1
|
Tracy EP, Adereti I, Chu J, Brown J. Hereditary haemorrhagic telangiectasia type 1 complicated by recurrent deep-seated MSSA infections necessitating lifelong antibiotic suppression. BMJ Case Rep 2024; 17:e258558. [PMID: 39375159 DOI: 10.1136/bcr-2023-258558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Hereditary haemorrhagic telangiectasia (HHT) leads to arteriovenous malformations (AVM) that increase the risk of haemorrhage and cause right-left shunting bypassing the reticuloendothelial system increasing the risk for recurrent infections. A 60+ year old male patient with HHT type 1 (status post six pulmonary AVM coiled embolisations) with epistaxis presented with intractable back pain, methicillin-sensitive Staphylococcus aureus (MSSA) bacteraemia and spinal MRI revealing spondylodiskitis and L4-L5 epidural phlegmon. He has an extensive history of deep-seated infections including two prior spinal infections, two joint infections and one muscular abscess-all with MSSA. The patient was treated with 6 weeks of intravenous nafcillin with symptom resolution. Infectious disease prescribed cefalexin 500 mg daily for suppression of infection recurrence considering his extensive deep-seated infection history and multiple risk factors. This case raises important questions about preventative antimicrobial management of high-risk patients with HHT, which is a grey area in current international HHT guidelines.
Collapse
Affiliation(s)
- Evan Paul Tracy
- Medicine, University of Louisville, Louisville, Kentucky, USA
| | | | - Justin Chu
- Sports Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Julianna Brown
- Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
2
|
Chen J, Du W, Li Y, Zhou H, Ouyang D, Yao Z, Fu J, Ye X. Genome-based model for differentiating between infection and carriage Staphylococcus aureus. Microbiol Spectr 2024; 12:e0049324. [PMID: 39248515 PMCID: PMC11448440 DOI: 10.1128/spectrum.00493-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a clinically significant opportunistic pathogen, which can colonize multiple body sites in healthy individuals and cause various life-threatening diseases in both children and adults worldwide. The genetic backgrounds of S. aureus that cause infection versus asymptomatic carriage vary widely, but the potential genetic elements (k-mers) associated with S. aureus infection remain unknown, which leads to difficulties in differentiating infection isolates from harmless colonizers. Here, we address the disease-associated k-mers by using a comprehensive genome-wide association study (GWAS) to compare the genetic variation of S. aureus isolates from clinical infection sites (272 isolates) with nasal carriage (240 isolates). This study uncovers consensus evidence that certain k-mers are overrepresented in infection isolates compared with carriage isolates, indicating the presence of specific genetic elements associated with S. aureus infection. Moreover, the random forest (RF) model achieved a classification accuracy of 77% for predicting disease status (infection vs carriage), with 68% accuracy for a single highest-ranked k-mer, providing a simple target for identifying high-risk genotypes. Our findings suggest that the disease-causing S. aureus is a pathogenic subpopulation harboring unique genomic variation that promotes invasion and infection, providing novel targets for clinical interventions. IMPORTANCE Defining the disease-causing isolates is the first step toward disease control. However, the disease-associated genetic elements of Staphylococcus aureus remain unknown, which leads to difficulties in differentiating infection isolates from harmless carriage isolates. Our comprehensive genome-wide association study (GWAS) found consensus evidence that certain genetic elements are overrepresented among infection isolates than carriage isolates, suggesting that the enrichment of disease-associated elements may promote infection. Notably, a single k-mer predictor achieved a high classification accuracy, which forms the basis for early diagnostics and interventions.
Collapse
Affiliation(s)
- Jianyu Chen
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenyin Du
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuehe Li
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huiliu Zhou
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dejia Ouyang
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenjiang Yao
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinjian Fu
- Department of Laboratory Science, Maoming Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Women and Children's Medical Center Liuzhou Hospital, Liuzhou, China
| | - Xiaohua Ye
- Laboratory of Molecular Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
3
|
Javed MU, Ijaz M, Durrani AZ, Ali MM. On-farm epidemiology, virulence profiling, and molecular characterization of methicillin-resistant Staphylococcus aureus at goat farms. Microb Pathog 2023; 185:106456. [PMID: 37981077 DOI: 10.1016/j.micpath.2023.106456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Antimicrobial resistance (AMR) becomes a challenging issue that limits the therapeutic options for both veterinary and public health professionals. The current study aimed to investigate the on-farm epidemiology, antibiotics resisting profiling, virulence analysis, and molecular detection of methicillin-resistant Staphylococcus aureus (MRSA) at the caprine-human interface. A total of 768 goat milk samples and 94 skin swabs from farm personnel were collected from 30 goat flocks and processed for isolation of S. aureus. The study isolates were confirmed as MRSA based on the oxacillin and cefoxitin disc diffusion test and the presence of mecA gene. MRSA isolates of goats and human origin were characterized and further evaluated for the presence of virulence genes responsible for intramammary infections and public health hazards. The results revealed 26.82 % and 27.79 % goat milk samples and human samples positive for S. aureus, respectively. A higher MRSA prevalence of 35.92 % and 10.71 % was found in goat and human isolates respectively. The phylogenetic analysis revealed a lesser extent of homology in mecA gene of S. aureus isolates at the caprine-human interface. Moreover, this study revealed strong evolutionary connection between the study isolates and MRSA isolates of Pakistani cattle and buffalo while the in-silico protein analysis showed that all sequences have the same protein motifs resembling penicillin binding protein 2a. The risk factors analysis revealed that teat length, drainage system, hygienic measures during milking, use of teat dip, teat injury, and veterinary services were significantly associated with subclinical mastitis in goats. A total of 43.24 % of local MRSA isolates showed multi-drug resistance (MDR). The isolates showed higher resistance to oxytetracycline followed by gentamicin and vancomycin while moxifloxacin, and linezolid were among the susceptible antibiotics. Local MRSA isolates carried virulence markers (nuc and coag genes) and biofilm-associated icaA (43.24 %) and icaD (29.73 %) genes which are responsible for the intramammary infection. The local isolates also carried the virulence genes of public health concern including the enterotoxin C (sec) gene (24.3 %), enterotoxins B (seb) gene (5.41 %), and enterotoxin D (sed) gene (2.7 %). Enterotoxins A (sea) and E (see) genes were not detected in any isolate. The study concluded that MRSA is an emerging and prevailing pathogen in dairy goats with a high potential to transmit to associated human beings. The presence of a variety of virulence factors as well as the associated antibiotic resistance makes MRSA a potential threat at animal-human interface and thus demands further research.
Collapse
Affiliation(s)
- Muhammad Umar Javed
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Aneela Zameer Durrani
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
4
|
MacNair CR, Tsai CN, Rutherford ST, Tan MW. Returning to Nature for the Next Generation of Antimicrobial Therapeutics. Antibiotics (Basel) 2023; 12:1267. [PMID: 37627687 PMCID: PMC10451936 DOI: 10.3390/antibiotics12081267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotics found in and inspired by nature are life-saving cures for bacterial infections and have enabled modern medicine. However, the rise in resistance necessitates the discovery and development of novel antibiotics and alternative treatment strategies to prevent the return to a pre-antibiotic era. Once again, nature can serve as a source for new therapies in the form of natural product antibiotics and microbiota-based therapies. Screening of soil bacteria, particularly actinomycetes, identified most of the antibiotics used in the clinic today, but the rediscovery of existing molecules prompted a shift away from natural product discovery. Next-generation sequencing technologies and bioinformatics advances have revealed the untapped metabolic potential harbored within the genomes of environmental microbes. In this review, we first highlight current strategies for mining this untapped chemical space, including approaches to activate silent biosynthetic gene clusters and in situ culturing methods. Next, we describe how using live microbes in microbiota-based therapies can simultaneously leverage many of the diverse antimicrobial mechanisms found in nature to treat disease and the impressive efficacy of fecal microbiome transplantation and bacterial consortia on infection. Nature-provided antibiotics are some of the most important drugs in human history, and new technologies and approaches show that nature will continue to offer valuable inspiration for the next generation of antibacterial therapeutics.
Collapse
Affiliation(s)
- Craig R. MacNair
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA;
| | - Caressa N. Tsai
- School of Law, University of California, Berkeley, Berkeley, CA 94704, USA;
| | - Steven T. Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA;
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA;
| |
Collapse
|
5
|
Detecting mecA in Faecal Samples: A Tool for Assessing Carriage of Meticillin-Resistant Staphylococci in Pets and Owners in the Microbiological ‘Fast Age’? MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sampling animals for carriage of meticillin-resistant, coagulase-positive staphylococci (MRCoPS), considered zoonotic pathogens, can be challenging and time-consuming. Developing methods to identify mecA from non-invasive samples, e.g., faeces, would benefit AMR surveillance and management of MRS carrier animals. This study aimed to distinguish MRS carriers from non-carriers from faecal samples using quantitative polymerase chain reaction (qPCR) for mecA. Paired faecal and nasal swab samples (n = 86) were obtained from 13 dogs and 20 humans as part of a longitudinal study. Nasal MRCoPS carriage (either MR-Staphylococcus aureus or MR-Staphylococcus pseudintermedius was confirmed by identification of species (nuc) and meticillin resistance (mecA) (PCR). Faecal DNA (n = 69) was extracted and a qPCR method was optimised to provide a robust detection method. The presence of faecal mecA was compared between MRS carriers and non-carriers (Kruskal–Wallis test). Nasal swabbing identified seven canine and four human MRCoPS carriers. mecA was detected in 13/69 faecal samples, including four MRCoPS carriers and nine non-carriers. For dogs, there was no significant association (p = 1.000) between carrier status and mecA detection; for humans, mecA was more commonly detected in MRCoPS carriers (p = 0.047). mecA was detected in faeces of MRCoPS carriers and non-carriers by qPCR, but larger sample sizes are required to determine assay sensitivity. This rapid method enables passive surveillance of mecA in individuals and the environment.
Collapse
|
6
|
Laceb ZM, Diene SM, Lalaoui R, Kihal M, Chergui FH, Rolain JM, Hadjadj L. Genetic Diversity and Virulence Profile of Methicillin and Inducible Clindamycin-Resistant Staphylococcus aureus Isolates in Western Algeria. Antibiotics (Basel) 2022; 11:antibiotics11070971. [PMID: 35884225 PMCID: PMC9312111 DOI: 10.3390/antibiotics11070971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcusaureus causes a wide range of life-threatening infections. In this study, we determined its prevalence in the hospital environment and investigated nasal carriage among healthcare workers and patients admitted to a hospital in western Algeria. A total of 550 specimens were collected. An antibiogram was performed and the genes encoding resistance to methicillin, inducible clindamycin and toxins were sought among the 92 S. aureus isolates. The spread of clones with a methicillin- and/or clindamycin-resistance phenotype between these ecosystems was studied using genomic analysis. A prevalence of 27%, 30% and 13% of S. aureus (including 2.7%, 5% and 1.25% of MRSA) in patients, healthcare workers and the hospital environment were observed, respectively. The presence of the mecA, erm, pvl and tsst-1 genes was detected in 10.9%, 17.4%, 7.6% and 18.5% of samples, respectively. Sequencing allowed us to identify seven sequence types, including three MRSA-IV-ST6, two MRSA-IV-ST80-PVL+, two MRSA-IV-ST22-TSST-1, two MRSA-V-ST5, and one MRSA-IV-ST398, as well as many virulence genes. Here, we reported that both the hospital environment and nasal carriage may be reservoirs contributing to the spread of the same pathogenic clone persisting over time. The circulation of different pathogenic clones of MRSA, MSSA, and iMLSB, as well as the emergence of at-risk ST398 clones should be monitored.
Collapse
Affiliation(s)
- Zahoua Mentfakh Laceb
- Laboratoire de Biotechnologies, Environnement et Santé, Faculté des Sciences de la Nature et de la Vie, Université de Blida 01, BP270 Route Soumaa, Blida 09000, Algeria; (Z.M.L.); (F.H.C.)
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France; (S.M.D.); (R.L.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Seydina M. Diene
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France; (S.M.D.); (R.L.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Rym Lalaoui
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France; (S.M.D.); (R.L.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Mabrouk Kihal
- Laboratoire de Microbiologie Appliquée, Université Ahmed Ben Bella Oran1, BP1524 El M’naouer, Oran 31000, Algeria;
| | - Fella Hamaidi Chergui
- Laboratoire de Biotechnologies, Environnement et Santé, Faculté des Sciences de la Nature et de la Vie, Université de Blida 01, BP270 Route Soumaa, Blida 09000, Algeria; (Z.M.L.); (F.H.C.)
| | - Jean-Marc Rolain
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France; (S.M.D.); (R.L.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Linda Hadjadj
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France; (S.M.D.); (R.L.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France
- Correspondence: ; Tel.: +33-4-8613-6930
| |
Collapse
|
7
|
Beukes LS, Schmidt S. Manual emptying of ventilated improved pit latrines and hygiene challenges - a baseline survey in a peri-urban community in KwaZulu-Natal, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1043-1054. [PMID: 32962416 DOI: 10.1080/09603123.2020.1823334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The presence of Escherichia coli and Staphylococcus spp. was determined on the skin, personal protective equipment, the municipal vehicle, and various surfaces at ten households in a peri-urban community (KwaZulu-Natal, South Africa) before and after manual emptying of ventilated improved pit latrines. Surface samples (n = 14) were collected using sterile wet wipes, and target bacteria were detected using standard procedures. Additionally, E. coli was enumerated in soil samples from an area of open defecation (log10 3.7 MPN/g) and areas where geophagia occurred (log10 2.7 - log10 3.3 MPN/g), using a most probable number (MPN) method. The detection frequency for the target bacteria on household surfaces (e.g., the walkway between the pit latrine and the municipal vehicle) and on municipal workers' hands (which were frequently contaminated before pit emptying), occasionally increased after the pits were emptied, indicating that manual pit emptying might pose a potential health risk to workers and community members.
Collapse
Affiliation(s)
- Lorika S Beukes
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Stefan Schmidt
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
8
|
Wong SC, Chen JHK, So SYC, Ho PL, Yuen KY, Cheng VCC. Gastrointestinal colonization of methicillin-resistant Staphylococcus aureus: an unrecognized burden in the hospital infection control. J Hosp Infect 2021; 121:65-74. [PMID: 34953945 DOI: 10.1016/j.jhin.2021.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022]
Abstract
The incidence, risk factors, outcomes, and genomic relatedness of patients with newly diagnosed gastrointestinal colonization of meticillin-resistant Staphylococcus aureus (MRSA) were analyzed epidemiologically and genetically by whole genome sequencing (WGS) in a hospital network in Hong Kong. Between 1 October 2015 and 31 December 2018, 919 (2.7%) of 34,667 patients had newly diagnosed gastrointestinal MRSA colonization by admission screening. The incidence was 0.67±0.32 per 1,000-patient-days-per-quarter. Including patients with gastrointestinal MRSA colonization, the overall burden of MRSA increased by 59.2% (from 1.13±0.13 to 1.80±0.36 case per 1,000-patient-days-per-quarter), with an addition of MRSA 4,727 patient-days during the study period. Patients referred from residential care home for the elderly [odds ratio (95% confidential interval): 4.18 (3.50-4.99), p<0.001], with history of hospitalization in the past 6 months [1.90 (1.56-2.30), p<0.001], and consumption of fluoroquinolones [1.76 (1.34-2.30), p<0.001], cephalosporins [1.61 (1.11-2.31), p=0.011], and proton pump inhibitors [1.31 (1.10-1.56), p=0.002] in the preceding 6 months were found to be independent risk factors by multivariable analysis in the case-control analysis. The median survival of case was significantly shorter than control (860 vs 1507 days, p<0.001). 127 (13.8%) of 919 patients developed symptomatic MRSA infection in 112 days (median, range: 2-712 days). Of 19 patients with paired MRSA faecal and blood culture isolates subjected to WGS, clonality was found in 16 (84.2%) pairs of MRSA isolates. MRSA ST45 constituted 44.7% (17/38) of MRSA isolates. Gastrointestinal MRSA colonization may contribute to adverse clinical outcomes and pose an unrecognized burden to the hospital infection control.
Collapse
Affiliation(s)
- Shuk-Ching Wong
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China
| | - Jonathan Hon-Kwan Chen
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Simon Yung-Chun So
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Pak-Leung Ho
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Vincent Chi-Chung Cheng
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China.
| |
Collapse
|
9
|
Haikal C, Ortigosa-Pascual L, Najarzadeh Z, Bernfur K, Svanbergsson A, Otzen DE, Linse S, Li JY. The Bacterial Amyloids Phenol Soluble Modulins from Staphylococcus aureus Catalyze Alpha-Synuclein Aggregation. Int J Mol Sci 2021; 22:11594. [PMID: 34769023 PMCID: PMC8584152 DOI: 10.3390/ijms222111594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/02/2022] Open
Abstract
Aggregated α-synuclein (α-syn) is the main constituent of Lewy bodies, which are a pathological hallmark of Parkinson's disease (PD). Environmental factors are thought to be potential triggers capable of initiating the aggregation of the otherwise monomeric α-syn. Braak's seminal work redirected attention to the intestine and recent reports of dysbiosis have highlighted the potential causative role of the microbiome in the initiation of pathology of PD. Staphylococcus aureus is a bacterium carried by 30-70% of the general population. It has been shown to produce functional amyloids, called phenol soluble modulins (PSMαs). Here, we studied the kinetics of α-syn aggregation under quiescent conditions in the presence or absence of four different PSMα peptides and observed a remarkable shortening of the lag phase in their presence. Whereas pure α-syn monomer did not aggregate up to 450 h after initiation of the experiment in neither neutral nor mildly acidic buffer, the addition of different PSMα peptides resulted in an almost immediate increase in the Thioflavin T (ThT) fluorescence. Despite similar peptide sequences, the different PSMα peptides displayed distinct effects on the kinetics of α-syn aggregation. Kinetic analyses of the data suggest that all four peptides catalyze α-syn aggregation through heterogeneous primary nucleation. The immunogold electron microscopic analyses showed that the aggregates were fibrillar and composed of α-syn. In addition of the co-aggregated materials to a cell model expressing the A53T α-syn variant fused to GFP was found to catalyze α-syn aggregation and phosphorylation in the cells. Our results provide evidence of a potential trigger of synucleinopathies and could have implications for the prevention of the diseases.
Collapse
Affiliation(s)
- Caroline Haikal
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (C.H.); (A.S.)
| | - Lei Ortigosa-Pascual
- Department of Biochemistry and Structural Biology, Lund University, 22100 Lund, Sweden; (L.O.-P.); (K.B.); (S.L.)
| | - Zahra Najarzadeh
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; (Z.N.); (D.E.O.)
| | - Katja Bernfur
- Department of Biochemistry and Structural Biology, Lund University, 22100 Lund, Sweden; (L.O.-P.); (K.B.); (S.L.)
| | - Alexander Svanbergsson
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (C.H.); (A.S.)
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; (Z.N.); (D.E.O.)
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, 22100 Lund, Sweden; (L.O.-P.); (K.B.); (S.L.)
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (C.H.); (A.S.)
- Health Sciences Institute, China Medical University, Shenyang 110112, China
| |
Collapse
|
10
|
Santos SCL, Saraiva MMS, Moreira Filho ALB, Silva NMV, De Leon CMG, Pascoal LAF, Givisiez PEN, Gebreyes WA, Oliveira CJB. Swine as reservoirs of zoonotic borderline oxacillin-resistant Staphylococcus aureus ST398. Comp Immunol Microbiol Infect Dis 2021; 79:101697. [PMID: 34530296 DOI: 10.1016/j.cimid.2021.101697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022]
Abstract
Methicillin resistance mediated by the mecA gene in Staphylococcus aureus, also known as "true MRSA", is typically associated with high oxacillin MIC values (≥8 mg/L). Because non-mecA-mediated oxacillin resistant S. aureus phenotypes can also cause hard-to-treat diseases in humans, their misidentification as methicillin-susceptible S. aureus strains (MSSA) can compromise the efficiency of the antimicrobial therapy. These strains have been refereed as Borderline Oxacillin-Resistant S. aureus (BORSA) but their characterization and role in clinical microbiology have been neglected. Considering the increasing importance of livestock-associated methicillin-resistant S. aureus ST398 (LA-MRSA) as an emerging zoonotic pathogen worldwide, this study aimed to report the genomic context of oxacillin resistance in porcine S. aureus ST398 strains. S. aureus isolates were recovered from asymptomatic pigs from three herds. Oxacillin MIC values ranged from 4 to 32 mg/L. MALDI-TOF-confirmed isolates were screened for mecA and mecC by PCR and genotyped by means of PFGE and Rep-PCR. Seven isolates were whole genome sequenced. None of the isolates harbored the mecA gene or its variants. Although all seven sequenced isolates belonged to one sequence type (ST398), two different spa types (t571 and t1471) were identified. All isolates harbored conserved blaZ gene operon and no mutations on genes encoding for penicillin-binding-proteins were detected. Genes conferring resistance against other drugs such as aminoglycosides, chloramphenicol, macrolide, lincosamide and streptogramin (MLS), tetracycline and trimethoprim were also detected. Isolates also harbored virulence genes encoding for adhesins (icaA; icaB; icaC; icaD; icaR), toxins (hlgA; hlgB; hlgC; luk-PV) and protease (aur). Pigs can serve as reservoirs of non-mecA-mediated oxacillin-resistant ST398 strains potentially pathogenic to humans. Considering that mecA has been the main target to screen methicillin-resistant staphylococci, the occurrence of BORSA phenotypes is probably underestimated in livestock.
Collapse
Affiliation(s)
- S C L Santos
- Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (UFPB), Rod. PB079 Km12, s/n, 58397-000, Areia, PB, Brazil
| | - M M S Saraiva
- Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (UFPB), Rod. PB079 Km12, s/n, 58397-000, Areia, PB, Brazil; Department of Veterinary Pathology, Sao Paulo State University (UNESP), Via de acesso Prof. Paulo Donato Castellane s/n, 14884-900, Jaboticabal, SP, Brazil
| | - A L B Moreira Filho
- Department of Animal Science, College for Agricultural, Social and Human Sciences, Federal University of Paraiba (UFPB), Rua João Pessoa s/n, 58220-000, Bananeiras, PB, Brazil
| | - N M V Silva
- Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (UFPB), Rod. PB079 Km12, s/n, 58397-000, Areia, PB, Brazil
| | - C M G De Leon
- Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (UFPB), Rod. PB079 Km12, s/n, 58397-000, Areia, PB, Brazil
| | - L A F Pascoal
- Department of Animal Science, College for Agricultural, Social and Human Sciences, Federal University of Paraiba (UFPB), Rua João Pessoa s/n, 58220-000, Bananeiras, PB, Brazil
| | - P E N Givisiez
- Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (UFPB), Rod. PB079 Km12, s/n, 58397-000, Areia, PB, Brazil
| | - W A Gebreyes
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University (OSU), 43210, Columbus, OH, USA; Global One Health Initiative (GOHi), The Ohio State University, 43210, Columbus, OH, USA
| | - C J B Oliveira
- Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (UFPB), Rod. PB079 Km12, s/n, 58397-000, Areia, PB, Brazil; Global One Health Initiative (GOHi), The Ohio State University, 43210, Columbus, OH, USA.
| |
Collapse
|
11
|
The Intestinal Biofilm of Pseudomonas aeruginosa and Staphylococcus aureus Is Inhibited by Antimicrobial Peptides HBD-2 and HBD-3. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: The intestinal microbiota is a very active microbial community interacting with the host in maintaining homeostasis; it acts in cooperation with intestinal epithelial cells, which protect the host from the external environment by producing a diverse arsenal of antimicrobial peptides (AMPs), including β-defensins-2 and 3 (HBD-2 and HBD-3), considered among the most studied in this category. However, there are some circumstances in which an alteration of this eubiotic state occurs, with the triggering of dysbiosis. In this condition, the microbiota loses its protective power, leading to the onset of opportunistic infections. In this scenario, the emergence of multi-drug resistant biofilms from Pseudomonas aeruginosa and Staphylococcus aureus is very frequent. Methods: We created a Caco-2 intestinal epithelial cell line stably transfected with the genes, encoding HBD-2 and HBD-3, in order to evaluate their ability to inhibit the intestinal biofilm formation of P. aeruginosa and S. aureus. Results: Both HBD-2 and HBD-3 showed anti-biofilm activity against P. aeruginosa and S. aureus. Conclusions: The exploitation of endogenous antimicrobial peptides as a new anti-biofilm therapy, in isolation or in combination with conventional antibiotics, can be an interesting prospect in the treatment of chronic and multi-drug resistant infections.
Collapse
|
12
|
Bhattacharyya P, Bryan A, Atluri V, Ma J, Durowoju L, Bandhlish A, Boonyaratanakornkit J. Fatal infection with enterocolitis from methicillin-resistant Staphylococcus aureus and the continued value of culture in the era of molecular diagnostics. Leuk Res Rep 2021; 15:100254. [PMID: 34136343 PMCID: PMC8178119 DOI: 10.1016/j.lrr.2021.100254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/15/2021] [Accepted: 05/23/2021] [Indexed: 01/03/2023] Open
Abstract
MRSA enterocolitis is under-recognized in the setting of PCR testing. In this case report, we describe risk factors, the importance of stool culture, and the third published case of MRSA enterocolitis in a patient with leukemia. In addition, we performed a retrospective analysis of all stool cultures at our institution that have grown Staphylococcus aureus, and we describe an additional five cases. We also report the diagnostic yield of organisms detected by culture, but not on the FilmArray panel. While rare, these cases demonstrate that MRSA in stool may indicate a severe and potentially life-threatening infection, particularly in immunocompromised persons.
Collapse
Affiliation(s)
- Pooja Bhattacharyya
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Research Center, Seattle, WA, 98109, USA
- Division of Oncology, University of Washington, Seattle, WA, 98109, USA
| | - Andrew Bryan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Vidya Atluri
- Division of Allergy and Infectious Disease, University of Washington, Seattle, WA, 98195, USA
| | - Jimmy Ma
- Division of Allergy and Infectious Disease, University of Washington, Seattle, WA, 98195, USA
| | - Lindsey Durowoju
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Anshu Bandhlish
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Jim Boonyaratanakornkit
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Research Center, Seattle, WA, 98109, USA
- Division of Allergy and Infectious Disease, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
13
|
Yu Y, Huang HL, Ye XQ, Cai DT, Fang JT, Sun J, Liao XP, Liu YH. Synergistic Potential of Antimicrobial Combinations Against Methicillin-Resistant Staphylococcus aureus. Front Microbiol 2020; 11:1919. [PMID: 33013731 PMCID: PMC7461988 DOI: 10.3389/fmicb.2020.01919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/21/2020] [Indexed: 11/13/2022] Open
Abstract
The chemotherapeutic options for methicillin-resistant Staphylococcus aureus (MRSA) infections are limited. Due to the multiple resistant MRSA, therapeutic failure has occurred frequently, even using antibiotics belonging to different categories in clinical scenarios, very recently. This study aimed to investigate the interactions between 11 antibiotics representing different mechanisms of action against MRSA strains and provide therapeutic strategies for clinical infections. Susceptibilities for MRSA strains were determined by broth microdilution or agar dilution according to CLSI guideline. By grouping with each other, a total of 55 combinations were evaluated. The potential synergism was detected through drug interaction assays and further investigated for time-killing curves and an in vivo neutropenic mouse infection model. A total of six combinations (vancomycin with rifampicin, vancomycin with oxacillin, levofloxacin with oxacillin, gentamycin with oxacillin, clindamycin with oxacillin, and clindamycin with levofloxacin) showed synergistic activity against the MRSA ATCC 43300 strain. However, antibacterial activity against clinical isolate #161402 was only observed when vancomycin combined with oxacillin or rifampicin in time-killing assays. Next, therapeutic effectiveness of vancomycin/oxacillin and vancomycin/rifampicin was verified by an in vivo mouse infection model inoculated with #161402. Further investigations on antimicrobial synergism of vancomycin plus oxacillin and vancomycin plus rifampicin against 113 wild-type MRSA strains were evidenced by combined antibiotic MICs and bacterial growth inhibition and in vitro dynamic killing profiles. In summary, vancomycin/rifampicin and vancomycin/oxacillin are the most potential combinations for clinical MRSA infection upon both in vitro and in vivo tests. Other synergetic combinations of levofloxacin/oxacillin, gentamycin/oxacillin, clindamycin/oxacillin, and clindamycin/fosfomycin are also selected but may need more assessment for further application.
Collapse
Affiliation(s)
- Yang Yu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Han-Liang Huang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Xin-Qing Ye
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Da-Tong Cai
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Jin-Tao Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Xiao-Ping Liao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Ya-Hong Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Presence of Clostridioides difficile and multidrug-resistant healthcare-associated pathogens in stool specimens from hospitalized patients in the USA. J Hosp Infect 2020; 106:179-185. [PMID: 32649974 DOI: 10.1016/j.jhin.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Healthcare-associated infections (HCAIs) continue to be a major cause of morbidity and mortality. Many HCAI pathogens, including multidrug-resistant organisms (MDROs), colonize the gastrointestinal tract. AIM To determine the frequency of MDRO carriage in patients who do and do not harbour toxigenic Clostridioides difficile in their stools. METHODS Stool specimens received from nine US laboratories were cultured using media selective for C. difficile, Staphylococcus aureus, vancomycin-resistant enterococci (VRE), and carbapenem-resistant Gram-negative organisms (CROs). Specimens and isolates were also tested by polymerase chain reaction (PCR). Bacterial isolates underwent susceptibility testing and genotyping. FINDINGS Among 363 specimens, 175 yielded toxigenic C. difficile isolates spanning 27 PCR ribotypes. C. difficile (TCD+) stools harboured an additional 28 organisms, including six CROs (3.4%), of which two (1.1%) were carbapenemase-producing organisms (CPOs), 19 VRE (10.9%), and three meticillin-resistant S. aureus isolates (MRSA, 1.7 %). Stools that were culture negative for toxigenic C. difficile (TCD-) yielded 26 organisms, including four CROs (2.1%), 20 VRE (10.6), and two MRSA (1.1%). Excluding C. difficile, no significant differences were seen in the rates of the MDROs between TCD+ and TCD- specimens. CONCLUSION Overall, 15.4% of the TCD+ stools and 11.2% of the TCD- stools carried at least one non-C. difficile MDRO pathogen, indicating that multiple MDROs may be present in the gastrointestinal tracts of patients, including those that harbour C. difficile.
Collapse
|
15
|
Species and drug susceptibility profiles of staphylococci isolated from healthy children in Eastern Uganda. PLoS One 2020; 15:e0229026. [PMID: 32053668 PMCID: PMC7018018 DOI: 10.1371/journal.pone.0229026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/28/2020] [Indexed: 11/19/2022] Open
Abstract
Staphylococci are a key component of the human microbiota, and they mainly colonize the skin and anterior nares. However, they can cause infection in hospitalized patients and healthy individuals in the community. Although majority of the Staphylococcus aureus strains are coagulase-positive, some do not produce coagulase, and the isolation of coagulase-positive non-S. aureus isolates in humans is increasingly being reported. Therefore, sound knowledge of the species and characteristics of staphylococci in a given setting is important, especially isolates from children and immunocompromised individuals. The spectrum of Staphylococcus species colonizing children in Uganda is poorly understood; here, we aimed to determine the species and characteristics of staphylococci isolated from children in Eastern Uganda. Seven hundred and sixty four healthy children less than 5 years residing in Iganga and Mayuge districts in Eastern Uganda were enrolled. A total of 513 staphylococci belonging to 13 species were isolated from 485 children (63.5%, 485/764), with S. aureus being the dominant species (37.6%, 193/513) followed by S. epidermidis (25.5%, 131/513), S. haemolyticus (2.3%, 12/513), S. hominis (0.8%, 4/513) and S. haemolyticus/lugdunensis (0.58%, 3/513). Twenty four (4.95%, 24/485) children were co-colonized by two or more Staphylococcus species. With the exception of penicillin, antimicrobial resistance (AMR) rates were low; all isolates were susceptible to vancomycin, teicoplanin, linezolid and daptomycin. The prevalence of methicillin resistance was 23.8% (122/513) and it was highest in S. haemolyticus (66.7%, 8/12) followed by S. aureus (28.5%, 55/193) and S. epidermidis (23.7%, 31/131). The prevalence of multidrug resistance was 20.3% (104/513), and 59% (72/122) of methicillin resistant staphylococci were multidrug resistant. Four methicillin susceptible S. aureus isolates and a methicillin resistant S. scuiri isolate were mupirocin resistant (high-level). The most frequent AMR genes were mecA, vanA, ant(4')-Ia, and aac(6')-Ie- aph(2'')-Ia, pointing to presence of AMR drivers in the community.
Collapse
|
16
|
Li Y, Tang Y, Ren J, Huang J, Li Q, Ingmer H, Jiao X. Identification and molecular characterization of Staphylococcus aureus and multi-drug resistant MRSA from monkey faeces in China. Transbound Emerg Dis 2019; 67:1382-1387. [PMID: 31838770 DOI: 10.1111/tbed.13450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/11/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is a commensal bacterium and an important opportunistic pathogen in humans and animals. The increase in multi-drug resistant (MDR) strains of S. aureus is a growing concern due to their impact on animal health and potential for zoonotic transmission. Increasing evidence has shown that MRSA could be transmitted by faeces. The present study determined the prevalence, antibiotic resistance profile and genotypic characteristics of S. aureus isolated from monkey faecal samples in China. Thirty-eight out of 145 (26.21%) macaque faecal samples were S. aureus positive, which eight (5.5%) isolates were identified as MRSA. Antimicrobial susceptibility tests showed that most of the S. aureus isolates were resistant to tetracycline (TE, 44.74%), followed by penicillin (P, 21.05%), cefoxitin (FOX, 21.05%) and ciprofloxacin (CIP, 18.42%). The predominant spa types were t13638 (44.74%) and t189 (13.16%), which are reported to be closely associated with human infections in China. All MRSA isolates belonged to the SCCmecV type, which six of MRSA isolates were ST3268, while the other two isolates belonged to ST4981. This study for the first time describes the prevalence of S. aureus and MRSA in monkey faeces in China, indicating that faeces could be a potential factor of transmitting S. aureus between humans and monkeys.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Yuanyue Tang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Jingwei Ren
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Jinlin Huang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Qiuchun Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
17
|
Kateete DP, Asiimwe BB, Mayanja R, Mujuni B, Bwanga F, Najjuka CF, Källander K, Rutebemberwa E. Nasopharyngeal carriage, spa types and antibiotic susceptibility profiles of Staphylococcus aureus from healthy children less than 5 years in Eastern Uganda. BMC Infect Dis 2019; 19:1023. [PMID: 31791276 PMCID: PMC6889221 DOI: 10.1186/s12879-019-4652-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/22/2019] [Indexed: 01/13/2023] Open
Abstract
Background Staphylococcus aureus carriage is a known risk factor for staphylococcal disease. However, the carriage rates vary by country, demographic group and profession. This study aimed to determine the S. aureus carriage rate in children in Eastern Uganda, and identify S. aureus lineages that cause infection in Uganda. Methods Nasopharyngeal samples from 742 healthy children less than 5 years residing in the Iganga/Mayuge Health and Demographic Surveillance Site in Eastern Uganda were processed for isolation of S. aureus. Antibiotic susceptibility testing based on minimum inhibitory concentrations (MICs) was determined by the BD Phoenix™ system. Genotyping was performed by spa and SCCmec typing. Results The processed samples yielded 144 S. aureus isolates (one per child) therefore, the S. aureus carriage rate in children was 19.4% (144/742). Thirty one percent (45/144) of the isolates were methicillin resistant (MRSA) yielding a carriage rate of 6.1% (45/742). All isolates were susceptible to rifampicin, vancomycin and linezolid. Moreover, all MRSA were susceptible to vancomycin, linezolid and clindamycin. Compared to methicillin susceptible S. aureus (MSSA) isolates (68.8%, 99/144), MRSA isolates were more resistant to non-beta-lactam antimicrobials –trimethoprim/sulfamethoxazole 73.3% (33/45) vs. 27.3% (27/99) [p < 0.0001]; erythromycin 75.6% (34/45) vs. 24.2% (24/99) [p < 0.0001]; chloramphenicol 60% (27/45) vs. 19.2% (19/99) [p < 0.0001]; gentamicin 55.6% (25/45) vs. 25.3% (25/99) [p = 0.0004]; and ciprofloxacin 35.6% (16/45) vs. 2% (2/99) [p < 0.0001]. Furthermore, 42 MRSA (93.3%) were multidrug resistant (MDR) and one exhibited high-level resistance to mupirocin. Overall, 61 MSSA (61.6%) were MDR, including three mupirocin and clindamycin resistant isolates. Seven spa types were detected among MRSA, of which t037 and t064 were predominant and associated with SCCmec types I and IV, respectively. Fourteen spa types were detected in MSSA which consisted mainly of t645 and t4353. Conclusions S. aureus carriage rate in healthy children in Eastern Uganda is high and comparable to rates for hospitalized patients in Kampala. The detection of mupirocin resistance is worrying as it could rapidly increase if mupirocin is administered in a low-income setting. S. aureus strains of spa types t064, t037 (MRSA) and t645, t4353 (MSSA) are prevalent and could be responsible for majority of staphylococcal infections in Uganda.
Collapse
Affiliation(s)
- David Patrick Kateete
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda. .,Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda.
| | - Benon B Asiimwe
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Raymond Mayanja
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda.,Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda.,Makerere University Walter Reed Project, Kampala, Uganda
| | - Brian Mujuni
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda.,Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Freddie Bwanga
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda.,Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Christine F Najjuka
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Karin Källander
- Malaria Consortium, London, UK.,Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
18
|
Dalman M, Bhatta S, Nagajothi N, Thapaliya D, Olson H, Naimi HM, Smith TC. Characterizing the molecular epidemiology of Staphylococcus aureus across and within fitness facility types. BMC Infect Dis 2019; 19:69. [PMID: 30658587 PMCID: PMC6339305 DOI: 10.1186/s12879-019-3699-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is a common bacterium found in the nose and throat of healthy individuals, and presents risk factors for infection and death. We investigated environmental contamination of fitness facilities with S. aureus in order to determine molecular types and antibiotic susceptibility profiles of contaminates that may be transmitted to facility patrons. METHODS Environmental swabs (n = 288) were obtained from several fitness facilities (n = 16) across Northeast Ohio including cross-fit type facilities (n = 4), traditional iron gyms (n = 4), community center-based facilities (n = 5), and hospital-associated facilities (n = 3). Samples were taken from 18 different surfaces at each facility and were processed within 24 h using typical bacteriological methods. Positive isolates were subjected to antibiotic susceptibility testing and molecular characterization (PVL and mecA PCR, and spa typing). RESULTS The overall prevalence of S. aureus on environmental surfaces in the fitness facilities was 38.2% (110/288). The most commonly colonized surfaces were the weight ball (62.5%), cable driven curl bar, and CrossFit box (62.5%), as well as the weight plates (56.3%) and treadmill handle (50%). Interestingly, the bathroom levers and door handles were the least contaminated surfaces in both male and female restroom facilities (18.8%). Community gyms (40.0%) had the highest contamination prevalence among sampled surfaces with CrossFit (38.9%), traditional gyms (38.9%), and hospital associated (33.3%) contaminated less frequently, though the differences were not significant (p = 0.875). The top spa types found overall were t008 (12.7%), t267 (10.0%), t160, t282, t338 (all at 5.5%), t012 and t442 (4.5%), and t002 (3.6%). t008 and t002 was found in all fitness facility types accept Crossfit, with t267 (25%), t548, t377, t189 (all 10.7%) the top spa types found within crossfit. All samples were resistant to benzylpenicillin, with community centers having significantly more strains resistant to oxacillin (52.8%), erythromycin (47%), clindamycin (36%), and ciprofloxacin (19%). Overall, 36.3% of isolates were multidrug resistant. CONCLUSIONS Our pilot study indicates that all facility types were contaminated by S. aureus and MRSA, and that additional studies are needed to characterize the microbiome structure of surfaces at different fitness facility types and the patrons at these facilities.
Collapse
Affiliation(s)
- Mark Dalman
- Kent State University, College of Podiatric Medicine, 6000 Rockside Woods Blvd. N, Independence, OH 44131 USA
| | - Sabana Bhatta
- Department of Biostatistics, Environmental Health Sciences and Epidemiology, Kent State University, College of Public Health, Kent, OH USA
| | - Nagashreyaa Nagajothi
- Department of Biostatistics, Environmental Health Sciences and Epidemiology, Kent State University, College of Public Health, Kent, OH USA
| | - Dipendra Thapaliya
- Department of Biostatistics, Environmental Health Sciences and Epidemiology, Kent State University, College of Public Health, Kent, OH USA
| | - Hailee Olson
- Department of Biostatistics, Environmental Health Sciences and Epidemiology, Kent State University, College of Public Health, Kent, OH USA
| | - Haji Mohammad Naimi
- Department of Microbiology, Kabul University, Faculty of Pharmacy, Jamal Meena street, Kabul, Afghanistan
| | - Tara C. Smith
- Department of Biostatistics, Environmental Health Sciences and Epidemiology, Kent State University, College of Public Health, Kent, OH USA
| |
Collapse
|