1
|
Sollmann N, Zhang H, Kloth C, Zimmer C, Wiestler B, Rosskopf J, Kreiser K, Schmitz B, Beer M, Krieg SM. Modern preoperative imaging and functional mapping in patients with intracranial glioma. ROFO-FORTSCHR RONTG 2023; 195:989-1000. [PMID: 37224867 DOI: 10.1055/a-2083-8717] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Magnetic resonance imaging (MRI) in therapy-naïve intracranial glioma is paramount for neuro-oncological diagnostics, and it provides images that are helpful for surgery planning and intraoperative guidance during tumor resection, including assessment of the involvement of functionally eloquent brain structures. This study reviews emerging MRI techniques to depict structural information, diffusion characteristics, perfusion alterations, and metabolism changes for advanced neuro-oncological imaging. In addition, it reflects current methods to map brain function close to a tumor, including functional MRI and navigated transcranial magnetic stimulation with derived function-based tractography of subcortical white matter pathways. We conclude that modern preoperative MRI in neuro-oncology offers a multitude of possibilities tailored to clinical needs, and advancements in scanner technology (e. g., parallel imaging for acceleration of acquisitions) make multi-sequence protocols increasingly feasible. Specifically, advanced MRI using a multi-sequence protocol enables noninvasive, image-based tumor grading and phenotyping in patients with glioma. Furthermore, the add-on use of preoperatively acquired MRI data in combination with functional mapping and tractography facilitates risk stratification and helps to avoid perioperative functional decline by providing individual information about the spatial location of functionally eloquent tissue in relation to the tumor mass. KEY POINTS:: · Advanced preoperative MRI allows for image-based tumor grading and phenotyping in glioma.. · Multi-sequence MRI protocols nowadays make it possible to assess various tumor characteristics (incl. perfusion, diffusion, and metabolism).. · Presurgical MRI in glioma is increasingly combined with functional mapping to identify and enclose individual functional areas.. · Advancements in scanner technology (e. g., parallel imaging) facilitate increasing application of dedicated multi-sequence imaging protocols.. CITATION FORMAT: · Sollmann N, Zhang H, Kloth C et al. Modern preoperative imaging and functional mapping in patients with intracranial glioma. Fortschr Röntgenstr 2023; 195: 989 - 1000.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, United States
| | - Haosu Zhang
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Christopher Kloth
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Johannes Rosskopf
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Section of Neuroradiology, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Kornelia Kreiser
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Radiology and Neuroradiology, Universitäts- und Rehabilitationskliniken Ulm, Ulm, Germany
| | - Bernd Schmitz
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Section of Neuroradiology, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Sandro M Krieg
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| |
Collapse
|
2
|
Qu X, Wang Z, Cheng Y, Xue Q, Li Z, Li L, Feng L, Hartwigsen G, Chen L. Neuromodulatory effects of transcranial magnetic stimulation on language performance in healthy participants: Systematic review and meta-analysis. Front Hum Neurosci 2022; 16:1027446. [PMID: 36545349 PMCID: PMC9760723 DOI: 10.3389/fnhum.2022.1027446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Background The causal relationships between neural substrates and human language have been investigated by transcranial magnetic stimulation (TMS). However, the robustness of TMS neuromodulatory effects is still largely unspecified. This study aims to systematically examine the efficacy of TMS on healthy participants' language performance. Methods For this meta-analysis, we searched PubMed, Web of Science, PsycINFO, Scopus, and Google Scholar from database inception until October 15, 2022 for eligible TMS studies on language comprehension and production in healthy adults published in English. The quality of the included studies was assessed with the Cochrane risk of bias tool. Potential publication biases were assessed by funnel plots and the Egger Test. We conducted overall as well as moderator meta-analyses. Effect sizes were estimated using Hedges'g (g) and entered into a three-level random effects model. Results Thirty-seven studies (797 participants) with 77 effect sizes were included. The three-level random effects model revealed significant overall TMS effects on language performance in healthy participants (RT: g = 0.16, 95% CI: 0.04-0.29; ACC: g = 0.14, 95% CI: 0.04-0.24). Further moderator analyses indicated that (a) for language tasks, TMS induced significant neuromodulatory effects on semantic and phonological tasks, but didn't show significance for syntactic tasks; (b) for cortical targets, TMS effects were not significant in left frontal, temporal or parietal regions, but were marginally significant in the inferior frontal gyrus in a finer-scale analysis; (c) for stimulation parameters, stimulation sites extracted from previous studies, rTMS, and intensities calibrated to the individual resting motor threshold are more prone to induce robust TMS effects. As for stimulation frequencies and timing, both high and low frequencies, online and offline stimulation elicited significant effects; (d) for experimental designs, studies adopting sham TMS or no TMS as the control condition and within-subject design obtained more significant effects. Discussion Overall, the results show that TMS may robustly modulate healthy adults' language performance and scrutinize the brain-and-language relation in a profound fashion. However, due to limited sample size and constraints in the current meta-analysis approach, analyses at a more comprehensive level were not conducted and results need to be confirmed by future studies. Systematic review registration [https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=366481], identifier [CRD42022366481].
Collapse
Affiliation(s)
- Xingfang Qu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Zichao Wang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Yao Cheng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Qingwei Xue
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Zimu Li
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Lu Li
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Liping Feng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| |
Collapse
|
3
|
Nettekoven C, Pieczewski J, Neuschmelting V, Jonas K, Goldbrunner R, Grefkes C, Weiss Lucas C. Improving the efficacy and reliability of rTMS language mapping by increasing the stimulation frequency. Hum Brain Mapp 2021; 42:5309-5321. [PMID: 34387388 PMCID: PMC8519874 DOI: 10.1002/hbm.25619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 07/14/2021] [Accepted: 07/27/2021] [Indexed: 11/08/2022] Open
Abstract
Repetitive TMS (rTMS) with a frequency of 5–10 Hz is widely used for language mapping. However, it may be accompanied by discomfort and is limited in the number and reliability of evoked language errors. We, here, systematically tested the influence of different stimulation frequencies (i.e., 10, 30, and 50 Hz) on tolerability, number, reliability, and cortical distribution of language errors aiming at improved language mapping. 15 right‐handed, healthy subjects (m = 8, median age: 29 yrs) were investigated in two sessions, separated by 2–5 days. In each session, 10, 30, and 50 Hz rTMS were applied over the left hemisphere in a randomized order during a picture naming task. Overall, 30 Hz rTMS evoked significantly more errors (20 ± 12%) compared to 50 Hz (12 ± 8%; p <.01), whereas error rates were comparable between 30/50 and 10 Hz (18 ± 11%). Across all conditions, a significantly higher error rate was found in Session 1 (19 ± 13%) compared to Session 2 (13 ± 7%, p <.05). The error rate was poorly reliable between sessions for 10 (intraclass correlation coefficient, ICC = .315) and 30 Hz (ICC = .427), whereas 50 Hz showed a moderate reliability (ICC = .597). Spatial reliability of language errors was low to moderate with a tendency toward increased reliability for higher frequencies, for example, within frontal regions. Compared to 10 Hz, both, 30 and 50 Hz were rated as less painful. Taken together, our data favor the use of rTMS‐protocols employing higher frequencies for evoking language errors reliably and with reduced discomfort, depending on the region of interest.
Collapse
Affiliation(s)
- Charlotte Nettekoven
- Faculty of Medicine and University Hospital, Center for Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany
| | - Julia Pieczewski
- Faculty of Medicine and University Hospital, Center for Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany
| | - Volker Neuschmelting
- Faculty of Medicine and University Hospital, Center for Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany
| | - Kristina Jonas
- Faculty of Human Sciences, Department of Rehabilitation and Special Education, University of Cologne, Cologne, Germany
| | - Roland Goldbrunner
- Faculty of Medicine and University Hospital, Center for Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany
| | - Christian Grefkes
- Faculty of Medicine and University Hospital, Department of Neurology, University of Cologne, Cologne, Germany.,Juelich Research Centre, Institute of Neuroscience and Medicine (INM-3), Juelich, Germany
| | - Carolin Weiss Lucas
- Faculty of Medicine and University Hospital, Center for Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Narayana S, Gibbs SK, Fulton SP, McGregor AL, Mudigoudar B, Weatherspoon SE, Boop FA, Wheless JW. Clinical Utility of Transcranial Magnetic Stimulation (TMS) in the Presurgical Evaluation of Motor, Speech, and Language Functions in Young Children With Refractory Epilepsy or Brain Tumor: Preliminary Evidence. Front Neurol 2021; 12:650830. [PMID: 34093397 PMCID: PMC8170483 DOI: 10.3389/fneur.2021.650830] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022] Open
Abstract
Accurate presurgical mapping of motor, speech, and language cortices, while crucial for neurosurgical planning and minimizing post-operative functional deficits, is challenging in young children with neurological disease. In such children, both invasive (cortical stimulation mapping) and non-invasive functional mapping imaging methods (MEG, fMRI) have limited success, often leading to delayed surgery or adverse post-surgical outcomes. We therefore examined the clinical utility of transcranial magnetic stimulation (TMS) in young children who require functional mapping. In a retrospective chart review of TMS studies performed on children with refractory epilepsy or a brain tumor, at our institution, we identified 47 mapping sessions in 36 children 3 years of age or younger, in whom upper and lower extremity motor mapping was attempted; and 13 children 5–6 years old in whom language mapping, using a naming paradigm, was attempted. The primary hand motor cortex was identified in at least one hemisphere in 33 of 36 patients, and in both hemispheres in 27 children. In 17 children, primary leg motor cortex was also successfully identified. The language cortices in temporal regions were successfully mapped in 11 of 13 patients, and in six of them language cortices in frontal regions were also mapped, with most children (n = 5) showing right hemisphere dominance for expressive language. Ten children had a seizure that was consistent with their clinical semiology during or immediately following TMS, none of which required intervention or impeded completion of mapping. Using TMS, both normal motor, speech, and language developmental patterns and apparent disease induced reorganization were demonstrated in this young cohort. The successful localization of motor, speech, and language cortices in young children improved the understanding of the risk-benefit ratio prior to surgery and facilitated surgical planning aimed at preserving motor, speech, and language functions. Post-operatively, motor function was preserved or improved in nine out of 11 children who underwent surgery, as was language function in all seven children who had surgery for lesions near eloquent cortices. We provide feasibility data that TMS is a safe, reliable, and effective tool to map eloquent cortices in young children.
Collapse
Affiliation(s)
- Shalini Narayana
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Savannah K Gibbs
- Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Stephen P Fulton
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Amy Lee McGregor
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Basanagoud Mudigoudar
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Sarah E Weatherspoon
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Frederick A Boop
- Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States.,Semmes Murphey Neurologic and Spine Institute, Memphis, TN, United States.,Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, United States
| | - James W Wheless
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| |
Collapse
|
5
|
The cortical distribution of first and second language in the right hemisphere of bilinguals - an exploratory study by repetitive navigated transcranial magnetic stimulation. Brain Imaging Behav 2021; 14:1034-1049. [PMID: 30868405 DOI: 10.1007/s11682-019-00082-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
First language (L1) and second language (L2) processing in bilinguals is not yet fully understood, especially not when considering the non-dominant hemisphere. Ten healthy, right-handed volunteers underwent language mapping of the right hemisphere by repetitive navigated transcranial magnetic stimulation and an object-naming task in their L1 and L2. All elicited naming errors together, no responses, and all errors without hesitation were analyzed separately for cortical distributions of error rates (ERs: number of errors divided by the number of applied stimulations). No significant differences (p > 0.05) were found in ERs between the L1 and L2 for all errors (L1 20.6 ± 14.8%, L2 15.4 ± 11.2%), no responses (L1 13.5 ± 10.9%, L2 9.2 ± 10.8%), and all errors without hesitation (L1 14.4 ± 11.2%, L2 10.8 ± 10.0%). The areas that showed high ERs for the L1 included the dorsal precentral and middle precentral gyrus, whereas the triangular inferior frontal gyrus showed high ERs for the L2. When focusing on error distributions per single stimulation points, differences in ERs between the L1 and L2 were initially observed for stimulation within the angular and middle middle frontal gyrus, but did not withstand correction for the false discovery rate (FDR-corrected p > 0.05). In conclusion, this exploratory study shows the feasibility of rTMS to the right hemisphere for language mapping and reveals cortical areas involved in L1 and L2 processing, but has to be followed up by larger studies enrolling more homogeneous cohorts.
Collapse
|
6
|
Gomez-Tames J, Tani K, Hayashi K, Tanaka S, Ueno S, Hirata A. Dosimetry Analysis in Non-brain Tissues During TMS Exposure of Broca's and M1 Areas. Front Neurosci 2021; 15:644951. [PMID: 33679319 PMCID: PMC7933205 DOI: 10.3389/fnins.2021.644951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/02/2021] [Indexed: 12/23/2022] Open
Abstract
For human protection, the internal electric field is used as a dosimetric quantity for electromagnetic fields lower than 5–10 MHz. According to international standards, in this frequency range, electrostimulation is the main adverse effect against which protection is needed. One of the topics to be investigated is the quantification of the internal electric field threshold levels of perception and pain. Pain has been reported as a side effect during transcranial magnetic stimulation (TMS), especially during stimulation of the Broca’s (speech) area of the brain. In this study, we designed an experiment to conduct a dosimetry analysis to quantify the internal electric field corresponding to perception and pain thresholds when targeting the Broca’s and M1 areas from magnetic stimulator exposure. Dosimetry analysis was conducted using a multi-scale analysis in an individualized head model to investigate electrostimulation in an axonal model. The main finding is that the stimulation on the primary motor cortex has higher perception and pain thresholds when compared to Broca’s area. Also, TMS-induced electric field applied to Broca’s area exhibited dependence on the coil orientation at lower electric field threshold which was found to be related to the location and thickness of pain fibers. The derived dosimetry quantities provide a scientific rationale for the development of human protection guidelines and the estimation of possible side effects of magnetic stimulation in clinical applications.
Collapse
Affiliation(s)
- Jose Gomez-Tames
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan.,Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan
| | - Keisuke Tani
- Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuya Hayashi
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Satoshi Tanaka
- Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shoogo Ueno
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan.,Department of Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan.,Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
7
|
Konakanchi D, de Jongh Curry AL, Waters RS, Narayana S. Focality of the Induced E-Field Is a Contributing Factor in the Choice of TMS Parameters: Evidence from a 3D Computational Model of the Human Brain. Brain Sci 2020; 10:E1010. [PMID: 33353125 PMCID: PMC7766380 DOI: 10.3390/brainsci10121010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/05/2020] [Accepted: 12/16/2020] [Indexed: 11/24/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a promising, non-invasive approach in the diagnosis and treatment of several neurological conditions. However, the specific results in the cortex of the magnitude and spatial distribution of the secondary electrical field (E-field) resulting from TMS at different stimulation sites/orientations and varied TMS parameters are not clearly understood. The objective of this study is to identify the impact of TMS stimulation site and coil orientation on the induced E-field, including spatial distribution and the volume of activation in the cortex across brain areas, and hence demonstrate the need for customized optimization, using a three-dimensional finite element model (FEM). A considerable difference was noted in E-field values and distribution at different brain areas. We observed that the volume of activated cortex varied from 3000 to 7000 mm3 between the selected nine clinically relevant coil locations. Coil orientation also changed the induced E-field by a maximum of 10%, and we noted the least optimal values at the standard coil orientation pointing to the nose. The volume of gray matter activated varied by 10% on average between stimulation sites in homologous brain areas in the two hemispheres of the brain. This FEM simulation model clearly demonstrates the importance of TMS parameters for optimal results in clinically relevant brain areas. The results show that TMS parameters cannot be interchangeably used between individuals, hemispheres, and brain areas. The focality of the TMS induced E-field along with its optimal magnitude should be considered as critical TMS parameters that should be individually optimized.
Collapse
Affiliation(s)
- Deepika Konakanchi
- Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA; (A.L.d.J.C.); (R.S.W.)
| | - Amy L. de Jongh Curry
- Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA; (A.L.d.J.C.); (R.S.W.)
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Robert S. Waters
- Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA; (A.L.d.J.C.); (R.S.W.)
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Shalini Narayana
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN 38163, USA
| |
Collapse
|
8
|
The Clinical Utility of Transcranial Magnetic Stimulation in Determining Hemispheric Dominance for Language: A Magnetoencephalography Comparison Study. J Clin Neurophysiol 2020; 37:90-103. [PMID: 32142020 DOI: 10.1097/wnp.0000000000000499] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
PURPOSE Transcranial magnetic stimulation (TMS) has recently emerged as a noninvasive alternative to the intracarotid sodium amytal (Wada) procedure for establishing hemispheric dominance (HD) for language. The accuracy of HD determined by TMS was examined by comparing against the HD derived by magnetoencephalography (MEG), a prominent clinical technique with excellent concordance with the Wada procedure. METHODS Sixty-seven patients (54 patients ≤18 years) underwent language mapping with TMS and MEG as part of clinical epilepsy and tumor presurgical assessment. Language was mapped in MEG during an auditory word recognition paradigm, and a laterality index was calculated using the number of dipoles and their spatial extent in the two hemispheres. Transcranial magnetic stimulation language mapping was performed as patients performed a naming task, and TMS-induced speech disruptions were recorded during 5-Hz TMS applied to anterior and posterior language cortices. Transcranial magnetic stimulation laterality index was estimated using the number and type of speech disruption in the language regions of each hemisphere. RESULTS Transcranial magnetic stimulation and MEG estimates of HD were concordant in 42 (63%) patients, resulting in a sensitivity of 74% and a specificity of 72%. The overall accuracy of TMS was 73%, equivalent to an odds ratio of 7.35. CONCLUSIONS In this first large-scale comparative study in a clinical population, we demonstrate that TMS is a safe and reliable noninvasive tool in determining HD for language. Improving the accuracy of TMS by optimizing TMS parameters and improving task choice will further facilitate the use of TMS to characterize language function, especially in pediatrics.
Collapse
|
9
|
Schiller K, Choudhri AF, Jones T, Holder C, Wheless JW, Narayana S. Concordance Between Transcranial Magnetic Stimulation and Functional Magnetic Resonance Imaging (MRI) Derived Localization of Language in a Clinical Cohort. J Child Neurol 2020; 35:363-379. [PMID: 32122221 DOI: 10.1177/0883073820901415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a newer noninvasive language mapping tool that is safe and well-tolerated by children. We examined the accuracy of TMS-derived language maps in a clinical cohort by comparing it against functional magnetic resonance imaging (MRI)-derived language map. The number of TMS-induced speech disruptions and the volume of activation during functional MRI tasks were localized to Brodmann areas for each modality in 40 patients with epilepsy or brain tumor. We examined the concordance between TMS- and functional MRI-derived language maps by deriving statistical performance metrics for TMS including sensitivity, specificity, accuracy, and diagnostic odds ratio. Brodmann areas 6, 44, and 9 in the frontal lobe and 22 and 40 in the temporal lobe were the most commonly identified language areas by both modalities. Overall accuracy of TMS compared to functional MRI in localizing language cortex was 71%, with a diagnostic odds ratio of 1.27 and higher sensitivity when identifying left hemisphere regions. TMS was more accurate in determining the dominant hemisphere for language with a diagnostic odds ratio of 6. This study is the first to examine the accuracy of the whole brain language map derived by TMS in the largest cohort examined to date. While this comparison against functional MRI confirmed that TMS reliably localizes cortical areas that are not essential for speech function, it demonstrated only slight concordance between TMS- and functional MRI-derived language areas. That the localization of specific language cortices by TMS demonstrated low accuracy reveals a potential need to use concordant tasks between the modalities and other avenues for further optimization of TMS parameters.
Collapse
Affiliation(s)
- Katherine Schiller
- Department of Pediatrics, Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Asim F Choudhri
- Le Bonheur Children's Hospital, Le Bonheur Neuroscience Institute, Memphis, TN, USA.,Department of Radiology, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tamekia Jones
- Department of Pediatrics, Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, TN, USA.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Christen Holder
- Department of Pediatrics, Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, TN, USA.,Le Bonheur Children's Hospital, Le Bonheur Neuroscience Institute, Memphis, TN, USA
| | - James W Wheless
- Department of Pediatrics, Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, TN, USA.,Le Bonheur Children's Hospital, Le Bonheur Neuroscience Institute, Memphis, TN, USA
| | - Shalini Narayana
- Department of Pediatrics, Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, TN, USA.,Le Bonheur Children's Hospital, Le Bonheur Neuroscience Institute, Memphis, TN, USA.,Department of Neurobiology and Anatomy, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
10
|
Raffa G, Quattropani MC, Germanò A. When imaging meets neurophysiology: the value of navigated transcranial magnetic stimulation for preoperative neurophysiological mapping prior to brain tumor surgery. Neurosurg Focus 2019; 47:E10. [DOI: 10.3171/2019.9.focus19640] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/04/2019] [Indexed: 11/06/2022]
Abstract
Maximal safe resection is the modern goal for surgery of intrinsic brain tumors located in or close to brain eloquent areas. Nowadays different neuroimaging techniques provide important anatomical and functional information regarding the brain functional organization that can be used to plan a customized surgical strategy to preserve functional networks, and to increase the extent of tumor resection. Among these techniques, navigated transcranial magnetic stimulation (nTMS) has recently gained great favor among the neurosurgical community for preoperative mapping and planning prior to brain tumor surgery. It represents an advanced neuroimaging technique based on the neurophysiological mapping of the functional cortical brain organization. Moreover, it can be combined with other neuroimaging techniques such as diffusion tensor imaging tractography, thus providing a reliable reconstruction of brain eloquent networks. Consequently, nTMS mapping may provide reliable noninvasive brain functional mapping, anticipating information that otherwise may be available to neurosurgeons only in the operating theater by using direct electrical stimulation. The authors describe the reliability and usefulness of the preoperative nTMS-based approach in neurosurgical practice, and briefly discuss their experience using nTMS as well as currently available evidence in the literature supporting its clinical use. In particular, special attention is reserved for the discussion of the role of nTMS as a novel tool for the preoperative neurophysiological mapping of motor and language networks prior to surgery of intrinsic brain tumors located in or close to eloquent networks, as well as for future and promising applications of nTMS in neurosurgical practice.
Collapse
Affiliation(s)
- Giovanni Raffa
- 1Division of Neurosurgery, BIOMORF Department, University of Messina, Italy; and
| | | | - Antonino Germanò
- 1Division of Neurosurgery, BIOMORF Department, University of Messina, Italy; and
| |
Collapse
|
11
|
Sollmann N, Fuss-Ruppenthal S, Zimmer C, Meyer B, Krieg SM. Investigating Stimulation Protocols for Language Mapping by Repetitive Navigated Transcranial Magnetic Stimulation. Front Behav Neurosci 2018; 12:197. [PMID: 30250427 PMCID: PMC6139335 DOI: 10.3389/fnbeh.2018.00197] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/13/2018] [Indexed: 11/15/2022] Open
Abstract
Navigated transcranial magnetic stimulation (nTMS) is increasingly applied to map human language functions. However, studies on protocol comparisons are mostly lacking. In this study, 20 healthy volunteers (25.7 ± 3.8 years, 12 females) underwent left-hemispheric language mapping by nTMS, combined with an object-naming task, over a cortical spot with reproducible naming errors within the triangular or opercular part of the inferior frontal gyrus (trIFG, opIFG: anterior stimulation) and the angular gyrus or posterior part of the superior temporal gyrus (anG, pSTG: posterior stimulation), respectively. Various stimulation intensities [80, 100, and 120% of the resting motor threshold (rMT)], frequencies (2, 5, 10, and 20 Hz), and coil orientations (in steps of 45°) were evaluated, and the adjustments leading to the highest error rates (ERs), combined with low occurrences of errors due to muscle stimulation, were considered optimal. Regarding anterior stimulation, 100% rMT, 5 Hz, and a coil orientation of 90° or 270° in relation to the respective stimulated gyrus resulted in optimal results. For posterior stimulation, 100% rMT, 10 Hz, and coil orientations of 90° or 270° were considered optimal. Errors due to facial muscle stimulation only played a considerable role during analyses of high-intensity (120% rMT) or high-frequency stimulation (20 Hz). In conclusion, this is one of the first studies to systematically investigate different stimulation protocols for nTMS language mapping, including detailed analyses of the distribution of ERs in relation to various coil orientations considered during neuronavigated stimulation. Mapping with 100% rMT, combined with 5 Hz (anterior stimulation) or 10 Hz (posterior stimulation) and a coil orientation perpendicular to the respective stimulated gyrus can be recommended as optimal adjustments.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sophia Fuss-Ruppenthal
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
12
|
Sollmann N, Ille S, Negwer C, Boeckh-Behrens T, Ringel F, Meyer B, Krieg SM. Cortical time course of object naming investigated by repetitive navigated transcranial magnetic stimulation. Brain Imaging Behav 2018; 11:1192-1206. [PMID: 27448161 DOI: 10.1007/s11682-016-9574-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Human language organization models and language time course patterns are still predominantly derived from meta-analyses of numerous single publications, which only investigated scattered cortical regions. Moreover, there is not much literature available on the exact impact of repetitive navigated transcranial magnetic stimulation (rTMS) onset times on object naming. We, therefore, used a virtual lesion-based approach by mapping various cortical areas with rTMS to investigate the time course of object naming, and to specifically provide data on the pattern of rTMS language mapping results depending on different stimulation onset times. Ten healthy, right-handed subjects were enrolled, and rTMS in combination with an object-naming task was performed with different stimulation onset times (0 ms, 100 ms, 200 ms, 300 ms, 400 ms, and 500 ms). Subsequent to language mapping, all naming errors detected were systematically classified with respect to previous literature. The majority of errors was elicited within the opercular inferior frontal gyrus (opIFG) and ventral precentral gyrus (vPrG), and the spatial distribution of naming errors changed according to the time point of naming disruption by varying onset times. For instance, immediate rTMS onset led to a widespread cortical distribution of no responses, whereas performance and hesitation errors increased with higher stimulation onset times.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,TUM-Neuroimaging Center, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Department of Radiology, Section of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sebastian Ille
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,TUM-Neuroimaging Center, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Chiara Negwer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,TUM-Neuroimaging Center, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Tobias Boeckh-Behrens
- Department of Radiology, Section of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Florian Ringel
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany. .,TUM-Neuroimaging Center, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
13
|
Giglhuber K, Maurer S, Zimmer C, Meyer B, Krieg SM. Mapping visuospatial attention: the greyscales task in combination with repetitive navigated transcranial magnetic stimulation. BMC Neurosci 2018; 19:40. [PMID: 29996777 PMCID: PMC6042394 DOI: 10.1186/s12868-018-0440-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/04/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Visuospatial attention is executed by the frontoparietal cortical areas of the brain. Damage to these areas can result in visual neglect. We therefore aimed to assess a combination of the greyscales task and repetitive navigated transcranial magnetic stimulation (rTMS) to identify cortical regions involved in visuospatial attention processes. This pilot study was designed to evaluate an approach in a cohort of healthy volunteers, with the future aim of using this technique to map brain tumor patients before surgery. Ten healthy, right-handed subjects underwent rTMS mapping of 52 cortical spots in both hemispheres. The greyscales task was presented tachistoscopically and was time-locked to rTMS pulses. The task pictures showed pairs of horizontal rectangles shaded continuously from black at one end to white at the other, mirror-reversed. On each picture the subject was asked to report which of the two greyscales appeared darker overall. The responses were categorized into "leftward" and "rightward," depending on whether the subject had chosen the rectangle with the darker end on the left or the right. rTMS applied to cortical areas involved in visuospatial attention is supposed to affect lateral shifts in spatial bias. These shifts result in an altered performance on the greyscales task compared to the baseline performance without rTMS stimulation. RESULTS In baseline conditions, 9/10 subjects showed classic pseudoneglect to the left. Leftward effects also occurred more often in mapping conditions. Yet, calculated rightward deviations were strikingly greater in magnitude (p < 0.0001). Overall, the right hemisphere was found to be more suggestible than the left hemisphere. Both rightward and leftward deviation scores were higher for the rTMS of this brain side (p < 0.0001). Right hemispheric distributions accord well with current models of visuospatial attention (Corbetta et al. Nat Neurosci 8(11):1603-1610, 2005). We observed leftward deviations triggered by rTMS within superior frontal and posterior parietal areas and rightward deviations within inferior frontal areas and the temporoparietal junction (TPJ). CONCLUSION The greyscales task, in combination with rTMS, yields encouraging results in the examination of the visuospatial attention function. Future clinical implications should be evaluated.
Collapse
Affiliation(s)
- Katrin Giglhuber
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefanie Maurer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Claus Zimmer
- Section of Neuroradiology, Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany. .,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| |
Collapse
|
14
|
Language function shows comparable cortical patterns by functional MRI and repetitive nTMS in healthy volunteers. Brain Imaging Behav 2018; 13:1071-1092. [DOI: 10.1007/s11682-018-9921-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Evoking visual neglect-like deficits in healthy volunteers - an investigation by repetitive navigated transcranial magnetic stimulation. Brain Imaging Behav 2018; 11:17-29. [PMID: 26781482 DOI: 10.1007/s11682-016-9506-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In clinical practice, repetitive navigated transcranial magnetic stimulation (rTMS) is of particular interest for non-invasive mapping of cortical language areas. Yet, rTMS studies try to detect further cortical functions. Damage to the underlying network of visuospatial attention function can result in visual neglect-a severe neurological deficit and influencing factor for a significantly reduced functional outcome. This investigation aims to evaluate the use of rTMS for evoking visual neglect in healthy volunteers and the potential of specifically locating cortical areas that can be assigned for the function of visuospatial attention. Ten healthy, right-handed subjects underwent rTMS visual neglect mapping. Repetitive trains of 5 Hz and 10 pulses were applied to 52 pre-defined cortical spots on each hemisphere; each cortical spot was stimulated 10 times. Visuospatial attention was tested time-locked to rTMS pulses by a landmark task. Task pictures were displayed tachistoscopically for 50 ms. The subjects' performance was analyzed by video, and errors were referenced to cortical spots. We observed visual neglect-like deficits during the stimulation of both hemispheres. Errors were categorized into leftward, rightward, and no response errors. Rightward errors occurred significantly more often during stimulation of the right hemisphere than during stimulation of the left hemisphere (mean rightward error rate (ER) 1.6 ± 1.3 % vs. 1.0 ± 1.0 %, p = 0.0141). Within the left hemisphere, we observed predominantly leftward errors rather than rightward errors (mean leftward ER 2.0 ± 1.3 % vs. rightward ER 1.0 ± 1.0 %; p = 0.0005). Visual neglect can be elicited non-invasively by rTMS, and cortical areas eloquent for visuospatial attention can be detected. Yet, the correlation of this approach with clinical findings has to be shown in upcoming steps.
Collapse
|
16
|
Sakreida K, Lange I, Willmes K, Heim S, Binkofski F, Clusmann H, Neuloh G. High-resolution language mapping of Broca's region with transcranial magnetic stimulation. Brain Struct Funct 2017; 223:1297-1312. [PMID: 29116426 DOI: 10.1007/s00429-017-1550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
Abstract
Broca's region, corresponding roughly to cytoarchitectonic areas 44 and 45 in the inferior frontal cortex, holds a multifunctional role in language processing, as shown, e.g., by functional imaging data. Neuro-navigated transcranial magnetic stimulation (TMS) enables complementary non-invasive mapping of cortical functions with high spatial resolution. Here, we report on detailed TMS language mapping of Broca's region in 12 healthy participants. The test protocol with an object naming task was adapted for high-resolution and semi-quantitative mapping of TMS-induced effects on speech and language performance. Hierarchical cluster analysis of normalized ratings of error frequency and severity revealed a clear focus of TMS impact at dorso-posterior target sites, close to the inferior frontal junction. Adjacent clusters of moderate and slightly affected stimulation sites yielded a posterosuperior-to-anteroinferior gradient of TMS susceptibility. Our findings indicate that the part of Broca's region most susceptible to TMS-induced language inhibition in object naming is located in the dorsal area 44.
Collapse
Affiliation(s)
- Katrin Sakreida
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Inga Lange
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.,Section Clinical Cognitive Sciences, Department of Neurology, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
| | - Klaus Willmes
- Department of Neurology, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany
| | - Stefan Heim
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany.,Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1), 52425, Jülich, Germany.,JARA - Translational Brain Medicine, Aachen, Germany
| | - Ferdinand Binkofski
- Section Clinical Cognitive Sciences, Department of Neurology, Faculty of Medicine, RWTH Aachen University, 52074, Aachen, Germany.,Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4), 52425, Jülich, Germany.,JARA - Translational Brain Medicine, Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Georg Neuloh
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| |
Collapse
|
17
|
Tussis L, Sollmann N, Boeckh-Behrens T, Meyer B, Krieg SM. Identifying cortical first and second language sites via navigated transcranial magnetic stimulation of the left hemisphere in bilinguals. BRAIN AND LANGUAGE 2017; 168:106-116. [PMID: 28189046 DOI: 10.1016/j.bandl.2017.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 08/20/2016] [Accepted: 01/26/2017] [Indexed: 06/06/2023]
Abstract
The cortical areas that code for the first (L1) and second language (L2) in bilinguals have still not been sufficiently explored. Thus, this study investigated the left-hemispheric distribution of the L1 and L2 using repetitive navigated transcranial magnetic stimulation (rTMS), in combination with an object-naming task, in 10 healthy, right-handed volunteers. In particular, higher error rates (ERs) were observed in the L1, and there was a statistically significant difference between the ERs of L1 and L2 for no-response errors (L1 mean 11.9±9.0%, L2 mean 6.5±5.2%; p=0.03). Furthermore, language-specific and shared cortical distribution patterns for the L1 and L2 were observed within the frontal, parietal, and temporal lobes with a trend towards higher occurrence of language-specific spots within posterior regions. Overall, the L1 presented a more stable pattern of language distribution compared to the L2.
Collapse
Affiliation(s)
- Lorena Tussis
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Nico Sollmann
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| | - Tobias Boeckh-Behrens
- Section of Neuroradiology, Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| |
Collapse
|
18
|
Ille S, Kulchytska N, Sollmann N, Wittig R, Beurskens E, Butenschoen VM, Ringel F, Vajkoczy P, Meyer B, Picht T, Krieg SM. Hemispheric language dominance measured by repetitive navigated transcranial magnetic stimulation and postoperative course of language function in brain tumor patients. Neuropsychologia 2016; 91:50-60. [DOI: 10.1016/j.neuropsychologia.2016.07.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
|
19
|
Mapping of cortical language function by functional magnetic resonance imaging and repetitive navigated transcranial magnetic stimulation in 40 healthy subjects. Acta Neurochir (Wien) 2016; 158:1303-16. [PMID: 27138329 DOI: 10.1007/s00701-016-2819-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/20/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Functional magnetic resonance imaging (fMRI) is considered to be the standard method regarding non-invasive language mapping. However, repetitive navigated transcranial magnetic stimulation (rTMS) gains increasing importance with respect to that purpose. However, comparisons between both methods are sparse. METHODS We performed fMRI and rTMS language mapping of the left hemisphere in 40 healthy, right-handed subjects in combination with the tasks that are most commonly used in the neurosurgical context (fMRI: word-generation = WGEN task; rTMS: object-naming = ON task). Different rTMS error rate thresholds (ERTs) were calculated, and Cohen's kappa coefficient and the cortical parcellation system (CPS) were used for systematic comparison of the two techniques. RESULTS Overall, mean kappa coefficients were low, revealing no distinct agreement. We found the highest agreement for both techniques when using the 2-out-of-3 rule (CPS region defined as language positive in terms of rTMS if at least 2 out of 3 stimulations led to a naming error). However, kappa for this threshold was only 0.24 (kappa of <0, 0.01-0.20, 0.21-0.40, 0.41-0.60, 0.61-0.80 and 0.81-0.99 indicate less than chance, slight, fair, moderate, substantial and almost perfect agreement, respectively). CONCLUSIONS Because of the inherent differences in the underlying physiology of fMRI and rTMS, the different tasks used and the impossibility of verifying the results via direct cortical stimulation (DCS) in the population of healthy volunteers, one must exercise caution in drawing conclusions about the relative usefulness of each technique for language mapping. Nevertheless, this study yields valuable insights into these two mapping techniques for the most common language tasks currently used in neurosurgical practice.
Collapse
|
20
|
Sollmann N, Negwer C, Ille S, Maurer S, Hauck T, Kirschke JS, Ringel F, Meyer B, Krieg SM. Feasibility of nTMS-based DTI fiber tracking of language pathways in neurosurgical patients using a fractional anisotropy threshold. J Neurosci Methods 2016; 267:45-54. [PMID: 27059128 DOI: 10.1016/j.jneumeth.2016.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Navigated transcranial magnetic stimulation (nTMS) provides language maps in brain tumor patients. Yet, corresponding data on the visualization of language-related subcortical pathways is lacking. Therefore, this study evaluates the feasibility of nTMS-based diffusion tensor imaging fiber tracking (DTI FT) for subcortical language pathways by a fractional anisotropy (FA) protocol. NEW METHOD DTI FT was performed in 37 patients suffering from left-sided perisylvian brain lesions based on nTMS data exclusively, using the FA-based protocol originally established for the corticospinal tract (CST) by Frey et al. (2012): minimum fiber length was 110mm and the highest individual FA value leading to visualization of white matter tracts was determined as the FA threshold (FAT). Then, deterministic DTI FT using an FA value of 100%, 75%, 50%, and 25% of the individual FAT (with 25% as an additional setting to the original protocol) was performed. RESULTS Our approach visualized 9 language-related subcortical white matter pathways. By using 100% FAT, the mean percentage of visualized tracts was 13.5%, whereas DTI FT performed with 75%, 50%, and 25% FAT detected 30.6%, 61.3%, and 93.7% of language-related fiber tracts, respectively. COMPARISON WITH EXISTING METHODS nTMS language mapping alone is not able to visualize subcortical language-related pathways. CONCLUSIONS This study shows that nTMS language maps are feasible for DTI FT of language-related pathways within the scope of a FAT-based protocol. Although this approach is novel and might be helpful during scientific neuroimaging and tumor resection, intraoperative validation is needed to go beyond the level of feasibility.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Chiara Negwer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Sebastian Ille
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Stefanie Maurer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Theresa Hauck
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Jan S Kirschke
- Section of Neuroradiology, Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Florian Ringel
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| |
Collapse
|
21
|
Language function distribution in left-handers: A navigated transcranial magnetic stimulation study. Neuropsychologia 2016; 82:65-73. [PMID: 26792365 DOI: 10.1016/j.neuropsychologia.2016.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/17/2015] [Accepted: 01/10/2016] [Indexed: 11/21/2022]
Abstract
Recent studies suggest that in left-handers, the right hemisphere (RH) is more involved in language function when compared to right-handed subjects. Since data on lesion-based approaches is lacking, we aimed to investigate language distribution of left-handers by repetitive navigated transcranial magnetic stimulation (rTMS). Thus, rTMS was applied to the left hemisphere (LH) and RH in 15 healthy left-handers during an object-naming task, and resulting naming errors were categorized. Then, we calculated error rates (ERs=number of errors per number of stimulations) for both hemispheres separately and defined a laterality score as the quotient of the LH ER - RH ER through the LH ER + RH ER (abbreviated as (L-R)/(L+R)). In this context, (L-R)/(L+R)>0 indicates that the LH is dominant, whereas (L-R)/(L+R)<0 shows that the RH is dominant. No significant difference in ERs was found between hemispheres (all errors: mean LH 18.0±11.7%, mean RH 18.1±12.2%, p=0.94; all errors without hesitation: mean LH 12.4±9.8%, mean RH 12.9±10.0%, p=0.65; no responses: mean LH 9.3±9.2%, mean RH 11.5±10.3%, p=0.84). However, a significant difference between the results of (L-R)/(L+R) of left-handers and right-handers (source data of another study) for all errors (mean 0.01±0.14 vs. 0.19±0.20, p=0.0019) and all errors without hesitation (mean -0.02±0.20 vs. 0.19±0.28, p=0.0051) was revealed, whereas the comparison for no responses did not show a significant difference (mean: -0.004±0.27 vs. 0.09±0.44, p=0.64). Accordingly, left-handers present a comparatively equal language distribution across both hemispheres with language dominance being nearly equally distributed between hemispheres in contrast to right-handers.
Collapse
|
22
|
Sollmann N, Ille S, Obermueller T, Negwer C, Ringel F, Meyer B, Krieg SM. Erratum to: The impact of repetitive navigated transcranial magnetic stimulation coil positioning and stimulation parameters on human language function. Eur J Med Res 2015; 20:71. [PMID: 26329670 PMCID: PMC4557899 DOI: 10.1186/s40001-015-0155-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 07/21/2015] [Indexed: 12/02/2022] Open
Affiliation(s)
- Nico Sollmann
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany. .,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Sebastian Ille
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany. .,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Thomas Obermueller
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany. .,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Chiara Negwer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany. .,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Florian Ringel
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany. .,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany. .,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|