III, Haematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - A Kratzer
- Hospital Pharmacy, University Hospital Regensburg, Regensburg, Germany
| | - J Fritsch
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - A Eichner
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - A Caplunik-Pratsch
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - W Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Volling C, Mataseje L, Graña-Miraglia L, Hu X, Anceva-Sami S, Coleman BL, Downing M, Hota S, Jamal AJ, Johnstone J, Katz K, Leis JA, Li A, Mahesh V, Melano R, Muller M, Nayani S, Patel S, Paterson A, Pejkovska M, Ricciuto D, Sultana A, Vikulova T, Zhong Z, McGeer A, Guttman DS, Mulvey MR. Epidemiology of healthcare-associated Pseudomonas aeruginosa in intensive care units: are sink drains to blame? J Hosp Infect 2024; 148:77-86. [PMID: 38554807 DOI: 10.1016/j.jhin.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Pseudomonas aeruginosa (PA) is a common cause of healthcare-associated infection (PA-HAI) in the intensive care unit (ICU). AIM To describe the epidemiology of PA-HAI in ICUs in Ontario, Canada, and to identify episodes of sink-to-patient PA transmission. METHODS This was a prospective cohort study of patients in six ICUs from 2018 to 2019, with retrieval of PA clinical isolates, and PA-screening of antimicrobial-resistant organism surveillance rectal swabs, and of sink drain, air, and faucet samples. All PA isolates underwent whole-genome sequencing. PA-HAI was defined using US National Healthcare Safety Network criteria. ICU-acquired PA was defined as PA isolated from specimens obtained ≥48 h after ICU admission in those with prior negative rectal swabs. Sink-to-patient PA transmission was defined as ICU-acquired PA with close genomic relationship to isolate(s) previously recovered from sinks in a room/bedspace occupied 3-14 days prior to collection date of the relevant patient specimen. FINDINGS Over ten months, 72 PA-HAIs occurred among 60/4263 admissions. The rate of PA-HAI was 2.40 per 1000 patient-ICU-days; higher in patients who were PA-colonized on admission. PA-HAI was associated with longer stay (median: 26 vs 3 days uninfected; P < 0.001) and contributed to death in 22/60 cases (36.7%). Fifty-eight admissions with ICU-acquired PA were identified, contributing 35/72 (48.6%) PA-HAIs. Four patients with five PA-HAIs (6.9%) had closely related isolates previously recovered from their room/bedspace sinks. CONCLUSION Nearly half of PA causing HAI appeared to be acquired in ICUs, and 7% of PA-HAIs were associated with sink-to-patient transmission. Sinks may be an under-recognized reservoir for HAIs.
Collapse
Affiliation(s)
- C Volling
- Department of Microbiology, Sinai Health, Toronto, Canada.
| | - L Mataseje
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - L Graña-Miraglia
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - X Hu
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - S Anceva-Sami
- Department of Microbiology, Sinai Health, Toronto, Canada
| | - B L Coleman
- Department of Microbiology, Sinai Health, Toronto, Canada
| | | | - S Hota
- Department of Medicine, University Health Network, Toronto, Canada
| | - A J Jamal
- Department of Microbiology, Sinai Health, Toronto, Canada
| | - J Johnstone
- Department of Microbiology, Sinai Health, Toronto, Canada
| | - K Katz
- Department of Medicine, North York General Hospital, Toronto, Canada
| | - J A Leis
- Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - A Li
- Department of Microbiology, Sinai Health, Toronto, Canada
| | - V Mahesh
- Department of Microbiology, Sinai Health, Toronto, Canada
| | - R Melano
- Pan American Health Organization, Washington, USA
| | - M Muller
- Department of Medicine, Unity Health Toronto, Toronto, Canada
| | - S Nayani
- Department of Microbiology, Sinai Health, Toronto, Canada
| | - S Patel
- Public Health Ontario Laboratory, Toronto, Canada
| | - A Paterson
- Department of Microbiology, Sinai Health, Toronto, Canada
| | - M Pejkovska
- Department of Microbiology, Sinai Health, Toronto, Canada
| | - D Ricciuto
- Department of Medicine, Lakeridge Health, Oshawa, Canada
| | - A Sultana
- Department of Microbiology, Sinai Health, Toronto, Canada
| | - T Vikulova
- Department of Microbiology, Sinai Health, Toronto, Canada
| | - Z Zhong
- Department of Microbiology, Sinai Health, Toronto, Canada
| | - A McGeer
- Department of Microbiology, Sinai Health, Toronto, Canada
| | - D S Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada; Centre for the Analysis of Genome Evolution and Function, Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - M R Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| |
Collapse
|
8
|
Amin N, Foster T, Hossain MI, Hasan MR, Sarkar S, Rahman A, Adnan SD, Rahman M, Willetts J. Inadequate sanitation in healthcare facilities: A comprehensive evaluation of toilets in major hospitals in Dhaka, Bangladesh. PLoS One 2024; 19:e0295879. [PMID: 38776266 PMCID: PMC11111017 DOI: 10.1371/journal.pone.0295879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Lack of access to functional and hygienic toilets in healthcare facilities (HCFs) is a significant public health issue in low- and middle-income countries (LMICs), leading to the transmission of infectious diseases. Globally, there is a lack of studies characterising toilet conditions and estimating user-to-toilet ratios in large urban hospitals in LMICs. We conducted a cross-sectional study in 10-government and two-private hospitals to explore the availability, functionality, cleanliness, and user-to-toilet ratio in Dhaka, Bangladesh. METHODS From Aug-Dec 2022, we undertook infrastructure assessments of toilets in selected hospitals. We observed all toilets and recorded attributes of intended users, including sex, disability status, patient status (in-patient/out-patient/caregiver) and/or staff (doctor/nurse/cleaner/mixed-gender/shared). Toilet functionality was defined according to criteria used by the WHO/UNICEF Joint-Monitoring Programme in HCFs. Toilet cleanliness was assessed, considering visible feces on any surface, strong fecal odor, presence of flies, sputum, insects, and rodents, and solid waste. RESULTS Amongst 2875 toilets, 2459 (86%) were observed. Sixty-eight-percent of government hospital toilets and 92% of private hospital toilets were functional. Only 33% of toilets in government hospitals and 56% in private hospitals were clean. A high user-to-toilet ratio was observed in government hospitals' outpatients service (214:1) compared to inpatients service (17:1). User-to-toilet ratio was also high in private hospitals' outpatients service (94:1) compared to inpatients wards (19:1). Only 3% of toilets had bins for menstrual-pad disposal and <1% of toilets had facilities for disabled people. CONCLUSION A high percentage of unclean toilets coupled with high user-to-toilet ratio hinders the achievement of SDG by 2030 and risks poor infection-control. Increasing the number of usable, clean toilets in proportion to users is crucial. The findings suggest an urgent call for attention to ensure basic sanitation facilities in Dhaka's HCFs. The policy makers should allocate resources for adequate toilets, maintenance staff, cleanliness, along with strong leadership of the hospital administrators.
Collapse
Affiliation(s)
- Nuhu Amin
- Institute for Sustainable Futures, University of Technology Sydney, Ultimo, NSW, Australia
- Health System and Population Studies Division, Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Tim Foster
- Institute for Sustainable Futures, University of Technology Sydney, Ultimo, NSW, Australia
| | - Md. Imam Hossain
- Health System and Population Studies Division, Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Rezaul Hasan
- Health System and Population Studies Division, Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Supriya Sarkar
- Hospital Services Management, Directorate General of Health Services (DGHS), MoH&FW, Mohakhali, Dhaka, Bangladesh
| | - Aninda Rahman
- Communicable Disease Control (CDC) Program, Directorate General of Health Services (DGHS), MoH&FW, Mohakhali, Dhaka, Bangladesh
| | - Shaikh Daud Adnan
- Hospital Services Management, Directorate General of Health Services (DGHS), MoH&FW, Mohakhali, Dhaka, Bangladesh
| | - Mahbubur Rahman
- Health System and Population Studies Division, Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Juliet Willetts
- Institute for Sustainable Futures, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
9
|
Paddy EN, Afolabi OOD, Sohail M. Exploring toilet plume bioaerosol exposure dynamics in public toilets using a Design of Experiments approach. Sci Rep 2024; 14:10665. [PMID: 38724540 PMCID: PMC11082142 DOI: 10.1038/s41598-024-61039-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Bioaerosols generated during toilet flushing can contribute to the spread of airborne pathogens and cross-contamination in indoor environments. This presents an increased risk of fomite-mediated or aerosol disease transmission. This study systematically investigated the factors contributing to increased bioaerosol exposure following toilet flushing and developed an empirical model for predicting the exposure-relevant bioaerosol concentration. Air in a toilet cubicle was sampled by impaction after seeding with Clostridium difficile spores. Design of Experiments (DoE) main effects screening and full factorial design approaches were then employed to investigate the significant factors that heighten the risk of exposure to bioaerosols post-flush. Our findings reveal that the inoculated bacterial concentration (C), time elapsed after flushing (t), lateral distance (d), and mechanical ventilation (v) are significant predictors of bioaerosol concentration, with p-values < 0.05. The interaction term, C × d showed a marked increase in bioaerosol concentration up to 232 CFU/m3 at the closest proximity and highest pathogen load. The interplay of C and t (C × t) demonstrated a time-dependent attenuation of bioaerosol viability, with concentrations peaking at 241 CFU/m3 immediately post-flush and notably diminishing over time. The lateral distance and time post-flush (d × t) interaction also revealed a gradual decrease in bioaerosol concentration, highlighting the effectiveness of spatial and temporal dilution in mitigating bioaerosol exposure risks. Furthermore, there is an immediate rise in relative humidity levels post-flush, impacting the air quality in the toilet environment. This study not only advances our understanding of exposure pathways in determining bioaerosol exposure, but also offers pivotal insights for designing targeted interventions to reduce bioaerosol exposure. Recommendations include designing public toilets with antimicrobial surfaces, optimizing ventilation, and initiating timely disinfection protocols to prioritise surfaces closest to the toilet bowl during peak exposure periods, thereby promoting healthier indoor environments and safeguarding public health in high-traffic toilet settings.
Collapse
Affiliation(s)
- Elizabeth N Paddy
- School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough, Leicestershire, UK.
| | - Oluwasola O D Afolabi
- School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - M Sohail
- School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough, Leicestershire, UK
| |
Collapse
|
10
|
Bechmann L, Bauer K, Zerban P, Esser T, Tersteegen A, Fuchs SA, Kaasch AJ, Wolleschak D, Schalk E, Fischer T, Mougiakakos D, Geginat G. Prevention of legionella infections from toilet flushing cisterns. J Hosp Infect 2024; 146:37-43. [PMID: 38224856 DOI: 10.1016/j.jhin.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 01/17/2024]
Abstract
INTRODUCTION Immunocompromised patients are at an increased risk of severe legionella infections. We present the results of an outbreak investigation initiated following a fatal case of hospital-acquired legionellosis linked to contaminated water from a toilet-flushing cistern. Additionally, we provide experimental data on the growth of Legionella spp. in flushing cisterns and propose a straightforward protocol for prevention. METHODS We monitored the growth of Legionella spp. in the building's hot- and cold-water systems using quantitative bacterial culture on selective agar. Molecular typing of Legionella pneumophila isolates from the infected patient and the water system was conducted through core-genome multi-locus sequence typing (cgMLST). RESULTS Legionella contamination in the hospital building's cold-water system was significantly higher than in the hot-water system and significantly higher in toilet flushing cistern's water compared with cold water from bathroom sinks and showers. Isolates from the patient and from the flushing cistern of the patient's bathroom were identical by cgMLST. In an experimental setting, daily toilet flushing for a period of 21 days resulted in a 67% reduction in the growth of Legionella spp. in the water of toilet flushing cisterns. Moreover, a one-time disinfection of cisterns with peracetic acid, followed by daily flushing, decreased legionella growth to less than 1% over a period of at least seven weeks in these setting. CONCLUSIONS One-time disinfection of highly contaminated cisterns with peracetic acid and daily toilet flushing as short-term measure can significantly reduce legionella contamination in flushing cisterns. These measures may aid in preventing legionella infection among immunocompromised patients.
Collapse
Affiliation(s)
- L Bechmann
- Department of Medical Microbiology and Infection Control, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - K Bauer
- Department of Medical Microbiology and Infection Control, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - P Zerban
- Department of Medical Microbiology and Infection Control, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - T Esser
- Department of Medical Microbiology and Infection Control, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - A Tersteegen
- Department of Medical Microbiology and Infection Control, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - S A Fuchs
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - A J Kaasch
- Department of Medical Microbiology and Infection Control, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - D Wolleschak
- Department of Haematology and Oncology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Schalk
- Department of Haematology and Oncology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - T Fischer
- Department of Haematology and Oncology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - D Mougiakakos
- Department of Haematology and Oncology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - G Geginat
- Department of Medical Microbiology and Infection Control, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
11
|
Eisenberg S, Walton A, Connor TH. The Occupational and Environmental Hazards of Uncovered Toilets. Am J Nurs 2024; 124:55-60. [PMID: 38511713 DOI: 10.1097/01.naj.0001010592.45177.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
ABSTRACT Substantial evidence demonstrates that plumes from uncovered toilets potentially expose nurses and other health care workers to aerosols containing infectious agents and hazardous drugs, including antineoplastic drugs. Most hospitals in the United States utilize flushometer-type toilets, which operate under high pressure and do not have a permanently attached closure or lid, which is known to reduce the aerosols generated by flushing. This article aims to raise awareness among nurses of the potential exposure risks associated with toilet plume aerosols, so they can educate other health care workers and take part in initiatives to address these risks.
Collapse
Affiliation(s)
- Seth Eisenberg
- Seth Eisenberg is an oncology nursing consultant and the former professional practice coordinator of infusion services at the Fred Hutchinson Cancer Center, Seattle. AnnMarie Walton is an associate professor at the Duke University School of Nursing, Durham, NC. Thomas Harry Connor is a retired hazardous drug researcher for the National Institute for Occupational Safety and Health and a former associate professor at the University of Texas Health Science Center at Houston. Contact author: Thomas Harry Connor, . The authors have disclosed no potential conflicts of interest, financial or otherwise
| | | | | |
Collapse
|
12
|
Niu Y, Wang F, Luo D, Shu Z, Huang J, Zhang Y, Liu C, Qian H. Vertical transmission of infectious aerosols through building toilet drainage system: An experimental study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123284. [PMID: 38163630 DOI: 10.1016/j.envpol.2023.123284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/23/2023] [Accepted: 12/30/2023] [Indexed: 01/03/2024]
Abstract
The building's toilet drainage system has been identified as a potential route for the transmission of SARS-CoV-2 during outbreaks. This study employed agar-fluorescein sodium semi-solid as trace particles to investigate the possibility of vertical transmission of the SARS-CoV-2 in drainage system. In both scenarios, where floor drains were all properly sealed or dried out, simulated faeces containing fluorescein sodium were flushed into the toilet bowl. Air sampling was conducted in each restroom, and differential pressure measurements at the floor drain locations were taken. The experimental results showed that when all floor drains were properly sealed, the differential pressure at each floor drain was 0. The fluorescein sodium-traced aerosol did not transmit through the drainage system to various floors, which significantly reduced the risk of infection for users through this route. However, when all floor drains dried out, toilet users above the neutral pressure layer (NPL) were at a high risk of virus infection. Due to the increasing maximum negative pressure at the floor drain above the NPL with ascending floor levels, users on each floor above the NPL faced an elevated infection risk in restrooms. Specifically, users on the top floor were exposed to infectious aerosols roughly 1.6 times that of the first floor above the NPL. Conversely, owing to the increasing maximum positive pressure at the floor drain below the NPL with descending floor levels, users below the NPL experienced a comparatively lower infection risk. This finding has important implications for understanding the vertical transmission dynamics of SARS-CoV-2 in residential or public building and can inform the development of effective control measures.
Collapse
Affiliation(s)
- Yuanyuan Niu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Fang Wang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Danting Luo
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Zhiyong Shu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Jiayu Huang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Yongpeng Zhang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Cong Liu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
13
|
Tan M, Tian Y, Zhang D, Wang Q, Gao Z. Aerosol Transmission of Norovirus. Viruses 2024; 16:151. [PMID: 38275961 PMCID: PMC10818780 DOI: 10.3390/v16010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Norovirus (NoV) is a major cause of acute gastroenteritis outbreaks worldwide. A comprehensive understanding of the transmission mode is of great significance for the prevention and control of the NoV infection. Currently, the transmission modes of NoV include contact, food-borne, water-borne and aerosol transmission. The first three modes are more common, while aerosol transmission is seldom reported. In this paper, the source, generation mechanism, infectivity, sampling and related outbreaks of NoV aerosol are summarized and discussed.
Collapse
Affiliation(s)
- Mengdi Tan
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Yi Tian
- Institute for the Control of Infectious and Endemic Diseases, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Daitao Zhang
- Institute for the Control of Infectious and Endemic Diseases, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Quanyi Wang
- Institute for the Control of Infectious and Endemic Diseases, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Zhiyong Gao
- School of Public Health, China Medical University, Shenyang 110122, China
- Institute for the Control of Infectious and Endemic Diseases, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| |
Collapse
|
14
|
Valzano F, Coda ARD, Liso A, Arena F. Multidrug-Resistant Bacteria Contaminating Plumbing Components and Sanitary Installations of Hospital Restrooms. Microorganisms 2024; 12:136. [PMID: 38257963 PMCID: PMC10818725 DOI: 10.3390/microorganisms12010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance (AMR) poses several issues concerning the management of hospital-acquired infections, leading to increasing morbidity and mortality rates and higher costs of care. Multidrug-resistant (MDR) bacteria can spread in the healthcare setting by different ways. The most important are direct contact transmission occurring when an individual comes into physical contact with an infected or colonized patient (which can involve healthcare workers, patients, or visitors) and indirect contact transmission occurring when a person touches contaminated objects or surfaces in the hospital environment. Furthermore, in recent years, toilets in hospital settings have been increasingly recognised as a hidden source of MDR bacteria. Different sites in restrooms, from toilets and hoppers to drains and siphons, can become contaminated with MDR bacteria that can persist there for long time periods. Therefore, shared toilets may play an important role in the transmission of nosocomial infections since they could represent a reservoir for MDR bacteria. Such pathogens can be further disseminated by bioaerosol and/or droplets potentially produced during toilet use or flushing and be transmitted by inhalation and contact with contaminated fomites. In this review, we summarize available evidence regarding the molecular features of MDR bacteria contaminating toilets of healthcare environments, with a particular focus on plumbing components and sanitary installation. The presence of bacteria with specific molecular traits in different toilet sites should be considered when adopting effective managing and containing interventions against nosocomial infections potentially due to environmental contamination. Finally, here we provide an overview of traditional and new approaches to reduce the spreading of such infections.
Collapse
Affiliation(s)
- Felice Valzano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122 Foggia, Italy; (F.V.); (F.A.)
| | - Anna Rita Daniela Coda
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli 20, 71122 Foggia, Italy;
| | - Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli 20, 71122 Foggia, Italy;
| | - Fabio Arena
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122 Foggia, Italy; (F.V.); (F.A.)
- IRCCS Don Carlo Gnocchi Foundation, Via di Scandicci 269, 50143 Florence, Italy
| |
Collapse
|
15
|
Razzaque MS. Healthcare-associated infections in the context of the pandemic. FRONTIERS IN HEALTH SERVICES 2023; 3:1288033. [PMID: 38089543 PMCID: PMC10713836 DOI: 10.3389/frhs.2023.1288033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/10/2023] [Indexed: 05/31/2024]
Affiliation(s)
- Mohammed S. Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| |
Collapse
|
16
|
Jabeen R, Kizhisseri MI, Mayanaik SN, Mohamed MM. Bioaerosol assessment in indoor and outdoor environments: a case study from India. Sci Rep 2023; 13:18066. [PMID: 37872255 PMCID: PMC10593752 DOI: 10.1038/s41598-023-44315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
Exposure to bioaerosols has been associated with the occurrence of a variety of health impacts, including infectious illnesses, acute toxic effects, allergies, and cancer. This study aimed at evaluating airborne bacteria and fungi populations at different indoor and outdoor sites on a college campus in Bengaluru, India. Bioaerosol samples were collected using a two-stage Andersen air sampler; and isolates were identified using standard procedures. Six air samples and meteorological data were collected in March and April 2014 to examine the effects of temperature and relative humidity on bioaerosol concentration using linear regression modeling. Among all sites, the canteen showed the highest bioaerosol levels both indoors and outdoors. Specific bacterial identification was not possible, but gram staining and microscopic analysis helped to identify gram positive and gram negative bacteria. The most prevalent fungal species in the samples were Cladosporium, Aspergillus niger, Penicillium, Rhizopus, Fusarium, Mucor, and Alternaria. Due to the impact of weather conditions, such as temperature and relative humidity, the bioaerosol concentration varied greatly at each site according to the regression model. The indoor bioaerosol concentrations at all sites exceeded the values established by the American Industrial Hygiene Association (< 250 CFU/m3 for total fungi and < 500 CFU/m3 for total bacteria). Higher concentrations of bioaerosols may be attributed to the transportation of microbes from the ground surface to suspended particles, the release of microbes from the respiratory tract, higher rate of shredding of human skin cells, and many other factors.
Collapse
Affiliation(s)
- Raisa Jabeen
- Department of Environmental Engineering, China State Construction Engineering Corporation, Middle East L.L.C, Dubai, United Arab Emirates
| | - Mohamed Ibrahim Kizhisseri
- Department of Civil and Environmental Engineering, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | | | - Mohamed Mostafa Mohamed
- Department of Civil and Environmental Engineering, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
17
|
Hamerlinck H, Aerssens A, Boelens J, Dehaene A, McMahon M, Messiaen AS, Vandendriessche S, Velghe A, Leroux-Roels I, Verhasselt B. Sanitary installations and wastewater plumbing as reservoir for the long-term circulation and transmission of carbapenemase producing Citrobacter freundii clones in a hospital setting. Antimicrob Resist Infect Control 2023; 12:58. [PMID: 37337245 DOI: 10.1186/s13756-023-01261-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Accumulating evidence shows a role of the hospital wastewater system in the spread of multidrug-resistant organisms, such as carbapenemase producing Enterobacterales (CPE). Several sequential outbreaks of CPE on the geriatric ward of the Ghent University hospital have led to an outbreak investigation. Focusing on OXA-48 producing Citrobacter freundii, the most prevalent species, we aimed to track clonal relatedness using whole genome sequencing (WGS). By exploring transmission routes we wanted to improve understanding and (re)introduce targeted preventive measures. METHODS Environmental screening (toilet water, sink and shower drains) was performed between 2017 and 2021. A retrospective selection was made of 53 Citrobacter freundii screening isolates (30 patients and 23 environmental samples). DNA from frozen bacterial isolates was extracted and prepped for shotgun WGS. Core genome multilocus sequence typing was performed with an in-house developed scheme using 3,004 loci. RESULTS The CPE positivity rate of environmental screening samples was 19.0% (73/385). Highest percentages were found in the shower drain samples (38.2%) and the toilet water samples (25.0%). Sink drain samples showed least CPE positivity (3.3%). The WGS data revealed long-term co-existence of three patient sample derived C. freundii clusters. The biggest cluster (ST22) connects 12 patients and 8 environmental isolates taken between 2018 and 2021 spread across the ward. In an overlapping period, another cluster (ST170) links eight patients and four toilet water isolates connected to the same room. The third C. freundii cluster (ST421) connects two patients hospitalised in the same room but over a period of one and a half year. Additional sampling in 2022 revealed clonal isolates linked to the two largest clusters (ST22, ST170) in the wastewater collection pipes connecting the rooms. CONCLUSIONS Our findings suggest long-term circulation and transmission of carbapenemase producing C. freundii clones in hospital sanitary installations despite surveillance, daily cleaning and intermittent disinfection protocols. We propose a role for the wastewater drainage system in the spread within and between rooms and for the sanitary installations in the indirect transmission via bioaerosol plumes. To tackle this problem, a multidisciplinary approach is necessary including careful design and maintenance of the plumbing system.
Collapse
Affiliation(s)
- Hannelore Hamerlinck
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium.
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.
| | - Annelies Aerssens
- Department of Infection Control, Ghent University Hospital, Ghent, Belgium
| | - Jerina Boelens
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Andrea Dehaene
- Department of Infection Control, Ghent University Hospital, Ghent, Belgium
| | - Michael McMahon
- Department of Infection Control, Ghent University Hospital, Ghent, Belgium
| | | | | | - Anja Velghe
- Department of Geriatrics, Ghent University Hospital, Ghent, Belgium
| | - Isabel Leroux-Roels
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Infection Control, Ghent University Hospital, Ghent, Belgium
| | - Bruno Verhasselt
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Sultan S. Gastrointestinal Endoscopy in Patients with Coronavirus Disease 2019: Indications, Findings, and Safety. Gastroenterol Clin North Am 2023; 52:157-172. [PMID: 36813423 PMCID: PMC9678816 DOI: 10.1016/j.gtc.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has changed the practice of gastroenterology and how we perform endoscopy. As with any new or emerging pathogen, early in the pandemic, there was limited evidence and understanding of disease transmission, limited testing capability, and resource constraints, especially availability of personal protective equipment (PPE). As the COVID-19 pandemic progressed, enhanced protocols with particular emphasis on assessing the risk status of patients and proper use of PPE have been incorporated into routine patient care. The COVID-19 pandemic has taught us important lessons for the future of gastroenterology and endoscopy.
Collapse
Affiliation(s)
- Shahnaz Sultan
- Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota, 420 Delaware Street Southeast, MMC 36, Minneapolis, MN 55455, USA.
| |
Collapse
|
19
|
Paddy EN, Afolabi OOD, Sohail M. Toilet plume bioaerosols in health care and hospitality settings: A systematic review. Am J Infect Control 2023; 51:324-333. [PMID: 35870658 DOI: 10.1016/j.ajic.2022.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The spread of some respiratory and gastro-intestinal infections has been linked to the exposure to infectious bioaerosols released after toilet flushing. This represents a health hazard and infection risk for immunocompromised patients, health workers and the public, particularly within the health care and hospitality settings. This systematic review provides current knowledge and identifies gaps in the evidence regarding toilet plume bioaerosols and the potential contributory role in spreading infections in health care and hospitality settings. METHODS The PRISMA guidelines were used. Searches were run in PubMed, Scopus, and Google Scholar from 1950 to 30th June 2021. Searches of global and regional reports and updates from relevant international and governmental organizations were also conducted. RESULTS AND CONCLUSION The search yielded 712 results, and 37 studies were finally selected for this review. There is a lack of national and international bioaerosol sampling and exposure standards for health care and hospitality settings. Toilet plume bioaerosols are complex in nature, thus, measured bioaerosol concentrations in these settings depend on many variables and may differ for every pathogen responsible for a particular infectious disease. The contact and airborne transmission risks posed by toilet plume bioaerosols also remain unquantified. They are an important pathway that can increase the exposure to enteric and airborne pathogens. Hence, quantitative risk assessment and related research are needed to investigate these transmission risks.
Collapse
Affiliation(s)
- Elizabeth N Paddy
- School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough, Leicestershire, United Kingdom.
| | - Oluwasola O D Afolabi
- School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough, Leicestershire, United Kingdom
| | - M Sohail
- School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough, Leicestershire, United Kingdom
| |
Collapse
|
20
|
Lerner A, Benzvi C. SARS-CoV-2 induction and COVID-19 manifestations related to autoimmune gastrointestinal diseases. AUTOIMMUNITY, COVID-19, POST-COVID19 SYNDROME AND COVID-19 VACCINATION 2023:451-469. [DOI: 10.1016/b978-0-443-18566-3.00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Crimaldi JP, True AC, Linden KG, Hernandez MT, Larson LT, Pauls AK. Commercial toilets emit energetic and rapidly spreading aerosol plumes. Sci Rep 2022; 12:20493. [PMID: 36481924 PMCID: PMC9732293 DOI: 10.1038/s41598-022-24686-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Aerosols can transmit infectious diseases including SARS-CoV-2, influenza and norovirus. Flushed toilets emit aerosols that spread pathogens contained in feces, but little is known about the spatiotemporal evolution of these plumes or the velocity fields that transport them. Using laser light to illuminate ejected aerosols we quantify the kinematics of plumes emanating from a commercial flushometer-type toilet, and use the motion of aerosol particles to compute velocity fields of the associated flow. The toilet flush produces a strong chaotic jet with velocities exceeding 2 m/s; this jet transports aerosols to heights reaching 1.5 m within 8 seconds of initiating a flush. Quantifying toilet plumes and associated flow velocities provides a foundation for future design strategies to mitigate plume formation or to disinfect pathogens within it.
Collapse
Affiliation(s)
- John P Crimaldi
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO, 80309, USA.
| | - Aaron C True
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Karl G Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Mark T Hernandez
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Lars T Larson
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Anna K Pauls
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO, 80309, USA
| |
Collapse
|
22
|
Zhang T(T, Yao L, Gao Z, Wang F. Particle exposure risk to a lavatory user after flushing a squat toilet. Sci Rep 2022; 12:21088. [PMID: 36473899 PMCID: PMC9726816 DOI: 10.1038/s41598-022-25106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Squat toilets are widely used in developing countries due to local customs and low costs. The flushing of a squat toilet can entrain strong airflow and produce aerosols. This investigation constructed a lavatory mock-up with a squat toilet. The flushing-induced airflow was both visualized and quantitatively measured by particle image velocimetry. The maximum height of the impacted airflow was identified by an ultrasonic anemometer. For inference of the particle emission rate, the toilet bowl was covered by an enclosed box for particle concentration measurement. The risks from skin contact of the deposited particles on the flushing button and the door handle and the possible inhalation of the released aerosols were evaluated. The results revealed that flushing a squat toilet can drive toilet plume to rise up to 0.9 m above the toilet bowl. A single flushing process can produce 0.29 million particles with diameters greater than 0.3 μm, among which 90% of the particles are submicron-sized. The flushing may cause particles to deposit on the flushing button and lavatory door handle as well as inhalation exposure even remaining in the lavatory for half a minute after flushing, especially for those lavatory users whose respiratory zones are below 1.0 m.
Collapse
Affiliation(s)
- Tengfei (Tim) Zhang
- grid.30055.330000 0000 9247 7930School of Civil Engineering, Dalian University of Technology, Dalian, China
| | - Lifang Yao
- grid.30055.330000 0000 9247 7930School of Civil Engineering, Dalian University of Technology, Dalian, China
| | - Zilong Gao
- grid.30055.330000 0000 9247 7930School of Civil Engineering, Dalian University of Technology, Dalian, China
| | - Feng Wang
- grid.33763.320000 0004 1761 2484Tianjin Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
23
|
Massicotte R, Assanta MA, Rosette KM. Importance of the Precautionary Principle With Regard to the Risk of Exposure to Aerosols Containing Viral Loads of SARS-CoV-2 Present in Feces: In Perspective. Front Public Health 2022; 10:892290. [PMID: 35692325 PMCID: PMC9174678 DOI: 10.3389/fpubh.2022.892290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
In COVID-19 infection, the emissions of droplets and aerosols produced by the respiratory tract of contaminated subjects may represent a high risk of spreading the SARS-COV-2 virus in the environment. Thus, studies have shown that there is, at least, another source of droplets and aerosols in which viral particles of SARS-COV-2 can be found. It happens after flushing of toilet to dispose of the stools of a patient who has contracted COVID-19. The presence of viral particles of SARS-COV-2 in the stool could be linked to the concentration of angiotensin-converting enzyme 2 (ACE2) found on the surface of intestinal cells. Therefore, there is a reason to wonder whether the emission of viral particles by activating a toilet flush could represent an important potential risk of contamination for health care workers. To investigate this hypothesis, we have correlated different studies on the production of droplets and aerosols as well as the presence of viral particles following flush of toilet. This pooling of these studies led to the following conclusion: the precautionary principle should be applied with regard to the potential risk represented by viral particles of SARV-COV-2 in the stool when flushing the toilet.
Collapse
Affiliation(s)
- Richard Massicotte
- Laboratory of Innovation and Analysis of Bioperformance, Ecole Polytechnique de Montreal, Montreal, QC, Canada
| | - Mafu Akier Assanta
- Food Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Hyacinthe, QC, Canada
| | - Kakese Mukosa Rosette
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Centre de Recherche d'Infectiologie Porcine et Avicole, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
24
|
Cai C, Kim P, Connor TH, Liu Y, Floyd EL. Reducing the particles generated by flushing institutional toilets. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2022; 19:318-326. [PMID: 35293854 DOI: 10.1080/15459624.2022.2053693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Airborne particles play a significant role in the transmission of SARS-CoV-2, the virus that causes COVID-19. A previous study reported that institutional flush-O-meter (FOM) toilets can generate 3-12 times as many droplets as other toilets by splashing (large droplets) and bubble bursting (fine droplets). In this study, an aerosol suppression lid was evaluated to measure the reduction of particles by size using three metrics; number, surface area, and mass concentrations. To quantify toilet flush aerosol over time, detailed particle size distributions (from 0.016-19.81 µm across 152 size bins) were measured from a FOM toilet in a controlled-environment test chamber, without ventilation, with and without use of the suppression lid. Prior to each flushing trial, the toilet bowl water was seeded with 480 mL fluorescein at 10 mg/mL. A high-speed camera was used to record the large droplet movements after flushing. An ultraviolet-visible spectrophotometer was used to analyze the wipe samples to evaluate the contamination on the lid. The particle number, surface area, and mass concentrations without a lid were elevated compared to a lid in the first 90 sec. Overall, the lid reduced 48% of total number concentration, 76% of total surface area concentration, and 66% of total mass concentration, respectively. Depending on the particle size, the number concentration reduction percentage ranged from 48-100% for particles larger than 0.1 µm. Large droplets created by splashing were captured by the high-speed camera. Similar studies can be used for future particle aerodynamic studies. The fluorescein droplets deposited on the lid back sections, which were closer to the FOM accounted for 82% of the total fluorescein. Based on two-way ANOVA analysis, there were significant differences among both the experimental flushes (p = 0.0185) and the sections on the lid (p = 0.0146). Future work should explore the aerosolization produced by flushing and the performance of the lid in real restroom environments, where feces and urine exist in the bowl water and the indoor ventilation system is in operation.
Collapse
Affiliation(s)
- Changjie Cai
- Department of Occupational and Environmental Health, Hudson College of Public Health, The University of Oklahoma Health Sciences Center, The University of Oklahoma, Oklahoma City, Oklahoma
| | - Peter Kim
- Department of Occupational and Environmental Health, Hudson College of Public Health, The University of Oklahoma Health Sciences Center, The University of Oklahoma, Oklahoma City, Oklahoma
| | - Thomas H Connor
- Applied Research and Technology, National Institute for Occupational Safety and Health (Retired), Washington, District of Columbia
| | - Yingtao Liu
- Department of Aerospace and Mechanical Engineering, Gallogly College of Engineering, The University of Oklahoma, Norman, Oklahoma
| | - Evan L Floyd
- Department of Occupational and Environmental Health, Hudson College of Public Health, The University of Oklahoma Health Sciences Center, The University of Oklahoma, Oklahoma City, Oklahoma
| |
Collapse
|
25
|
Gião MS, Vardoulakis S. Aerosols and Bacteria From Hand Washing and Drying in Indoor Air. Front Public Health 2022; 10:804825. [PMID: 35198523 PMCID: PMC8858938 DOI: 10.3389/fpubh.2022.804825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/10/2022] [Indexed: 11/14/2022] Open
Abstract
Effective hand drying is an important part of hand hygiene that can reduce the risk of infectious disease transmission through cross-contamination of surfaces by wet hands. However, hand drying methods may also cause aerosolisation of pathogenic microorganisms if they are present in washed hands. This study investigated experimentally the impact of washing hands and different hand drying methods on the concentration and size distribution of aerosols and bacteria in indoor air. In this experiment, aerosol and bacteria concentrations were measured in indoor air while volunteers rinsed their hands with water or washed with soap and water prior to drying them with paper towels or jet air dryers. Results showed that the concentration of aerosols and bacteria in air increased with people walking in the room and washing hands, with a further increase during the hand drying process. The concentration of aerosols decreased with particle size, with maximum concentrations after drying hands of 6.63 × 106 ± 6.49 × 105 and 2.28 × 104 ± 9.72 × 103 particles m−3 for sizes 0.3 to <0.5 and ≥5.0 μm, respectively. The concentration of bacteria in indoor air after drying hands increased to a maximum of 3.81 × 102 ± 1.48 × 102 CFU m−3 (jet air dryers) and 4.50 × 102 ± 4.35 × 101 CFU m−3 (paper towels). This study indicates that the increase of aerosols and bacteria in air after drying hands with jet air dryers or paper towels are comparable and not statistically different from concentrations associated with walking and washing hands in the same environment. This work can support the development of hand hygiene practices and guidelines for public washrooms.
Collapse
Affiliation(s)
| | - Sotiris Vardoulakis
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, ACT, Australia
- *Correspondence: Sotiris Vardoulakis
| |
Collapse
|
26
|
Danehower S, Lazorko J, Kaplan LJ, Fegley M, Jablonski J, Owei L, Ziegler MJ, Pisa M, Pegues D, Pascual JL. Certain Rooms in Intensive Care Units May Harbor Risk for Clostridioides difficile Infection. Surg Infect (Larchmt) 2022; 23:159-167. [PMID: 35020481 DOI: 10.1089/sur.2021.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract Background: Clostridioides difficile infection (CDI) is a common and sometimes life-threatening illness. Patient-, care-, and room hygiene-specific factors are known to impact CDI genesis, but care provider training and room topography have not been explored. We sought to determine if care in specific intensive care unit (ICU) rooms asymmetrically harbored CDI cases. Patients and Methods: Surgical intensive care unit (SICU) patients developing CDI (July 2009 to June 2018) were identified and separated by service (green/gold). Each service cared for their respective 12 rooms, otherwise differing only in resident team composition (July 2009 to August 2017: green, anesthesia; gold, surgery; August 2017 to June 2018: mixed for both). Fixed/mobile room features and provider traffic in three room zones (far/middle/near in relation to the toilet) were compared between high-/low-incidence rooms using observation via telecritical care video cameras. Results: Seventy-four new CDI cases occurred in 7,834 consecutive SICU admissions. In period one, green CDI cases were almost double gold cases (39 vs. 21; p = 0.02) but were similar in period two in which trainee service allocation intermixed. High-incidence rooms had closer toilet-to-intravenous pole proximity than low-incidence rooms (7.7 + 1.8 feet vs. 3.9 + 1.5 feet; p = 0.02). High-incidence rooms consistently housed mobile objects (patient bed, table-on-wheels) farther away from the toilet. Although physician time spent in each zone was similar, nurses spending more than 15 minutes in-room more frequently stayed in the far/middle zones in high-incidence rooms. Conclusions: Distinct SICU room features relative to toilet location and bedside clinician behaviors interact to alter patient CDI acquisition risk. This suggests that CDI risk occurs as a structural aspect of ICU care, offering the potential to reduce patient risk through deliberate room redesign.
Collapse
Affiliation(s)
- Sarah Danehower
- Department of Surgery, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jared Lazorko
- Department of Surgery, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lewis J Kaplan
- Department of Surgery, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mark Fegley
- Department of Surgery, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Juliane Jablonski
- Department of Healthcare Epidemiology, Infection Prevention and Control, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Lily Owei
- Department of Surgery, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Matthew J Ziegler
- Division of Infectious Diseases, Department of Medicine, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Healthcare Epidemiology, Infection Prevention and Control, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Michael Pisa
- Department of Surgery, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David Pegues
- Division of Infectious Diseases, Department of Medicine, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Healthcare Epidemiology, Infection Prevention and Control, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Jose L Pascual
- Department of Surgery, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Vardoulakis S, Espinoza Oyarce DA, Donner E. Transmission of COVID-19 and other infectious diseases in public washrooms: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149932. [PMID: 34525681 PMCID: PMC8390098 DOI: 10.1016/j.scitotenv.2021.149932] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND The risk of infectious disease transmission in public washrooms causes concern particularly in the context of the COVID-19 pandemic. This systematic review aims to assess the risk of transmission of viral or bacterial infections through inhalation, surface contact, and faecal-oral routes in public washrooms in healthcare and non-healthcare environments. METHODS We systematically reviewed environmental sampling, laboratory, and epidemiological studies on viral and bacterial infection transmission in washrooms using PubMed and Scopus. The review focused on indoor, publicly accessible washrooms. RESULTS Thirty-eight studies from 13 countries were identified, including 14 studies carried out in healthcare settings, 10 in laboratories or experimental chambers, and 14 studies in restaurants, workplaces, commercial and academic environments. Thirty-three studies involved surface sampling, 15 air sampling, 8 water sampling, and 5 studies were risk assessments or outbreak investigations. Infectious disease transmission was studied in relation with: (a) toilets with flushing mechanisms; (b) hand drying systems; and (c) water taps, sinks and drains. A wide range of enteric, skin and soil bacteria and enteric and respiratory viruses were identified in public washrooms, potentially posing a risk of infection transmission. Studies on COVID-19 transmission only examined washroom contamination in healthcare settings. CONCLUSION Open-lid toilet flushing, ineffective handwashing or hand drying, substandard or infrequent surface cleaning, blocked drains, and uncovered rubbish bins can result in widespread bacterial and/or viral contamination in washrooms. However, only a few cases of infectious diseases mostly related to faecal-oral transmission originating from washrooms in restaurants were reported. Although there is a risk of microbial aerosolisation from toilet flushing and the use of hand drying systems, we found no evidence of airborne transmission of enteric or respiratory pathogens, including COVID-19, in public washrooms. Appropriate hand hygiene, surface cleaning and disinfection, and washroom maintenance and ventilation are likely to minimise the risk of infectious disease transmission.
Collapse
Affiliation(s)
- Sotiris Vardoulakis
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, ACT 2601, Australia.
| | - Daniela A Espinoza Oyarce
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, ACT 2601, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
28
|
Compendium of analytical methods for sampling, characterization and quantification of bioaerosols. ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Boles C, Brown G, Nonnenmann M. Determination of murine norovirus aerosol concentration during toilet flushing. Sci Rep 2021; 11:23558. [PMID: 34876637 PMCID: PMC8651634 DOI: 10.1038/s41598-021-02938-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/24/2021] [Indexed: 11/14/2022] Open
Abstract
Murine norovirus (MNV) was used as a surrogate for human viral pathogens (e.g., norovirus) to determine if toilet flushing resulted in the aerosolization of virus. A flushometer type toilet was seeded with a viral solution of 105 and 106 PFU mL-1 of MNV and then flushed. Upon flushing, two bioaerosol samplers were activated to collect aerosolized MNV. Prior to the experiment, two optical particle counters monitored particle size and number distribution of aerosol produced from flushing a toilet across height, position, and side. The location with the highest mean particle concentration, was behind the toilet and 0.15 m above the toilet bowl rim, which is where bioaerosol sampling occurred. Bioaerosol and toilet water samples were collected, extracted and then quantified using RT-ddPCR. The concentration of MNV collected after seeding the toilet water ranged from 2.18 × 105 to 9.65 × 106 total copies of MNV. Positive samples of airborne MNV were detected with collected concentrations ranging from 383 to 684 RNA copies/m3 of air. This study provides evidence that viral pathogens may be aerosolized when a toilet is flushed. Furthermore, the MNV used in this study is a model organism for human norovirus and may be generalizable to other viral pathogens (e.g., coronavirus). This study suggests that virus is aerosolized from toilet flushing and may contribute to human exposure to viral pathogens.
Collapse
Affiliation(s)
| | - Grant Brown
- College of Public Health, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
30
|
Abney S, Bright K, McKinney J, Ijaz MK, Gerba C. Toilet hygiene-review and research needs. J Appl Microbiol 2021; 131:2705-2714. [PMID: 33899991 PMCID: PMC9292268 DOI: 10.1111/jam.15121] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/26/2021] [Accepted: 04/21/2021] [Indexed: 11/26/2022]
Abstract
The goal of good toilet hygiene is minimizing the potential for pathogen transmission. Control of odours is also socially important and believed to be a societal measure of cleanliness. Understanding the need for good cleaning and disinfecting is even more important today considering the potential spread of emerging pathogens such as SARS-CoV-2 virus. While the flush toilet was a major advancement in achieving these objectives, exposure to pathogens can occur from failure to clean and disinfect areas within a restroom, as well as poor hand hygiene. The build-up of biofilm within a toilet bowl/urinal including sink can result in the persistence of pathogens and odours. During flushing, pathogens can be ejected from the toilet bowl/urinal/sink and be transmitted by inhalation and contaminated fomites. Use of automatic toilet bowl cleaners can reduce the number of microorganisms ejected during a flush. Salmonella bacteria can colonize the underside of the rim of toilets and persist up to 50 days. Pathogenic enteric bacteria appear in greater numbers in the biofilm found in toilets than in the water. Source tracking of bacteria in homes has demonstrated that during cleaning enteric bacteria are transferred from the toilet to the bathroom sinks and that these same bacteria colonize cleaning tools used in the restroom. Quantitative microbial risk assessment has shown that significant risks exist from both aerosols and fomites in restrooms. Cleaning with soaps and detergents without the use of disinfectants in public restrooms may spread bacteria and viruses throughout the restroom. Odours in restrooms are largely controlled by ventilation and flushing volume in toilet/urinals. However, this results in increased energy and water usage. Contamination of both the air and surfaces in restrooms is well documented. Better quantification of the risks of infection are needed as this will help determine what interventions will minimize these risks.
Collapse
Affiliation(s)
- S.E. Abney
- Department of Environmental Science University of Arizona Tucson AZ USA
| | - K.R. Bright
- Department of Environmental Science University of Arizona Tucson AZ USA
| | - J. McKinney
- Global Research and Development for Lysol and Dettol Reckitt Benckiser LLC Montvale NJ USA
| | - M. Khalid Ijaz
- Global Research and Development for Lysol and Dettol Reckitt Benckiser LLC Montvale NJ USA
- Department of Biology Medgar Evers College of the City University of New York (CUNY) Brooklyn NY USA
| | - C.P. Gerba
- Department of Environmental Science University of Arizona Tucson AZ USA
| |
Collapse
|
31
|
Büchner F, Hoffman M, Dobermann UH, Edel B, Lehmann T, Kipp F. Do closed waste containers lead to less air contamination than opened? A clinical case study at Jena University Hospital, Germany. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 136:11-17. [PMID: 34634566 DOI: 10.1016/j.wasman.2021.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Nosocomial infections are a growing challenge at hospitals. This clinical study aimed to investigate the influence of waste container construction ((open (O), closed (C), and hands-free opening (HF)) on microbial air contamination in a hospital setting. The results are intended to help develop guidelines for waste containers for the collection of non-infectious waste at hospitals and medical facilities. The clinical experiment was conducted at the University Hospital Jena, Germany. Air Impactor samples were performed and microbiologically evaluated for bacteria and fungi both quantitatively and qualitatively. The results were statistically determined using generalized estimating equations. Quantitatively, the lowest bacterial counts in ambient air were found around closed waste containers (114.74 CFU/m3) in comparison to HF (129.28 CFU/m3) and O (126.28 CFU/m3). For fungi, the surrounding air of C (2.08 CFU/m3) and HF (1.97 CFU/m3) waste containers showed a lower impact of fungal air contamination than for O (2.32 CFU/m3). Overall, it was shown that C are more preferable to HF and O waste containers from the point of view of microbial air contamination at hospitals.
Collapse
Affiliation(s)
- Franziskus Büchner
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.
| | - Marc Hoffman
- Integrative Health and Security Management Center, Staff Section Environmental Protection, Jena University Hospital, Bachstraße 18, D-07743 Jena, Germany
| | - Ute-Helke Dobermann
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Birgit Edel
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Thomas Lehmann
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital, Bachstraße 18, D-07743 Jena, Germany
| | - Frank Kipp
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| |
Collapse
|
32
|
Wang Q, Liu L. On the Critical Role of Human Feces and Public Toilets in the Transmission of COVID-19: Evidence from China. SUSTAINABLE CITIES AND SOCIETY 2021; 75:103350. [PMID: 34540563 PMCID: PMC8433098 DOI: 10.1016/j.scs.2021.103350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 05/05/2023]
Abstract
The surprising spread speed of the COVID-19 pandemic creates an urgent need for investigating the transmission chain or transmission pattern of COVID-19 beyond the traditional respiratory channels. This study therefore examines whether human feces and public toilets play a critical role in the transmission of COVID-19. First, it develops a theoretical model that simulates the transmission chain of COVID-19 through public restrooms. Second, it uses stabilized epidemic data from China to empirically examine this theory, conducting an empirical estimation using a two-stage least squares (2SLS) model with appropriate instrumental variables (IVs). This study confirms that the wastewater directly promotes the transmission of COVID-19 within a city. However, the role of garbage in this transmission chain is more indirect in the sense that garbage has a complex relationship with public toilets, and it promotes the transmission of COVID-19 within a city through interaction with public toilets and, hence, human feces. These findings have very strong policy implications in the sense that if we can somehow use the ratio of public toilets as a policy instrument, then we can find a way to minimize the total number of infections in a region. As shown in this study, pushing the ratio of public toilets (against open defecation) to the local population in a city to its optimal level would help to reduce the total infection in a region.
Collapse
Affiliation(s)
- Qiuyun Wang
- School of Economics, Southwestern University of Finance and Economics, P.R China
| | - Lu Liu
- School of Economics, Southwestern University of Finance and Economics, P.R China
| |
Collapse
|
33
|
Dancer SJ, Li Y, Hart A, Tang JW, Jones DL. What is the risk of acquiring SARS-CoV-2 from the use of public toilets? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148341. [PMID: 34146809 PMCID: PMC8192832 DOI: 10.1016/j.scitotenv.2021.148341] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 05/18/2023]
Abstract
Public toilets and bathrooms may act as a contact hub point where community transmission of SARS-CoV-2 occurs between users. The mechanism of spread would arise through three mechanisms: inhalation of faecal and/or urinary aerosol from an individual shedding SARS-CoV-2; airborne transmission of respiratory aerosols between users face-to-face or during short periods after use; or from fomite transmission via frequent touch sites such as door handles, sink taps, lota or toilet roll dispenser. In this respect toilets could present a risk comparable with other high throughput enclosed spaces such as public transport and food retail outlets. They are often compact, inadequately ventilated, heavily used and subject to maintenance and cleaning issues. Factors such as these would compound the risks generated by toilet users incubating or symptomatic with SARS-CoV-2. Furthermore, toilets are important public infrastructure since they are vital for the maintenance of accessible, sustainable and comfortable urban spaces. Given the lack of studies on transmission through use of public toilets, comprehensive risk assessment relies upon the compilation of evidence gathered from parallel studies, including work performed in hospitals and prior work on related viruses. This narrative review examines the evidence suggestive of transmission risk through use of public toilets and concludes that such a risk cannot be lightly disregarded. A range of mitigating actions are suggested for both users of public toilets and those that are responsible for their design, maintenance and management.
Collapse
Affiliation(s)
- Stephanie J Dancer
- Department of Microbiology, Hairmyres Hospital, NHS, Lanarkshire G75 8RG, Scotland, UK; School of Applied Sciences, Edinburgh Napier University, Edinburgh EH14 1DJ, Scotland, UK.
| | - Yuguo Li
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China
| | - Alwyn Hart
- Environment Agency, Research Assessment & Evaluation, Streetsbrook Road, Solihull B91 1QT, West Midlands, England, UK
| | - Julian W Tang
- Respiratory Sciences, University of Leicester, Leicester LE1 7RH, England, UK
| | - Davey L Jones
- Environment Centre Wales, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, Wales, UK; UWA School of Agriculture and Environment, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
34
|
Infection Control in the Era of COVID-19: A Narrative Review. Antibiotics (Basel) 2021; 10:antibiotics10101244. [PMID: 34680824 PMCID: PMC8532716 DOI: 10.3390/antibiotics10101244] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19 quickly became a pandemic causing millions of infections and mortalities. It required real-time adjustments to healthcare systems and infection prevention and control (IPC) measures to limit the spread and protect healthcare providers and hospitalized patients. IPC guidelines were adopted and developed based on experience gained during the MERS-CoV and SARS-CoV outbreaks. The aim of this narrative review is to summarize current evidence on IPC in healthcare settings and patients with COVID-19 to prevent nosocomial infections during the actual pandemic. A search was run on PubMed using the terms (‘COVID-19’ [Mesh]) AND (‘Infection Control’ [Mesh]) between 2019 and 2021. We identified 86 studies that were in accordance with our aim and summarized them under certain themes as they related to COVID-19 infection control measures. All the guidelines recommend early diagnosis and rapid isolation of COVID-19 patients. The necessary precautions should be taken comprising the whole process, starting with an infectious disease plan, administrative and engineering controls, triage, and PPE training. Guidelines should target modes of transmission, droplet, aerosol, and oral–fecal, while recommending control precautions. Healthcare facilities must promptly implement a multidisciplinary defense system to combat the outbreak.
Collapse
|
35
|
Lessler J. An Overlooked Role for Fecal Transmission of Severe Acute Respiratory Syndrome Coronavirus 2? Clin Infect Dis 2021; 73:e1803-e1804. [PMID: 33064139 PMCID: PMC7665370 DOI: 10.1093/cid/ciaa1575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/14/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Justin Lessler
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
36
|
Haji Ali B, Shahin MS, Masoumi Sangani MM, Faghihinezhad M, Baghdadi M. Wastewater aerosols produced during flushing toilets, WWTPs, and irrigation with reclaimed municipal wastewater as indirect exposure to SARS-CoV-2. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:106201. [PMID: 34405082 PMCID: PMC8361049 DOI: 10.1016/j.jece.2021.106201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 05/07/2023]
Abstract
The detection of SARS-CoV-2 RNA in raw and treated wastewater can open up a fresh perspective to waterborne and aerosolized wastewater as a new transmission route of SARS-CoV-2 RNA during the current pandemic. The aim of this paper is to discuss the potential transmission of SARS-CoV-2 RNA from wastewater aerosols formed during toilet flushing, plumbing failure, wastewater treatment plants, and municipal wastewater reuse for irrigation. Moreover, how these aerosols might increase the risk of exposure to this novel coronavirus (SARS-CoV-2 RNA). This article supplies a review of the literature on the presence of SARS-CoV-2 RNA in untreated wastewater, as well as the fate and stability of SARS-CoV-2 RNA in wastewater. We also reviewed the existing literatures on generation and transmission of aerosolized wastewater through flush a toilet, house's plumbing networks, WWTPs, wastewater reuse for irrigation of agricultural areas. Finally, the article briefly studies the potential risk of infection with exposure to the fecal bioaerosols of SARS-CoV-2 RNA for the people who might be exposed through flushing toilets or faulty building plumbing systems, operators/workers in wastewater treatment plants, and workers of fields irrigated with treated wastewater - based on current knowledge. Although this review highlights the indirect transmission of SARS-CoV-2 RNA through wastewater aerosols, no research has yet clearly demonstrated the role of aerosolized wastewater in disease transmission regarding the continuation of this pandemic. Therefore, there is a need for additional studies on wastewater aerosols in transmission of COVID-19.
Collapse
Affiliation(s)
- Banafsheh Haji Ali
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | | | | | - Mohsen Faghihinezhad
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Baghdadi
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
37
|
Ye J, Qian H, Zhang J, Sun F, Zhuge Y, Zheng X. Combining culturing and 16S rDNA sequencing to reveal seasonal and room variations of household airborne bacteria and correlative environmental factors in nanjing, southeast china. INDOOR AIR 2021; 31:1095-1108. [PMID: 33655612 DOI: 10.1111/ina.12807] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Exposure to bioaerosols poses important health effects on occupants. To elucidate seasonal and room variations of household airborne bacteria, this study investigated 30 residential homes during summer and winter throughout Nanjing, Southeast China, with a humid subtropical climate. Culturing and 16S rDNA sequencing methods were combined in this study. Results showed that the community structure and composition in the same season but different homes show similarity, however, they in the same home but in different seasons show a huge difference, with Sphingomonas (25.3%), Clostridium (14.8%), and Pseudomonas (7.6%) being the dominant bacteria in summer, and Pseudomonas (57.1%) was dominant bacteria in winter. Culturable concentrations of bacteria were also significantly higher in summer (854 ± 425 CFU/m3 ) than in winter (231 ± 175 CFU/m3 ), but difference by home or room was relatively minor. More than 80% of culturable bacteria (<4.7 μm) could penetrate into lower respiratory tract. The seasonal variations of bacterial community and concentrations were closely associated with seasonal variations of temperature, humidity, and PM2.5 . Higher concentrations and larger sizes were observed in the bathroom and kitchen, typically with higher humidity than other rooms.
Collapse
Affiliation(s)
- Jin Ye
- School of Energy and Environment, Southeast University, Nanjing, China
- Engineering Research Center for Building Energy Environment & Equipments, Ministry of Education, China
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, USA
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China
- Engineering Research Center for Building Energy Environment & Equipments, Ministry of Education, China
| | - Jianshun Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, USA
| | - Fan Sun
- School of Energy and Environment, Southeast University, Nanjing, China
- Engineering Research Center for Building Energy Environment & Equipments, Ministry of Education, China
| | - Yang Zhuge
- School of Energy and Environment, Southeast University, Nanjing, China
- Engineering Research Center for Building Energy Environment & Equipments, Ministry of Education, China
| | - Xiaohong Zheng
- School of Energy and Environment, Southeast University, Nanjing, China
- Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy and Environment, Southeast University, Nanjing, China
| |
Collapse
|
38
|
Farrag MA, Amer HM, Bhat R, Hamed ME, Aziz IM, Mubarak A, Dawoud TM, Almalki SG, Alghofaili F, Alnemare AK, Al-Baradi RS, Alosaimi B, Alturaiki W. SARS-CoV-2: An Overview of Virus Genetics, Transmission, and Immunopathogenesis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6312. [PMID: 34200934 PMCID: PMC8296125 DOI: 10.3390/ijerph18126312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022]
Abstract
The human population is currently facing the third and possibly the worst pandemic caused by human coronaviruses (CoVs). The virus was first reported in Wuhan, China, on 31 December 2019 and spread within a short time to almost all countries of the world. Genome analysis of the early virus isolates has revealed high similarity with SARS-CoV and hence the new virus was officially named SARS-CoV-2. Since CoVs have the largest genome among all RNA viruses, they can adapt to many point mutation and recombination events; particularly in the spike gene, which enable these viruses to rapidly change and evolve in nature. CoVs are known to cross the species boundaries by using different cellular receptors. Both animal reservoir and intermediate host for SARS-CoV-2 are still unresolved and necessitate further investigation. In the current review, different aspects of SARS-CoV-2 biology and pathogenicity are discussed, including virus genetics and evolution, spike protein and its role in evolution and adaptation to novel hosts, and virus transmission and persistence in nature. In addition, the immune response developed during SARS-CoV-2 infection is demonstrated with special reference to the interplay between immune cells and their role in disease progression. We believe that the SARS-CoV-2 outbreak will not be the last and spillover of CoVs from bats will continue. Therefore, establishing intervention approaches to reduce the likelihood of future CoVs spillover from natural reservoirs is a priority.
Collapse
Affiliation(s)
- Mohamed A. Farrag
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.F.); (R.B.); (M.E.H.); (I.M.A.); (A.M.); (T.M.D.)
| | - Haitham M. Amer
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Rauf Bhat
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.F.); (R.B.); (M.E.H.); (I.M.A.); (A.M.); (T.M.D.)
| | - Maaweya E. Hamed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.F.); (R.B.); (M.E.H.); (I.M.A.); (A.M.); (T.M.D.)
| | - Ibrahim M. Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.F.); (R.B.); (M.E.H.); (I.M.A.); (A.M.); (T.M.D.)
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.F.); (R.B.); (M.E.H.); (I.M.A.); (A.M.); (T.M.D.)
| | - Turki M Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.F.); (R.B.); (M.E.H.); (I.M.A.); (A.M.); (T.M.D.)
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (S.G.A.); (F.A.); (R.S.A.-B.)
| | - Fayez Alghofaili
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (S.G.A.); (F.A.); (R.S.A.-B.)
| | - Ahmad K. Alnemare
- Otolaryngology Department, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia;
| | - Raid Saleem Al-Baradi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (S.G.A.); (F.A.); (R.S.A.-B.)
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh 11525, Saudi Arabia;
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (S.G.A.); (F.A.); (R.S.A.-B.)
| |
Collapse
|
39
|
Lai ACK, Nunayon SS. A new UVC-LED system for disinfection of pathogens generated by toilet flushing. INDOOR AIR 2021; 31:324-334. [PMID: 32989792 PMCID: PMC7537215 DOI: 10.1111/ina.12752] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
A new disinfection system utilizing UVC-LED irradiation was developed. The system was affixed to the toilet seat, and it was challenged by three bacteria strains. Different configurations were tested: 3-LEDs, 5-LEDs (two variants), and 8-LEDs. To determine the arrangement designs of LEDs with the optimum efficacy, two variants of 5-LEDs configurations were additionally considered-uniform and concentrated (2-sided) distributions. It was noticed that disinfection efficacy initially increased with the number of LEDs, but with 8-LEDs, the trend became almost non-obvious for surface disinfection and just marginally increased for airborne disinfection. The mean efficiencies for the surface disinfection ranged from 55.17 ± 23.89% to 72.80 ± 4.13% for E. coli; 36.65 ± 2.99% to 50.05 ± 13.38% for S. typhimurium; and 8.81 ± 3.23% to 39.43 ± 9.33% for S. epidermidis. Likewise, the mean efficiencies for airborne disinfection ranged from 42.17 ± 8.18% to 70.70 ± 4.80%; 40.40 ± 17.90% to 58.31 ± 13.87%; and 24.16 ± 3.81% to 42.79 ± 10.20% for E. coli; S. typhimurium; and S. epidermidis, respectively. Furthermore, the efficacy of the uniform irradiation was nearly twice that of the concentrated irradiation for surface disinfection and 17.70% higher for airborne disinfection, when tested against E coli. Collectively, these very promising results showcased that this compact, sustainable, and localized disinfection system has a high potential for the next generation of disinfection devices.
Collapse
Affiliation(s)
- Alvin C. K. Lai
- Department of Architecture and Civil EngineeringCity University of Hong KongKowloon TongHong Kong
| | - Sunday S. Nunayon
- Department of Architecture and Civil EngineeringCity University of Hong KongKowloon TongHong Kong
| |
Collapse
|
40
|
Schreck JH, Lashaki MJ, Hashemi J, Dhanak M, Verma S. Aerosol generation in public restrooms. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:033320. [PMID: 33897239 PMCID: PMC8060976 DOI: 10.1063/5.0040310] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/11/2021] [Indexed: 05/04/2023]
Abstract
Aerosolized droplets play a central role in the transmission of various infectious diseases, including Legionnaire's disease, gastroenteritis-causing norovirus, and most recently COVID-19. Respiratory droplets are known to be the most prominent source of transmission for COVID-19; however, alternative routes may exist given the discovery of small numbers of viable viruses in urine and stool samples. Flushing biomatter can lead to the aerosolization of micro-organisms; thus, there is a likelihood that bioaerosols generated in public restrooms may pose a concern for the transmission of COVID-19, especially since these areas are relatively confined, experience heavy foot traffic, and may suffer from inadequate ventilation. To quantify the extent of aerosolization, we measure the size and number of droplets generated by flushing toilets and urinals in a public restroom. The results indicate that the particular designs tested in the study generate a large number of droplets in the size range 0.3 μ m - 3 μ m , which can reach heights of at least 1.52 m. Covering the toilet reduced aerosol levels but did not eliminate them completely, suggesting that aerosolized droplets escaped through small gaps between the cover and the seat. In addition to consistent increases in aerosol levels immediately after flushing, there was a notable rise in ambient aerosol levels due to the accumulation of droplets from multiple flushes conducted during the tests. This highlights the need for incorporating adequate ventilation in the design and operation of public spaces, which can help prevent aerosol accumulation in high occupancy areas and mitigate the risk of airborne disease transmission.
Collapse
Affiliation(s)
- Jesse H. Schreck
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | - Masoud Jahandar Lashaki
- Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | - Javad Hashemi
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | - Manhar Dhanak
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | - Siddhartha Verma
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida 33431, USA
- Also at: Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA. Author to whom correspondence should be addressed:. URL:http://www.computation.fau.edu
| |
Collapse
|
41
|
Exposure to SARS-CoV-2 in Aerosolized Wastewater: Toilet Flushing, Wastewater Treatment, and Sprinkler Irrigation. WATER 2021. [DOI: 10.3390/w13040436] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The existence of SARS-CoV-2, the etiologic agent of coronavirus disease 2019 (COVID-19), in wastewater raises the opportunity of tracking wastewater for epidemiological monitoring of this disease. However, the existence of this virus in wastewater has raised health concerns regarding the fecal–oral transmission of COVID-19. This short review is intended to highlight the potential implications of aerosolized wastewater in transmitting this virus. As aerosolized SARS-CoV-2 could offer a more direct respiratory pathway for human exposure, the transmission of this virus remains a significant possibility in the prominent wastewater-associated bioaerosols formed during toilet flushing, wastewater treatment, and sprinkler irrigation. Implementing wastewater disinfection, exercising precautions, and raising public awareness would be essential. Additional research is needed to evaluate the survival, fate, and dissemination of SARS-CoV-2 in wastewater and the environment and rapid characterization of aerosols and their risk assessment.
Collapse
|
42
|
Li D, Lin EZ, Brault MA, Paquette J, Vermund SH, Godri Pollitt KJ. Reopening Schools After a Novel Coronavirus Surge. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:785-813. [PMID: 33973212 DOI: 10.1007/978-3-030-63761-3_44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic shook the world in ways not seen since the pandemic influenza of 1918-1919. As of late August 2020, over 25 million persons had been infected, and we will see the global death toll exceed one million by the end of 2020. Both are minimum estimates. All segments of society have been drastically affected. Schools worldwide have been forced to close due to illness and absenteeism, transmission and risk to vulnerable members of the school community, and community concerns. The decision to reopen school during a pandemic will have a tremendous impact on children's safety, growth, and well-being. Not opening invites social isolation and suboptimal educational experiences, especially for youth whose computing assets and online access are limited and those with special needs. The opening has hazards as well, and the mitigation of these risks is the topic of this chapter. Opening schools requires careful considerations of benefits, risks, and precautions. Guiding principles for safety and strategic application of the principles in each educational niche are critical issues to consider during school reopening. The fundamental principles of disease control involve school-directed initiatives (physical distancing and mask use, hand/face and surface cleansing, administrative controls, engineering controls) and individual-level risk reduction approaches to maximize adherence to new guidelines. The school-initiated "top-down" approaches and the individual-level "bottom-up" approaches must be synergized, as no single method will ensure safety. We discuss how to effectively layer strategies in each educational space to increase safety. Since the vulnerability of children has been heightened during this pandemic crisis, we highlight the special considerations for mental health support that should be considered by schools. The safety principles, disease control strategies, and other critical issues discussed here will serve as a starting point for developing a safe, comprehensive, and feasible reopening plan.
Collapse
Affiliation(s)
- Dan Li
- Yale School of Public Health, New Haven, CT, USA
| | | | | | - Julie Paquette
- Office of Facilities, Yale University, New Haven, CT, USA
| | | | | |
Collapse
|
43
|
Safety in Endoscopy for Patients and Healthcare Workers During the COVID-19 Pandemic. TECHNIQUES AND INNOVATIONS IN GASTROINTESTINAL ENDOSCOPY 2021; 23:170-178. [PMID: 33103130 PMCID: PMC7568769 DOI: 10.1016/j.tige.2020.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is still wreaking havoc in many parts of the world and poses a great burden to healthcare systems worldwide. Mitigation and suppression strategies have been implemented globally but the disease has proven to be difficult to contain. Initially many elective gastrointestinal endoscopies were cancelled to reduce the risk of infection and conserve personal protective equipment, but many endoscopy units are now faced with the dilemma of resuming endoscopy service during the pandemic as indefinitely postponing diagnostic procedures may lead to a delay in the diagnosis and treatment of malignancies. Further concerns are surfacing as COVID-19 is now known to affect the gastrointestinal tract and may potentially be spread via the fecal-oral route. Until more effective drugs and vaccines are available, it is unlikely that the pandemic will wind down in the near future. Maintaining a balance between protecting healthcare workers and patients from being infected on the one hand and providing timely and effective clinical care on the other will become increasingly important as the pandemic persists. In this narrative review, the risk of COVID-19 infection for healthcare workers and patients undergoing endoscopy, and recommendations on maintaining safe, high-quality endoscopy practice will be discussed.
Collapse
|
44
|
Lou M, Liu S, Gu C, Hu H, Tang Z, Zhang Y, Xu C, Li F. The bioaerosols emitted from toilet and wastewater treatment plant: a literature review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2509-2521. [PMID: 33098562 PMCID: PMC7585356 DOI: 10.1007/s11356-020-11297-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/18/2020] [Indexed: 05/05/2023]
Abstract
The aerosols harboring microorganisms and viruses released from the wastewater system into the air have greatly threatened the health and safety of human beings. The wastewater systems, including toilet and wastewater treatment plant (WWTP), are the major locations of epidemic infections due to the extensive sources of aerosols, as well as multifarious germs and microorganisms. Viruses and microorganisms may transport from both toilet and hospital into municipal pipes and subsequently into WWTP, which accounts for the main source of bioaerosols dispersed in the air of the wastewater system. This review aims to elaborate the generation, transmission, and diffusion processes of bioaerosols at toilet and WWTP. Moreover, the main factors affecting bioaerosol transmission and the corresponding prevention strategies for the airborne and inhaled bioaerosols are also discussed. Collectively, this review highlights the importance of managing bioaerosol occurrence in the wastewater system, which has aroused increasing concern from the public.
Collapse
Affiliation(s)
- Mengmeng Lou
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Shuai Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Chunjie Gu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huimin Hu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhengkun Tang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yaopeng Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Chenye Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
- State Environmental Science and Engineering Centre for Pollution Treatment and Control in Textile Industry, Shanghai, 201620, China.
| | - Fang Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
- State Environmental Science and Engineering Centre for Pollution Treatment and Control in Textile Industry, Shanghai, 201620, China.
| |
Collapse
|
45
|
Larson C, Oronsky B, Goyal S, Ray C, Hedjran F, Hammond TC, Kesari S, Caroen S, Lybeck M, Dobalian VE, Oronsky A, Reid T. COVID-19 and cancer: A guide with suggested COVID-19 rule-out criteria to support clinical decision-making. Biochim Biophys Acta Rev Cancer 2020; 1874:188412. [PMID: 32827582 PMCID: PMC7438345 DOI: 10.1016/j.bbcan.2020.188412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/21/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious zoonotic pathogen that has exacted heavy public health, social and economic tolls. In February 2020, the World Health Organization acronymed the disease caused by SARS-CoV-2 as COVID-19, for coronavirus disease 2019. The number of confirmed COVID-19 infections, which has been detected in at least 103 countries, has reached 1,970,225 worldwide as of April 14, 2020 with 124,544 deaths, according to the U.S. Centers for Disease Control and Prevention (CDC). Many cases of COVID-19 resolve quickly. However, the disease, which, like other respiratory pathogens that cause common cold symptoms is believed to be transmitted through respiratory droplets. Infection with COVID-19 can also lead to significant morbidity and death; this is particularly the case for cancer patients. Moreover, because the signs and symptoms of COVID-19 are easily misattributed to the sequelae of cancer itself, such as pulmonary embolism, or its treatment, such as nausea and diarrhea, diagnosis may be delayed or missed. Potential COVID-19 rule out criteria, based on the Wells' criteria for pulmonary embolism, another protean disease entity, are provided as a decision-making aid. This review summarizes the current understanding of the transmission, clinical presentation, diagnosis and differential diagnosis, pathogenesis, rationale to treat the cancer or not, treatment and prevention of COVID-19 with an emphasis on implications in cancer.
Collapse
Affiliation(s)
| | | | - Sharad Goyal
- George Washington University, Washington, DC, USA
| | - Carolyn Ray
- St. Francis Hospital and Medical Center, Hartford, CT, USA
| | | | - Terese C Hammond
- John Wayne Cancer Institute at Providence St. John's Health, Santa Monica, CA, USA
| | - Santosh Kesari
- John Wayne Cancer Institute at Providence St. John's Health, Santa Monica, CA, USA
| | | | | | | | | | | |
Collapse
|
46
|
Montazeri A, Zandi H, Teymouri F, Soltanianzadeh Z, Jambarsang S, Mokhtari M. Microbiological analysis of bacterial and fungal bioaerosols from burn hospital of Yazd (Iran) in 2019. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1121-1130. [PMID: 33312628 PMCID: PMC7721834 DOI: 10.1007/s40201-020-00531-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/03/2020] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Bioaerosols play an important role in incidence of infections in indoor and outdoor air of hospitals. Microorganisms play a critical role in the health of human beings and they are found everywhere in the environment, including different wards of a hospital. So, quantitative and qualitative analysis of microorganisms is highly important in hospital air. The aim of this study was to evaluate the diversity and density of bacteria and fungi in the air of Shohadaye Mehrab Hospital in Yazd City, Iran. MATERIALS AND METHODS Sampling was performed using a single-stage pump (Quick Take30) at a flow rate of 28.3 l per minute for five minutes. As a result, 288 indoor and outdoor hospital air samples were collected. Numbers and types of bacterial and fungal colonies were identified using colony morphology, gram staining, and standard microbial tests. Chi-square test, PCA and linear mixed model were run by SPSS version 24.0 for data analysis. RESULTS The highest bacterial contaminations were found in the burns ward (294 CFU/m3), operating theater (147 CFU/m3), and emergency department (124 CFU/m3), respectively. Fungal contamination was higher in the derm ward (110 CFU/m3) than other sampling sites. The dominant genus of gram-positive bacteria was Staphylococcus epidermidis (n = 60, 62.5%) and the dominant genus of gram-negative bacteria was Citrobacter freundi (n = 11, 11.5%). The most fungal gens isolated from the hospital air samples were Penicillium (n = 73, 76%), Alternaria (n = 51, 53.1%), Aspergillus niger (n = 40, 41.7%), and Aspergillus flavus (n = 34, 35.4%), respectively. CONCLUSION Considering that the burn wounds represent a susceptible site for opportunistic microorganisms, even low concentration of fungi/bacteria in air can be considered as a risk factor that facilitates transmission of the infectious agents in the hospital. Therefore, control measures should be taken to reduce the infection hazard in health staff and patients. These measures include ensuring effective ventilation, cleaning and decontaminating surfaces and equipment, restricting the personnel and patient companions' movement across the wards.
Collapse
Affiliation(s)
- Akram Montazeri
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hengamah Zandi
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fahimeh Teymouri
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Soltanianzadeh
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sara Jambarsang
- Research Center of Prevention and Epidemiology of Non-Communicable Disease, Department of Biostatistics and Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehdi Mokhtari
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
47
|
Duda-Chodak A, Lukasiewicz M, Zięć G, Florkiewicz A, Filipiak-Florkiewicz A. Covid-19 pandemic and food: Present knowledge, risks, consumers fears and safety. Trends Food Sci Technol 2020; 105:145-160. [PMID: 32921922 PMCID: PMC7480472 DOI: 10.1016/j.tifs.2020.08.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/04/2020] [Accepted: 08/29/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND COVID-19 is a pandemic disease that has paralyzed social life and the economy around the world since the end of 2019, and which has so far killed nearly 600,000 people. The rapidity of its spread and the lack of detailed research on the course and methods of transmission significantly impede both its eradication and prevention. SCOPE AND APPROACH Due to the high transmission rate and fatality resulting from COVID-19 disease, the paper focuses on analyzing the current state of knowledge about SARS-CoV-2 as well as its potential connection with food as a source of pathogen and infection. KEY FINDINGS AND CONCLUSIONS There is currently no evidence (scientific publications, WHO, EFSA etc.) that COVID-19 disease can spread directly through food and the human digestive system. However, according to the hypothesis regarding the primary transmission of the virus, the source of which was food of animal origin (meat of wild animals), as well as the fact that food is a basic necessity for humans, it is worth emphasizing that food can, if not directly, be a carrier of the virus. Particular attention should be paid to this indirect pathway when considering the potential for the spread of an epidemic and the development of prevention principles.
Collapse
Affiliation(s)
- Aleksandra Duda-Chodak
- Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, PL30-149, Krakow, Poland
| | - Marcin Lukasiewicz
- Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, PL30-149, Krakow, Poland
| | - Gabriela Zięć
- Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, PL30-149, Krakow, Poland
| | - Adam Florkiewicz
- Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, PL30-149, Krakow, Poland
| | | |
Collapse
|
48
|
Islam MS, Rahman KM, Sun Y, Qureshi MO, Abdi I, Chughtai AA, Seale H. Current knowledge of COVID-19 and infection prevention and control strategies in healthcare settings: A global analysis. Infect Control Hosp Epidemiol 2020; 41:1196-1206. [PMID: 32408911 PMCID: PMC7253768 DOI: 10.1017/ice.2020.237] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE In the current absence of a vaccine for COVID-19, public health responses aim to break the chain of infection by focusing on the mode of transmission. We reviewed the current evidence on the transmission dynamics and on pathogenic and clinical features of COVID-19 to critically identify any gaps in the current infection prevention and control (IPC) guidelines. METHODS In this study, we reviewed global COVID-19 IPC guidelines by organizations such as the World Health Organization (WHO), the US Centers for Disease Control and Prevention (CDC), and the European Centre for Disease Prevention and Control (ECDC). Guidelines from 2 high-income countries (Australia and United Kingdom) and from 1 middle-income country (China) were also reviewed. We searched publications in English on 'PubMed' and Google Scholar. We extracted information related to COVID-19 transmission dynamics, clinical presentations, and exposures that may facilitate transmission. We then compared these findings with the recommended IPC measures. RESULTS Nosocomial transmission of SARS-CoV-2 in healthcare settings occurs through droplets, aerosols, and the oral-fecal or fecal-droplet route. However, the IPC guidelines fail to cover all transmission modes, and the recommendations also conflict with each other. Most guidelines recommend surgical masks for healthcare providers during routine care and N95 respirators for aerosol-generating procedures. However, recommendations regarding the type of face mask varied, and the CDC recommends cloth masks when surgical masks are unavailable. CONCLUSION IPC strategies should consider all the possible routes of transmission and should target all patient care activities involving risk of person-to-person transmission. This review may assist international health agencies in updating their guidelines.
Collapse
Affiliation(s)
- M. Saiful Islam
- School of Public Health and Community Medicine, University of New South Wales, Sydney, Australia
- Program for Emerging Infections, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Kazi M. Rahman
- North Coast Public Health Unit, New South Wales Health, Lismore, New South Wales, Australia
- The University of Sydney, University Centre for Rural Health, Lismore, New South Wales, Australia
| | - Yanni Sun
- Centre for Population Health, New South Wales Health, Sydney, Australia
| | - Mohammed O. Qureshi
- School of Public Health and Community Medicine, University of New South Wales, Sydney, Australia
| | - Ikram Abdi
- School of Public Health and Community Medicine, University of New South Wales, Sydney, Australia
| | - Abrar A. Chughtai
- School of Public Health and Community Medicine, University of New South Wales, Sydney, Australia
| | - Holly Seale
- School of Public Health and Community Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
49
|
Jackson T, Deibert D, Wyatt G, Durand-Moreau Q, Adisesh A, Khunti K, Khunti S, Smith S, Chan XHS, Ross L, Roberts N, Toomey E, Greenhalgh T, Arora I, Black SM, Drake J, Syam N, Temple R, Straube S. Classification of aerosol-generating procedures: a rapid systematic review. BMJ Open Respir Res 2020; 7:e000730. [PMID: 33040021 PMCID: PMC7549490 DOI: 10.1136/bmjresp-2020-000730] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/15/2020] [Indexed: 12/30/2022] Open
Abstract
In the context of covid-19, aerosol generating procedures have been highlighted as requiring a higher grade of personal protective equipment. We investigated how official guidance documents and academic publications have classified procedures in terms of whether or not they are aerosol-generating. We performed a rapid systematic review using preferred reporting items for systematic reviews and meta-analyses standards. Guidelines, policy documents and academic papers published in english or french offering guidance on aerosol-generating procedures were eligible. We systematically searched two medical databases (medline, cochrane central) and one public search engine (google) in march and april 2020. Data on how each procedure was classified by each source were extracted. We determined the level of agreement across different guidelines for each procedure group, in terms of its classification as aerosol generating, possibly aerosol-generating, or nonaerosol-generating. 128 documents met our inclusion criteria; they contained 1248 mentions of procedures that we categorised into 39 procedure groups. Procedures classified as aerosol-generating or possibly aerosol-generating by ≥90% of documents included autopsy, surgery/postmortem procedures with high-speed devices, intubation and extubation procedures, bronchoscopy, sputum induction, manual ventilation, airway suctioning, cardiopulmonary resuscitation, tracheostomy and tracheostomy procedures, non-invasive ventilation, high-flow oxygen therapy, breaking closed ventilation systems, nebulised or aerosol therapy, and high frequency oscillatory ventilation. Disagreements existed between sources on some procedure groups, including oral and dental procedures, upper gastrointestinal endoscopy, thoracic surgery and procedures, and nasopharyngeal and oropharyngeal swabbing. There is sufficient evidence of agreement across different international guidelines to classify certain procedure groups as aerosol generating. However, some clinically relevant procedures received surprisingly little mention in our source documents. To reduce dissent on the remainder, we recommend that (a) clinicians define procedures more clearly and specifically, breaking them down into their constituent components where possible; (b) researchers undertake further studies of aerosolisation during these procedures; and (c) guideline-making and policy-making bodies address a wider range of procedures.
Collapse
Affiliation(s)
- Tanya Jackson
- Division of Preventive Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Danika Deibert
- Division of Preventive Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Graeme Wyatt
- Division of Preventive Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Quentin Durand-Moreau
- Division of Preventive Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Anil Adisesh
- Division of Occupational Medicine, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kamlesh Khunti
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Sachin Khunti
- School of Medicine and Dentistry, Barts and the London School of Medicine and Dentistry, London, UK
| | - Simon Smith
- Canadian Standards Biological Aerosols Group, Canadian Standards Association, Toronto, Ontario, Canada
| | - Xin Hui S Chan
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Lawrence Ross
- Division of Infectious Diseases, Children's Hospital of Los Angeles, Los Angeles, California, USA
| | - Nia Roberts
- Bodleian Health Care Libraries, University of Oxford, Oxford, Oxfordshire, UK
| | - Elaine Toomey
- School of Allied Health, University of Limerick, Limerick, Ireland
| | - Trisha Greenhalgh
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Isheeta Arora
- Medical Sciences Division, University of Oxford, Oxford, Oxfordshire, UK
| | - Susannah M Black
- Medical Sciences Division, University of Oxford, Oxford, Oxfordshire, UK
| | - Jonathan Drake
- Medical Sciences Division, University of Oxford, Oxford, Oxfordshire, UK
| | - Nandana Syam
- Medical Sciences Division, University of Oxford, Oxford, Oxfordshire, UK
| | - Robert Temple
- Medical Sciences Division, University of Oxford, Oxford, Oxfordshire, UK
| | - Sebastian Straube
- Division of Preventive Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
50
|
Paccos JL, Lima IPD, Lima VRBD, Mukai NS. Ventilation mask adapted for endoscopy during the COVID-19 pandemic. Rev Assoc Med Bras (1992) 2020; 66Suppl 2:55-57. [PMID: 32965357 DOI: 10.1590/1806-9282.66.s2.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/11/2020] [Indexed: 11/22/2022] Open
Abstract
In the context of the COVID-19 pandemic, endoscopy services must adopt preventive measures to maintain proper functioning due to a high risk of disease contagion. Triage protocols before and after the procedure, personal protective equipment, and environmental contamination control are some of the endoscopy society's recommendations. However, the risk of infection may remain high due to poor control over the source of contamination.Using a combination of standardized supplies and accessories in a hospital, a ventilation mask adapted to be used in endoscopic procedures is proposed to reduce COVID-19 contamination.
Collapse
Affiliation(s)
- José Luiz Paccos
- . Médico do corpo clínico do Hospital Dr. Miguel Soeiro, Sorocaba, SP, Brasil
| | | | | | | |
Collapse
|