1
|
Pant K, Palmer J, Flint S. Evaluation of single and multispecies biofilm formed in the static and continuous systems. Int J Food Microbiol 2025; 429:111030. [PMID: 39705888 DOI: 10.1016/j.ijfoodmicro.2024.111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Biofilms consisting of multiple species of bacteria compared to biofilms of single species are common in natural environments including food contact surfaces. The objective of this study was to understand the biofilm formation and the efficiency of sodium hypochlorite (50 ppm/5 mins) on the single and multiple species biofilm of Pseudomonas fluorescens, Staphylococcus aureus, and Listeria monocytogenes formed on stainless steel surfaces in static and continuous systems. The cell concentration of Listeria in the dual and triple species biofilm in the continuous system (7.3-8.4 log CFU/cm2) was higher compared to the static system (4.7-4.9 log CFU/cm2) while the concentration remained consistent in the single species biofilm (6.4-6.7 log CFU/cm2) for both systems. Biofilm formed in the static system was significantly (p < 0.001) more susceptible to sodium hypochlorite than biofilm formed in the continuous system. This observation agrees with the exopolysaccharide concentration which was found to be higher in the continuous system (8.0-15.6 μg/cm2) than in the static system (3.2-6.3 μg/cm2) indicating a positive correlation between EPS production and sanitizer resistance. Epifluorescence microscopy images showed the formation of interstitial voids within the three-species biofilm and filaments in the single and dual species Listeria biofilms in the continuous system which were absent in the static system. Overall, results showed that the biofilm formation and sanitizer resistance vary due to multispecies interaction and the presence of flow and should be considered an important variable in multispecies sanitizer resistance studies.
Collapse
Affiliation(s)
- Krisha Pant
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | - Jon Palmer
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Steve Flint
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
2
|
Palafox-Rivera P, Tapia-Rodriguez MR, Lopez-Romero JC, Lugo-Flores MA, Quintero-Cabello KP, Silva-Espinoza BA, Cruz-Valenzuela MR, Nazzaro F, Ayala-Zavala JF. Exploring the potential of hydrolytic enzymes combined with antibacterial agents to disrupt pathogenic biofilms and disinfect released cells. BIOFOULING 2025:1-13. [PMID: 39757560 DOI: 10.1080/08927014.2024.2435018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/31/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025]
Abstract
Biofilms are bacterial communities encapsulated in a self-produced extracellular polymeric matrix comprising carbohydrates, proteins, lipids, and DNA. This matrix provides structural integrity while significantly enhancing bacterial antibiotic resistance, presenting substantial disinfection challenges. The persistence of biofilm-associated infections and foodborne outbreaks underscores the need for more effective disinfection strategies. Conventional antibacterial agents often are less effective against biofilm-protected cells compared to their efficacy against planktonic (non-attached) bacteria. Integrating hydrolytic enzymes, such as cellulases, proteases, and DNases, into disinfection protocols offers a promising approach by breaking down the biofilm matrix to expose the bacteria. However, the follow-up use of antibacterial agents is important, as enzymes alone do not possess bactericidal properties. Unlike traditional disinfectants, natural antibacterial agents work synergistically with enzymes, enhancing biofilm disruption without compromising the enzymatic activity through oxidation. This review offers a comprehensive analysis of the current knowledge and potential of combining hydrolytic enzymes with disinfectants to disrupt biofilms and eradicate the released bacterial cells, emphasizing applications for clinical and foodborne pathogens.
Collapse
Affiliation(s)
- Patricia Palafox-Rivera
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México
| | - Melvin R Tapia-Rodriguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, Col. Centro, Ciudad Obregón, Sonora, México
| | - Julio Cesar Lopez-Romero
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Norte, Eleazar Ortiz Caborca, Sonora, México
| | - Marco A Lugo-Flores
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México
| | - Karen P Quintero-Cabello
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México
| | - Brenda A Silva-Espinoza
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México
| | - M Reynaldo Cruz-Valenzuela
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México
| | | | - J Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México
| |
Collapse
|
3
|
Zhao F, Hou X, Sun G, Fu Y, Wang L, Yao B, Liu X, Weng R, Meng Y, Zhou J, Jiang Y, Yu Y, Shi Q. The prevalence of carbapenem-resistant Enterobacterales and the emergence of novel ST11-KL30 carbapenem-resistant Klebsiella pneumoniae in Xinjiang, China. J Glob Antimicrob Resist 2024; 39:189-195. [PMID: 39427989 DOI: 10.1016/j.jgar.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
OBJECTIVES To address the lack of research on the prevalence of carbapenem-resistant Enterobacterales (CREs) in Xinjiang, China, and elucidate the genomic characteristics of carbapenem-resistant Klebsiella pneumoniae (CRKP) ST11-KL30. METHODS CREs were collected in Xinjiang from 2021 to 2023. The antimicrobial susceptibility testing of carbapenems was performed via agar dilution method. Whole-genome sequencing was completed on the Illumina platform, and subsequent genomic analyses of CRKP, such as sequencing typing, K-locus and O-locus identification, virulence score assessment, and phylogenetic analysis, were performed. The virulence of CRKP isolates was determined in vitro and in vivo, and biofilm formation was assessed by crystal violet staining. Additionally, the virulence plasmid was reconstructed, and the formation of CRKP ST11-KL30 was revealed based on genome data from public database. RESULTS Eighty-five CRE isolates were collected, among which CRKP was most prevalent (68/85). KPC was the most dominant carbapenemase (60/68) in CRKP, while NDM-type carbapenemase was more prevalent in other species. ST11 was the dominant CRKP clone and was phylogenetically divided into three clusters: ST11-KL64, ST11-KL47 and ST11-KL30. CRKP ST11-KL30 is a novel recombinant clone that harbours a pK2044-like virulence plasmid and can be derived from ST11-KL64 by obtaining an ∼57 kb region from ST29-KL30. Compared to ST11-KL47 and ST11-KL64, ST11-KL30 had lower virulence, but had enhanced biofilm formation. CONCLUSIONS We describe the prevalence of CRE prevalence southern Xinjiang and report the emergence of a region-specific clone. Our findings underscore the potential dissemination of ST11-KL30, which warrants increased monitoring in the future.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital Affiliated Zhejiang University School of Medicine Alaer Hospital, Alaer, China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Xiangping Hou
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital Affiliated Zhejiang University School of Medicine Alaer Hospital, Alaer, China
| | - Gang Sun
- Department of Clinical Laboratory, The First Division Hospital of Xinjiang Production and Construction Corps, Aksu, China
| | - Ying Fu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China; Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital Affiliated Zhejiang University School of Medicine Alaer Hospital, Alaer, China
| | - Bingyan Yao
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China; Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaochen Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Weng
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Meng
- Department of Clinical Laboratory, Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiucheng Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Le NNT, Wu J, Rickard AH, Xi C. Evaluation of the long-term protection conferred by an organosilicon-based disinfectant formulation against bacterial contamination of surfaces. J Appl Microbiol 2024; 135:lxae210. [PMID: 39227172 DOI: 10.1093/jambio/lxae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/08/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024]
Abstract
AIMS The aim of this work was to evaluate the efficacy of an organosilicon-based, commercially available antimicrobial formulation in the My-shield® product line against bacterial surface contamination. METHODS AND RESULTS The antimicrobial product was tested in vitro for its long-term persistence on surfaces and effectiveness against Staphylococcus aureus biofilms in comparison to 70% ethanol and 0.1% or 0.6% sodium hypochlorite. Field testing was also conducted over 6 weeks at a university athletic facility. In vitro studies demonstrated the log reductions achieved by the test product, 70% ethanol, and 0.1% sodium hypochlorite were 3.6, 3.1, and 3.2, respectively. The test product persisted on surfaces after washing and scrubbing, and pre-treatment with this product prevented S. aureus surface colonization for up to 30 days. In comparison, pre-treatment with 70% ethanol or 0.6% sodium hypochlorite was not protective against S. aureus biofilm formation after seven days. The field test demonstrated that weekly applications of the test product were more effective at reducing surface bacterial load than daily applications of a control product. CONCLUSIONS The test product conferred greater long-term protection against bacterial growth and biofilm formation by S. aureus than ethanol and sodium hypochlorite. Even with less frequent applications, the test product maintained a high level of antimicrobial activity.
Collapse
Affiliation(s)
- Nguyen Nhat Thu Le
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - Jianfeng Wu
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - Alexander H Rickard
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States
| | - Chuanwu Xi
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| |
Collapse
|
5
|
Nkemngong C, Teska P. Biofilms, mobile genetic elements and the persistence of pathogens on environmental surfaces in healthcare and food processing environments. Front Microbiol 2024; 15:1405428. [PMID: 38894974 PMCID: PMC11183103 DOI: 10.3389/fmicb.2024.1405428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Biofilms are the natural state for bacterial and fungal species. To achieve surface hygiene in commercial facilities, the presence of biofilms must be adequately considered. However, standard disinfectant and sanitizer efficacy tests required by the US-EPA and the European Committee for Standardization (CEN) do not currently consider the role of environmental biofilms. This selective review will discuss what biofilms are and why they are important. We will also cover where they are commonly found in healthcare and food processing facilities and explore how current antimicrobial test methods required for product registration do not test for the presence of biofilms. Additionally, we will explore how a lack of efficacy against biofilms may play a role in the development of antimicrobial resistance in healthcare facilities due to the exchange of mobile genetic elements that occur readily in a biofilm matrix.
Collapse
Affiliation(s)
| | - Peter Teska
- Diversey-A Solenis Company, Fort Mill, SC, United States
| |
Collapse
|
6
|
Schapira AJ, Dramé M, Olive C, Marion-Sanchez K. Bacterial viability in dry-surface biofilms in healthcare facilities: a systematic review. J Hosp Infect 2024; 144:94-110. [PMID: 38029859 DOI: 10.1016/j.jhin.2023.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Bacteria are known to live inside architectural structures called biofilms. Though standard biofilms have been studied extensively for more than 50 years, little is known about dry-surface biofilms (DSBs). Since 2012, DSBs have been described in several scientific papers, but basic knowledge about the viability and culturability of bacteria remains limited. AIM To conduct a systematic review to determine whether bacteria inside DSBs are viable, culturable, and enumerable. METHODS Eligible articles had to deal with DSBs containing at least one bacterial species involved in healthcare-associated infections, which developed in actual healthcare environments (in-situ) or with the help of any biofilm model (in-vitro). FINDINGS Twenty-four articles were included in the review. Whereas most of them isolated viable bacteria (87% in situ; 100% in vitro), no in-situ study quantified culturable bacteria in the biofilm per unit area. Conversely, 100% of in-vitro studies cultured the bacteria from controls and 94.4% supplied an enumeration of them. Culturable bacteria also grew after 78% of the cleaning, disinfection, or sterilization protocols tested. Microscopic observations after staining the samples with live/dead fluorescent probes (Baclight®) showed large amounts of viable cells in culture-negative samples. CONCLUSION Our study questions the efficacy of current methods for microbiological monitoring of surfaces, since these methods are only based on bacterial culturability. To improve both surface monitoring and cleaning and disinfection protocols, it is necessary to integrate the concept of DSBs which appears to contain a significant amount of viable but non-culturable bacteria.
Collapse
Affiliation(s)
- A-J Schapira
- CHU Martinique, Department of Bacteriology, Hygiene and Environment Laboratory, Fort-de-France Cedex, Martinique; Paris Cité University, Faculty of Health, Paris, France
| | - M Dramé
- CHU Martinique, Department of Clinical Research and Innovation, Fort-de-France Cedex, Martinique; University of the French West Indies, Faculty of Medicine, EpiCliV Research Unit, Martinique
| | - C Olive
- CHU Martinique, Department of Bacteriology, Hygiene and Environment Laboratory, Fort-de-France Cedex, Martinique
| | - K Marion-Sanchez
- CHU Martinique, Department of Bacteriology, Hygiene and Environment Laboratory, Fort-de-France Cedex, Martinique; PCCEI, University of Montpellier, University of the Antilles, INSERM, EFS, Montpellier, France.
| |
Collapse
|
7
|
Maillard JY, Centeleghe I. How biofilm changes our understanding of cleaning and disinfection. Antimicrob Resist Infect Control 2023; 12:95. [PMID: 37679831 PMCID: PMC10483709 DOI: 10.1186/s13756-023-01290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
Biofilms are ubiquitous in healthcare settings. By nature, biofilms are less susceptible to antimicrobials and are associated with healthcare-associated infections (HAI). Resistance of biofilm to antimicrobials is multifactorial with the presence of a matrix composed of extracellular polymeric substances and eDNA, being a major contributing factor. The usual multispecies composition of environmental biofilms can also impact on antimicrobial efficacy. In healthcare settings, two main types of biofilms are present: hydrated biofilms, for example, in drains and parts of some medical devices and equipment, and environmental dry biofilms (DSB) on surfaces and possibly in medical devices. Biofilms act as a reservoir for pathogens including multi-drug resistant organisms and their elimination requires different approaches. The control of hydrated (drain) biofilms should be informed by a reduction or elimination of microbial bioburden together with measuring biofilm regrowth time. The control of DSB should be measured by a combination of a reduction or elimination in microbial bioburden on surfaces together with a decrease in bacterial transfer post-intervention. Failure to control biofilms increases the risk for HAI, but biofilms are not solely responsible for disinfection failure or shortcoming. The limited number of standardised biofilm efficacy tests is a hindrance for end users and manufacturers, whilst in Europe there are no approved standard protocols. Education of stakeholders about biofilms and ad hoc efficacy tests, often academic in nature, is thus paramount, to achieve a better control of biofilms in healthcare settings.
Collapse
Affiliation(s)
- Jean-Yves Maillard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, Wales, UK.
| | - Isabella Centeleghe
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, Wales, UK
| |
Collapse
|
8
|
Christine E, Olive C, Louisin M, Dramé M, Marion‐Sanchez K. A new spray-based method for the in-vitro development of dry-surface biofilms. Microbiologyopen 2023; 12:e1330. [PMID: 36825879 PMCID: PMC9834607 DOI: 10.1002/mbo3.1330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/12/2022] [Indexed: 01/13/2023] Open
Abstract
The inanimate environment immediately surrounding the patient in healthcare facilities is a reservoir of microorganisms embedded in dry-surface biofilms (DSB). These biofilms, first highlighted in 2012, are increasingly studied, but currently available in-vitro models only allow for the growth of semi-hydrated biofilms. We developed a new in-vitro method under actual dehydration conditions based on the hypothesis that surface contamination is mainly due to splashes of respiratory secretions. The main objective of this study was to show that the operating conditions we have defined allowed the growth of DSB with a methicillin resistant Staphylococcus aureus strain. The second objective was to show that extended-spectrum beta-lactamase-producing Enterobacteriaceae, that is, Klebsiella pneumoniae and Enterobacter cloacae were also able to grow such biofilms under these conditions. Monobacterial suspensions in sterile artificial saliva (SAS) were sprayed onto polyethylene surfaces. Nutrients and hydration were provided daily by spraying SAS enriched with 20% of Brain Heart Infusion broth. The primary outcome was mean surface coverage measured by image analysis after crystal violet staining. The method applied to S. aureus for 12 days resulted in reproducible and repeatable DSB consisting of isolated and confluent microcolonies embedded in extracellular polymeric substances as shown in scanning electron microscopy images. Similar DSB were obtained with both Enterobacteriaceae applying the same method. No interspecies variation was shown between the three strains in terms of surface coverage. These first trials are the starting point for a 3-year study currently in process.
Collapse
Affiliation(s)
- Esther Christine
- Department of BacteriologyHygiene and Environment Laboratory, CHU MartiniqueCS 90632Fort‐de‐FranceCedexMartinique
| | - Claude Olive
- Department of BacteriologyHygiene and Environment Laboratory, CHU MartiniqueCS 90632Fort‐de‐FranceCedexMartinique
| | - Myriam Louisin
- Department of BacteriologyHygiene and Environment Laboratory, CHU MartiniqueCS 90632Fort‐de‐FranceCedexMartinique
| | - Moustapha Dramé
- Department of Clinical Research and InnovationCHU MartiniqueCS 90632Fort‐de‐FranceCedexMartinique
| | - Karine Marion‐Sanchez
- Department of BacteriologyHygiene and Environment Laboratory, CHU MartiniqueCS 90632Fort‐de‐FranceCedexMartinique
- Department of Hospital HygieneCHU MartiniqueCS 90632Fort‐de‐FranceCedexMartinique
- Pathogenesis and Control of Chronic and Emerging Infections, Université de Montpellier, Université des Antilles, Inserm, Etablissement Français du SangCHU MartiniqueMontpellierFrance
| |
Collapse
|
9
|
Centeleghe I, Norville P, Hughes L, Maillard J. Dual species dry surface biofilms; Bacillus species impact on Staphylococcus aureus survival and surface disinfection. J Appl Microbiol 2022; 133:1130-1140. [PMID: 35543339 PMCID: PMC9543557 DOI: 10.1111/jam.15619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/11/2022] [Accepted: 05/06/2022] [Indexed: 12/05/2022]
Abstract
AIMS Dry surface biofilms (DSB) survive on environmental surfaces throughout hospitals, able to resist cleaning and disinfection interventions. This study aimed to produce a dual species DSB and explore the ability of commercially available wipe products to eliminate pathogens within a dual species DSB and prevent their transfer. METHODS AND RESULTS Staphylococcus aureus was grown with two different species of Bacillus on stainless steel discs, over 12 days using sequential hydration and dehydration phases. A modified version of ASTM 2967-15 was used to test six wipe products including one water control with the Fitaflex Wiperator. Staphylococcus aureus growth was inhibited when combined with Bacillus subtilis. Recovery of S. aureus on agar from a dual DSB was not always consistent. Our results did not provide evidence that Bacillus licheniformis protected S. aureus from wipe action. There was no significant difference of S. aureus elimination by antimicrobial wipes between single and dual species DSB. B. licheniformis was easily transferred by the wipe itself and to new surfaces both in a single and dual species DSB, whilst several wipe products inhibited the transfer of S. aureus from wipe. However, S. aureus direct transfer to new surfaces was not inhibited post-wiping. CONCLUSIONS Although we observed that the dual DSB did not confer protection of S. aureus, we demonstrated that environmental species can persist on surfaces after disinfection treatment. Industries should test DSB against future products and hospitals should consider carefully the products they choose. SIGNIFICANCE AND IMPACT OF THE STUDY To our knowledge, this is the first study reporting on the production of a dual species DSB. Multispecies DSB have been identified throughout the world on hospital surfaces, but many studies focus on single species biofilms. This study has shown that DSB behave differently to hydrated biofilms.
Collapse
Affiliation(s)
| | | | - Louise Hughes
- School of Pharmacy and Pharmaceutical SciencesCardiff UniversityCardiffUK
| | - Jean‐Yves Maillard
- School of Pharmacy and Pharmaceutical SciencesCardiff UniversityCardiffUK
| |
Collapse
|
10
|
Tewes TJ, Centeleghe I, Maillard JY, Platte F, Bockmühl DP. Raman Microscopic Analysis of Dry-Surface Biofilms on Clinically Relevant Materials. Microorganisms 2022; 10:microorganisms10071369. [PMID: 35889088 PMCID: PMC9319561 DOI: 10.3390/microorganisms10071369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
Moist/hydrated biofilms have been well-studied in the medical area, and their association with infections is widely recognized. In contrast, dry-surface biofilms (DSBs) on environmental surfaces in healthcare settings have received less attention. DSBs have been shown to be widespread on commonly used items in hospitals and to harbor bacterial pathogens that are known to cause healthcare-acquired infections (HAI). DSBs cannot be detected by routine surface swabbing or contact plates, and studies have shown DSBs to be less susceptible to cleaning/disinfection products. As DSBs are increasingly reported in the medical field, and there is a likelihood they also occur in food production and manufacturing areas, there is a growing demand for the rapid in situ detection of DSBs and the identification of pathogens within DSBs. Raman microspectroscopy allows users to obtain spatially resolved information about the chemical composition of biofilms, and to identify microbial species. In this study, we investigated Staphylococcus aureus mono-species DSB on polyvinylchloride blanks and stainless steel coupons, and dual-species (S. aureus/Bacillus licheniformis) DSB on steel coupons. We demonstrated that Raman microspectroscopy is not only suitable for identifying specific species, but it also enables the differentiation of vegetative cells from their sporulated form. Our findings provide the first step towards the rapid identification and characterization of the distribution and composition of DSBs on different surface areas.
Collapse
Affiliation(s)
- Thomas J. Tewes
- Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, Marie-Curie-Straße 1, 47533 Kleve, Germany; (T.J.T.); (F.P.)
| | - Isabella Centeleghe
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, Wales, UK; (I.C.); (J.-Y.M.)
| | - Jean-Yves Maillard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, Wales, UK; (I.C.); (J.-Y.M.)
| | - Frank Platte
- Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, Marie-Curie-Straße 1, 47533 Kleve, Germany; (T.J.T.); (F.P.)
| | - Dirk P. Bockmühl
- Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, Marie-Curie-Straße 1, 47533 Kleve, Germany; (T.J.T.); (F.P.)
- Correspondence: ; Tel.: +49-2821-806-73208
| |
Collapse
|
11
|
Croteau A, White A, Cornell KA, Browning J. Cold Atmospheric Pressure Plasma Device Exhibits Etching Effects on Bacterial Biofilms. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022; 6:619-625. [PMID: 36338575 PMCID: PMC9629775 DOI: 10.1109/trpms.2021.3133183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cold atmospheric pressure plasma (CAP) treatment has been shown to kill bacteria and remove bacterial biofilms from surfaces. Here we report the etch capacity of a linear discharge CAP device on Pseudomonas fluorescens biofilms. A 21 kHz, 1.4 kV RMS AC voltage applied to the CAP electrodes generated a hydrated Ar plasma between the plates, with the gas flow directing the plasma species toward the biological sample, causing both bacterial killing and etching of the biofilm. Typical discharge currents for a 2.4 cm long, 0.6 mm wide linear discharge device were 1-4.4 mA. Hydrated Ar flow gas was critical for removal of biofilm from a stainless steel substrate, while both hydrated and dry Ar + O2, Ar + air, O2 only, and air only flow gas mixtures did not cause etching at equivalent or greater discharge current intensities. A biofilm etch rate of > 2 μm/min was achieved, provided the plasma discharge was within 1-2 mm of the substrate surface and used a hydrated Ar gas flow of at least 5 LPM.
Collapse
Affiliation(s)
- Adam Croteau
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID, USA
| | - Amanda White
- Department of Mechanical Engineering, Boise State University, Boise, ID, USA
| | - Kenneth A. Cornell
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID, USA
| | - Jim Browning
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID, USA
| |
Collapse
|
12
|
Chaggar GK, Nkemngong CA, Li X, Teska PJ, Oliver HF. Hydrogen peroxide, sodium dichloro-s-triazinetriones and quaternary alcohols significantly inactivate the dry-surface biofilms of Staphylococcus aureus and Pseudomonas aeruginosa more than quaternary ammoniums. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35275049 PMCID: PMC9558353 DOI: 10.1099/mic.0.001140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Globally, healthcare-associated infections (HAI) are the most frequent adverse outcome in healthcare delivery. Although bacterial biofilms contribute significantly to the incidence of HAI, few studies have investigated the efficacy of common disinfectants against dry-surface biofilms (DSB). The objective of this study was to evaluate the bactericidal efficacy of seven Environmental Protection Agency (EPA)-registered liquid disinfectants against DSB of Staphylococcus aureus and Pseudomonas aeruginosa. We hypothesized that overall, there will be significant differences among the bactericidal efficacies of tested disinfectants by product type and active ingredient class. We also hypothesized that depending on the species, higher bactericidal efficacies against DSB will be exhibited after 24 h of dehydration compared to 72 h. Wet-surface biofilms of S. aureus and P. aeruginosa were grown following EPA-MLB-SOP-MB-19 and dehydrated for 24 and 72 h to establish DSB. Seven EPA-registered disinfectants were tested against dehydrated DSB following EPA-MLB-SOP-MB-20. Overall, quaternary ammonium plus alcohol, sodium dichloro-s-triazinetrione and hydrogen peroxide products were more efficacious against DSB than quaternary ammoniums for both tested species. While there was no significant difference in the log10 reductions between 24 and 72 h S. aureus biofilms, significantly higher log10 reductions were observed when products were challenged with 24 h P. aeruginosa DSB compared to 72 h P. aeruginosa DSB. Species type, active ingredient class and dry time significantly impact disinfectant efficacy against DSB of S. aureus or P. aeruginosa.
Collapse
Affiliation(s)
- Gurpreet K. Chaggar
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Carine A. Nkemngong
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Diversey Inc., Charlotte, NC 28273, USA
| | | | | | - Haley F. Oliver
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- *Correspondence: Haley F. Oliver,
| |
Collapse
|
13
|
Wetting properties of dehydrated biofilms under different growth conditions. Colloids Surf B Biointerfaces 2021; 210:112245. [PMID: 34891062 DOI: 10.1016/j.colsurfb.2021.112245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/06/2021] [Accepted: 11/21/2021] [Indexed: 11/20/2022]
Abstract
Biofilms are resilient to environmental conditions and often resistant even to strong disinfectants. It is crucial to investigate their interfacial properties, which can be effectively characterized by wetting analysis. Wetting phenomena on biofilm surfaces have been poorly investigated in literature, in particular a systematic study of wetting on real biofilm-coated substrates including the application of external body forces (forced wetting, i.e.: centrifugal and gravitational forces) is missing. The aim of this work is to study the role of nutrient and shear flow conditions on wetting properties of Pseudomonas fluorescens dehydrated biofilms, grown on glass substrates. An innovative device (Kerberos®), capable to study spreading/sliding behavior under the application of external body forces, is used here for a systematic analysis of wetting/de-wetting liquid droplets on horizontal substrates under the action of tangential forces. Results prove that, under different growth conditions, (i.e., nutrients and imposed flow), biofilms exhibit different wetting properties. At lower nutrient/shear flow conditions, biofilms show spreading/sliding behavior close to that of pure glass. At higher nutrient and shear flow conditions, droplets on biofilms show spreading followed by imbibition soon after deposition, which leads to peculiar droplet depinning during the rotation test. Wetting properties are derived as a function of the rotation speed from both top and side views videoframes through a dedicated image analysis technique. A detailed analysis of biofilm formation and morphology/topography is also provided here.
Collapse
|
14
|
Bacteriophage treatment before chemical disinfection can enhance removal of plastic surface-associated Pseudomonas aeruginosa. Appl Environ Microbiol 2021; 87:e0098021. [PMID: 34347517 PMCID: PMC8478462 DOI: 10.1128/aem.00980-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Opportunistic pathogens can linger on surfaces in hospital and building plumbing environments, leading to infections in at-risk populations. Further, biofilm-associated bacteria are protected from removal and inactivation protocols, such as disinfection. Bacteriophages show promise as tools to treat antibiotic resistant infections. As such, phages may also be useful in environmental applications to prevent newly acquired infections. In the current study, the potential of synergies between bacteriophage and chemical disinfection of the opportunistic pathogen Pseudomonas aeruginosa was assessed under various conditions. Specifically, surface-associated P. aeruginosa was treated with various concentrations of phages (P1 or JG004), chemical disinfectant (sodium hypochlorite or benzalkonium chloride), or combined sequential treatments under three distinct attachment models (spot inoculations, dry biofilms, and wet biofilms). Phages were very effective at removing bacteria in spot inoculation (>3.2 log10 removal) and wet biofilms (up to 2.6 log10 removal), while phages prevented regrowth of dry biofilms in the application time. In addition, phage treatment followed by chemical disinfection inactivated more P. aeruginosa under wet biofilm conditions better than either treatment alone. This effect was hindered when chemical disinfection was applied first, followed by phage treatment, suggesting additive benefits of combination treatments are lost when phage is applied last. Further, we confirm prior evidence of greater phage tolerance to benzalkonium chloride relative to sodium hypochlorite, informing choices for combination phage-disinfectant approaches. Overall, this paper further supports the potential of using combination phage and chemical disinfectant treatments to improve inactivation of surface-associated P. aeruginosa. Importance Phages are already utilized in the healthcare industry to treat antibiotic resistant infections, such as on implant-associated biofilms and in compassionate care cases. Phage treatment could also be a promising new tool to control pathogens in the built environment, preventing infections from occurring. This study shows that phage can be combined effectively with chemical disinfectants to improve removal of wet biofilms and bacteria spotted onto surfaces while preventing regrowth in dry biofilms. This has the potential to improve pathogen containment within the built environment and drinking water infrastructure to prevent infections of opportunistic pathogens.
Collapse
|