1
|
Luo Y, Lin L, Shufeng C, Liu C, Li Z, Liu K. Osimertinib treatment response in a patient with lung adenocarcinoma harboring two rare EGFR mutations: A case report. Oncol Lett 2024; 28:501. [PMID: 39233826 PMCID: PMC11369848 DOI: 10.3892/ol.2024.14634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/25/2024] [Indexed: 09/06/2024] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations have emerged as the most well-studied oncogenic alterations in advanced non-small cell lung cancer. The presence of single common or rare EGFR mutations and extra complex EGFR mutations correlates with the response sensitivity to EGFR tyrosine kinase inhibitors. Therefore, given the lack of evidence for the emergence of rare EGFR mutation types, the pathogenic mechanisms of uncommon EGFR mutations and the optimal treatment strategies remain to be explored further. The present study describes the case of a patient diagnosed with lung adenocarcinoma (LUAD) carrying two rare EGFR exon 18 indel/G719C and exon 19 L747S mutations, in which persistent lesion shrinkage was exhibited within 16 months of osimertinib treatment. Given the paucity of clinical trials for the treatment of LUAD harboring complex EGER mutations, the present detailed case description may provide clinicians with effective clinical experience in treating patients.
Collapse
Affiliation(s)
- Yawen Luo
- Department of Oncology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Lin Lin
- Department of Oncology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Chen Shufeng
- Department of Internal Medicine-Oncology, Dongguan Wangniudun Hospital, Dongguan, Guangdong 518131, P.R. China
| | - Chun Liu
- Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University, Dongguan People's Hospital, Dongguan, Guangdong 518131, P.R. China
| | - Zhuanghua Li
- Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University, Dongguan People's Hospital, Dongguan, Guangdong 518131, P.R. China
| | - Kejun Liu
- Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University, Dongguan People's Hospital, Dongguan, Guangdong 518131, P.R. China
| |
Collapse
|
2
|
Oboh MA, Morenikeji OB, Ojurongbe O, Thomas BN. Transcriptomic analyses of differentially expressed human genes, micro RNAs and long-non-coding RNAs in severe, symptomatic and asymptomatic malaria infection. Sci Rep 2024; 14:16901. [PMID: 39043812 PMCID: PMC11266512 DOI: 10.1038/s41598-024-67663-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Malaria transmission and endemicity in Africa remains hugely disproportionate compared to the rest of the world. The complex life cycle of P. falciparum (Pf) between the vertebrate human host and the anopheline vector results in differential expression of genes within and between hosts. An in-depth understanding of Pf interaction with various human genes through regulatory elements will pave way for identification of newer tools in the arsenal for malaria control. Therefore, the regulatory elements (REs) involved in the over- or under-expression of various host immune genes hold the key to elucidating alternative control measures that can be applied for disease surveillance, prompt diagnosis and treatment. We carried out an RNAseq analysis to identify differentially expressed genes and network elucidation of non-coding RNAs and target genes associated with immune response in individuals with different clinical outcomes. Raw RNAseq datasets, retrieved for analyses include individuals with severe (Gambia-20), symptomatic (Burkina Faso-15), asymptomatic (Mali-16) malaria as well as uninfected controls (Tanzania-20; Mali-36). Of the total 107 datasets retrieved, we identified 5534 differentially expressed genes (DEGs) among disease and control groups. A peculiar pattern of DEGs was observed, with individuals presenting with severe/symptomatic malaria having the highest and most diverse upregulated genes, while a reverse phenomenon was recorded among asymptomatic and uninfected individuals. In addition, we identified 141 differentially expressed micro RNA (miRNA), of which 78 and 63 were upregulated and downregulated respectively. Interactome analysis revealed a moderate interaction between DEGs and miRNAs. Of all identified miRNA, five were unique (hsa-mir-32, hsa-mir-25, hsa-mir-221, hsa-mir-29 and hsa-mir-148) because of their connectivity to several genes, including hsa-mir-221 connected to 16 genes. Six-hundred and eight differentially expressed long non coding RNA (lncRNA) were also identified, including SLC7A11, LINC01524 among the upregulated ones. Our study provides important insight into host immune genes undergoing differential expression under different malaria conditions. It also identified unique miRNAs and lncRNAs that modify and/or regulate the expression of various immune genes. These regulatory elements we surmise, have the potential to serve a diagnostic purpose in discriminating between individuals with severe/symptomatic malaria and those with asymptomatic infection or uninfected, following further clinical validation from field isolates.
Collapse
Affiliation(s)
- Mary A Oboh
- Department of Biomedical Sciences, Rochester Institute of Technology, 153 Lomb Memorial Drive, Rochester, NY, 14623, USA
| | - Olanrewaju B Morenikeji
- Division of Biological and Health Sciences, University of Pittsburgh Bradford, Bradford, PA, USA
| | - Olusola Ojurongbe
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Bolaji N Thomas
- Department of Biomedical Sciences, Rochester Institute of Technology, 153 Lomb Memorial Drive, Rochester, NY, 14623, USA.
| |
Collapse
|
3
|
Figueira MI, Carvalho TMA, Macário-Monteiro J, Cardoso HJ, Correia S, Vaz CV, Duarte AP, Socorro S. The Pros and Cons of Estrogens in Prostate Cancer: An Update with a Focus on Phytoestrogens. Biomedicines 2024; 12:1636. [PMID: 39200101 PMCID: PMC11351860 DOI: 10.3390/biomedicines12081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
The role of estrogens in prostate cancer (PCa) is shrouded in mystery, with its actions going from angelic to devilish. The findings by Huggins and Hodges establishing PCa as a hormone-sensitive cancer have provided the basis for using estrogens in therapy. However, despite the clinical efficacy in suppressing tumor growth and the panoply of experimental evidence describing its anticarcinogenic effects, estrogens were abolished from PCa treatment because of the adverse secondary effects. Notwithstanding, research work over the years has continued investigating the effects of estrogens, reporting their pros and cons in prostate carcinogenesis. In contrast with the beneficial therapeutic effects, many reports have implicated estrogens in the disruption of prostate cell fate and tissue homeostasis. On the other hand, epidemiological data demonstrating the lower incidence of PCa in Eastern countries associated with a higher consumption of phytoestrogens support the beneficial role of estrogens in counteracting cancer development. Many studies have investigated the effects of phytoestrogens and the underlying mechanisms of action, which may contribute to developing safe estrogen-based anti-PCa therapies. This review compiles the existing data on the anti- and protumorigenic actions of estrogens and summarizes the anticancer effects of several phytoestrogens, highlighting their promising features in PCa treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sílvia Socorro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (M.I.F.)
| |
Collapse
|
4
|
Li H, Wang X, Zhai M, Xu C, Chen X. Exploration of the influence of GOLGA8B on prostate cancer progression and the resistance of castration-resistant prostate cancer to cabazitaxel. Discov Oncol 2024; 15:152. [PMID: 38730195 PMCID: PMC11087400 DOI: 10.1007/s12672-024-00973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Castration-resistant prostate cancer (CRPC) represents the final stage of prostate cancer (PCa). Cabazitaxel, a taxane chemotherapy drug, is used in treating CRPC. However, patients with CRPC eventually develop resistance to cabazitaxel, and the underlying mechanism remains unclear. Here, we aimed to investigate potential genetic alterations that may play a role in CRPC resistance to cabazitaxel. Using microarray data from the GSE158494 dataset, we identified ten critical genes (CXCL8, ITGB8, CLIP4, MAP1B, WIPI1, MMP13, CXCL1, C1S, GOLGA8B, and CXCL6) associated with CRPC cell resistance to cabazitaxel. The potential function of these key genes in PCa progression was analyzed using different databases, including Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and Chinese Prostate Cancer Genome and Epigenome Atlas (CPGEA). Our findings revealed altered expression of these genes in the development of PCa. Furthermore, CXCL1 and GOLGA8B were found to influence the disease-free survival (DFS) status of patients with PCa, with GOLGA8B affecting the overall prognosis in patients with PCa. Additionally, GOLGA8B expression was associated with the infiltration of various immune cells in PCa, and it was upregulated in clinical PCa and CRPC samples. Through CCK-8 assays, we established that GOLGA8B could influence the sensitivity of CRPC cells to cabazitaxel and docetaxel. In conclusion, we identified GOLGA8B as a crucial gene that influences PCa progression and contributes to CRPC resistance to cabazitaxel.
Collapse
Affiliation(s)
- Haopeng Li
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Xin'an Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Menghe Zhai
- Department of Urology, Jiaxing Second Hospital, 397 North Huancheng Road, Jiaxing, 314000, Zhejiang, China.
| | - Chengdang Xu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China.
| | - Xi Chen
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
5
|
Xu W, Liu L, Cui Z, Li M, Ni J, Huang N, Zhang Y, Luo J, Sun L, Sun F. Identification of key enzalutamide-resistance-related genes in castration-resistant prostate cancer and verification of RAD51 functions. Open Med (Wars) 2023; 18:20230715. [PMID: 37251536 PMCID: PMC10224628 DOI: 10.1515/med-2023-0715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/16/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Patients with castration-resistant prostate cancer (CRPC) often develop drug resistance after treatment with enzalutamide. The goal of our study was to identify the key genes related to enzalutamide resistance in CRPC and to provide new gene targets for future research on improving the efficacy of enzalutamide. Differential expression genes (DEGs) associated with enzalutamide were obtained from the GSE151083 and GSE150807 datasets. We used R software, the DAVID database, protein-protein interaction networks, the Cytoscape program, and Gene Set Cancer Analysis for data analysis. The effect of RAD51 knockdown on prostate cancer (PCa) cell lines was demonstrated using Cell Counting Kit-8, clone formation, and transwell migration experiments. Six hub genes with prognostic values were screened (RAD51, BLM, DTL, RFC2, APOE, and EXO1), which were significantly associated with immune cell infiltration in PCa. High RAD51, BLM, EXO1, and RFC2 expression was associated with androgen receptor signaling pathway activation. Except for APOE, high expression of hub genes showed a significant negative correlation with the IC50 of Navitoclax and NPK76-II-72-1. RAD51 knockdown inhibited the proliferation and migration of PC3 and DU145 cell lines and promoted apoptosis. Additionally, 22Rv1 cell proliferation was more significantly inhibited with RAD51 knockdown than without RAD51 knockdown under enzalutamide treatment. Overall, six key genes associated with enzalutamide resistance were screened (RAD51, BLM, DTL, RFC2, APOE, and EXO1), which are potential therapeutic targets for enzalutamide-resistant PCa in the future.
Collapse
Affiliation(s)
- Wen Xu
- Shanghai Clinical College, Anhui Medical University, Shanghai, 200072, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Li Liu
- Department of Clinical Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Zhongqi Cui
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Mingyang Li
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jinliang Ni
- Shanghai Clinical College, Anhui Medical University, Shanghai, 200072, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Nan Huang
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Yue Zhang
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Jie Luo
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Limei Sun
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, 200072, Shanghai, China
| | - Fenyong Sun
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
- Shanghai Clinical College, Anhui Medical University, No. 301, Yanchang Middle Road, Jingan District, Shanghai, 200072, China
- Department of Clinical Laboratory, Shanghai Tenth People’s Hospital of Tongji University, No. 301, Yanchang Middle Road, Jingan District, 200072, Shanghai, China
| |
Collapse
|
6
|
Silva J, Tavares V, Afonso A, Garcia J, Cerqueira F, Medeiros R. Plasmatic MicroRNAs and Treatment Outcomes of Patients with Metastatic Castration-Resistant Prostate Cancer: A Hospital-Based Cohort Study and In Silico Analysis. Int J Mol Sci 2023; 24:ijms24109101. [PMID: 37240449 DOI: 10.3390/ijms24109101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies among men worldwide. Inevitably, all advanced PCa patients develop metastatic castration-resistant prostate cancer (mCRPC), an aggressive phase of the disease. Treating mCRPC is challenging, and prognostic tools are needed for disease management. MicroRNA (miRNA) deregulation has been reported in PCa, constituting potential non-invasive prognostic biomarkers. As such, this study aimed to evaluate the prognostic potential of nine miRNAs in the liquid biopsies (plasma) of mCRPC patients treated with second-generation androgen receptor axis-targeted (ARAT) agents, abiraterone acetate (AbA) and enzalutamide (ENZ). Low expression levels of miR-16-5p and miR-145-5p in mCRPC patients treated with AbA were significantly associated with lower progression-free survival (PFS). The two miRNAs were the only predictors of the risk of disease progression in AbA-stratified analyses. Low miR-20a-5p levels in mCRPC patients with Gleason scores of <8 were associated with worse overall survival (OS). The transcript seems to predict the risk of death regardless of the ARAT agent. According to the in silico analyses, miR-16-5p, miR-145-5p, and miR-20a-5p seem to be implicated in several processes, namely, cell cycle, proliferation, migration, survival, metabolism, and angiogenesis, suggesting an epigenetic mechanism related to treatment outcome. These miRNAs may represent attractive prognostic tools to be used in mCRPC management, as well as a step further in the identification of new potential therapeutic targets, to use in combination with ARAT for an improved treatment outcome. Despite the promising results, real-world validation is necessary.
Collapse
Affiliation(s)
- Jani Silva
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- AquaValor-Centro de Valorização e Transferência de Tecnologia da Água, Rua Dr. Júlio Martins, nº1, 5400-342 Chaves, Portugal
| | - Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana Afonso
- Department of Oncology, Portuguese Institute of Oncology, Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal
| | - Juliana Garcia
- AquaValor-Centro de Valorização e Transferência de Tecnologia da Água, Rua Dr. Júlio Martins, nº1, 5400-342 Chaves, Portugal
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB)/Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Fátima Cerqueira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Instituto de Investigação, Inovação e Desenvolvimento Fernando Pessoa (FP-I3ID), Biomedical and Health Sciences (FP-BHS), Universidade Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Instituto de Investigação, Inovação e Desenvolvimento Fernando Pessoa (FP-I3ID), Biomedical and Health Sciences (FP-BHS), Universidade Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| |
Collapse
|
7
|
Chen X, Ma J, Wang X, Zi T, Qian D, Li C, Xu C. CCNB1 and AURKA are critical genes for prostate cancer progression and castration-resistant prostate cancer resistant to vinblastine. Front Endocrinol (Lausanne) 2022; 13:1106175. [PMID: 36601001 PMCID: PMC9806262 DOI: 10.3389/fendo.2022.1106175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a common malignancy occurring in men. As both an endocrine and gonadal organ, prostate is closely correlated with androgen. So, androgen deprivation therapy (ADT) is effective for treating PCa. However, patients will develop castration-resistant prostate cancer (CRPC) stage after ADT. Many other treatments for CRPC exist, including chemotherapy. Vinblastine, a chemotherapeutic drug, is used to treat CRPC. However, patients will develop resistance to vinblastine. Genetic alterations have been speculated to play a critical role in CRPC resistance to vinblastine; however, its mechanism remains unclear. METHODS Various databases, such as Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA) and Chinese Prostate Cancer Genome and Epigenome Atlas (CPGEA), were used to collect the RNA-sequence data of PCa and CRPC patients and vinblastine-resistant PCa cells. Using online tools, Metascape and TIMER, the pathways and immune infiltration associated with vinblastine resistance-related genes in PCa were analyzed. The function of these genes was verified in clinical samples and CRPC cells. RESULTS Using GSE81277 dataset, we collected the RNA-sequence data of vinblastine sensitive and resistant LNCaP cells and found nine genes (CDC20, LRRFIP1, CCNB1, GPSM2, AURKA, EBLN2, CCDC150, CENPA and TROAP) that correlated with vinblastine resistance. Furthermore, CCNB1, GPSM2 and AURKA were differently expressed between normal prostate and PCa tissues, even influencing PCa progression. The GSE35988 dataset revealed that CCNB1 and AURKA were upregulated in PCa and CRPC samples. Various genes were also found to affect the survival status of PCa patients based on TCGA. These genes were also related to immune cell infiltration. Finally, we verified the function of CCNB1 and AURKA and observed that they were upregulated in PCa and CRPC clinical samples and increased the sensitivity of CRPC cells to vinblastine. CONCLUSION CCNB1 and AURKA are central to CRPC resistance to vinblastine and affect PCa progression.
Collapse
Affiliation(s)
- Xi Chen
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junjie Ma
- Department of Urology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xin’an Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tong Zi
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Duocheng Qian
- Department of Urology, Shanghai Fourth People’s Hospital, Affiliated to Tongji University School of Medicine, Shanghai, China
- *Correspondence: Duocheng Qian, ; Chao Li, ; Chengdang Xu,
| | - Chao Li
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Duocheng Qian, ; Chao Li, ; Chengdang Xu,
| | - Chengdang Xu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Duocheng Qian, ; Chao Li, ; Chengdang Xu,
| |
Collapse
|