1
|
Sakunthala A, Maji SK. Deciphering the Seed Size-Dependent Cellular Internalization Mechanism for α-Synuclein Fibrils. Biochemistry 2025; 64:377-400. [PMID: 39762762 DOI: 10.1021/acs.biochem.4c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aggregation of α-synuclein (α-Syn) and Lewy body (LB) formation are the key pathological events implicated in Parkinson's disease (PD) that spread in a prion-like manner. However, biophysical and structural characteristics of toxic α-Syn species and molecular events that drive early events in the propagation of α-Syn amyloids in a prion-like manner remain elusive. We used a neuronal cell model to demonstrate the size-dependent native biological activities of α-Syn fibril seeds. Biophysical characterization of the fibril seeds generated by controlled fragmentation indicated that increased fragmentation leads to a reduction in fibril size, correlating directly with the extent of fragmentation events. Although the size-based complexity of amyloid fibrils modulates their biological activities and fibril amplification pathways, it remains unclear how the variability of fibril seed size dictates its specific uptake mechanism into the cells. The present study elucidates the mechanism of α-Syn fibril internalization and how it is regulated by the size of fibril seeds. Further, we demonstrate that size-dependent endocytic pathways (dynamin-dependent clathrin/caveolin-mediated) are more prominent for the differential uptake of short fibril seeds compared to their longer counterparts. This size-dependent preference might contribute to the enhanced uptake and transcellular propagation of short α-Syn fibril seeds in a prion-like manner. Overall, the present study suggests that the physical dimension of α-Syn amyloid fibril seeds significantly influences their cellular uptake and pathological responses in the initiation and progression of PD.
Collapse
Affiliation(s)
- Arunima Sakunthala
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases (SCAN), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Department of Biosciences& Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Samir K Maji
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases (SCAN), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Department of Biosciences& Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Xiang J, Zhang Z, Wu S, Ye K. Positron emission tomography tracers for synucleinopathies. Mol Neurodegener 2025; 20:1. [PMID: 39757220 DOI: 10.1186/s13024-024-00787-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, are characterized by the aggregation of α-synuclein. Variations in brain distribution allow for differentiation among these diseases and facilitate precise clinical diagnosis. However, distinguishing between synucleinopathies and Parkinsonism with tauopathies poses a challenge, significantly impacting clinical drug development. Therefore, molecular imaging is crucial for synucleinopathies, particularly for clinical diagnosis, assessment of drug efficacy, and disease surveillance. In recent years, advances in molecular imaging have led to rapid development of α-synuclein-specific tracers for positron emission tomography (PET), most of which are still in pre-clinical stages. Interestingly, some of these tracers share similar compound skeletal structures and are currently undergoing optimization for clinical application. Despite this progress, there remain challenges in developing α-synuclein tracers. This review summarizes recent findings on promising PET tracers and discusses representative compounds' characteristics while offering suggestions for further research orientation.
Collapse
Affiliation(s)
- Jie Xiang
- Department of Neurobiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shengxi Wu
- Department of Neurobiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), Shenzhen, China.
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
3
|
Sánchez-Camacho JV, Gómez-Chavarín M, Galindo-Solano N, Padilla-Cortés P, Maldonado-García JL, Pérez-Sánchez G, Pavón L, Ramírez-Santos J, Roldán Roldán G, Gómez-López M, Gutierrez-Ospina G. Non-Categorical Analyses Identify Rotenone-Induced 'Parkinsonian' Rats Benefiting from Nano-Emulsified Punicic Acid (Nano-PSO) in a Phenotypically Diverse Population: Implications for Translational Neurodegenerative Therapies. Int J Mol Sci 2024; 25:12635. [PMID: 39684350 DOI: 10.3390/ijms252312635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 12/18/2024] Open
Abstract
The pursuit of nutraceuticals to improve the quality of life for patients with neurodegenerative conditions is a dynamic field within neuropharmacology. Unfortunately, many nutraceuticals that show promise in preclinical studies fail to demonstrate significant clinical benefits in human trials, leading to their exclusion as therapeutic options. This discrepancy may stem from the categorical interpretation of preclinical and clinical results. Basic researchers often assume that non-human experimental animals exhibit less phenotypic variability than humans. This belief overlooks interindividual phenotype variation, thereby leading to categorical conclusions being drawn from experiments. Consequently, when human clinical trials are conducted, the researchers expect similarly conclusive results. If these results are not achieved, the nutraceutical is deemed ineffective for clinical use, even if numerous individuals might benefit. In our study, we evaluated whether analyzing phenotype variability and similarity through non-categorical methods could help identify rotenone (ROT)-treated rats that might benefit from consuming nano-emulsified punicic acid (Nano-PSO), even if the prevention of "parkinsonism" or the restoration of neurometabolic function is inconsistent across individuals. Our findings supported this hypothesis. The benefits of Nano-PSO were not categorical; however, analyzing phenotype variance allowed us to identify ROT rats with varying degrees of benefit from Nano-PSO consumption. Hence, the translational potential of results from basic science studies testing nutraceuticals as pharmaceutical products against neurodegeneration may improve if researchers also interpret their results using non-categorical methods of data analysis for population screening, even if the overall therapeutic outcomes for the entire population show internal inconsistencies.
Collapse
Affiliation(s)
| | - Margarita Gómez-Chavarín
- Laboratorio de Medicina Regenerativa y Canales Iónicos, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Nuria Galindo-Solano
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Patricia Padilla-Cortés
- Unidad de Cromatografía, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - José Luis Maldonado-García
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Ciudad de México 14370, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Ciudad de México 14370, Mexico
| | - Jesús Ramírez-Santos
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Gabriel Roldán Roldán
- Laboratorio de Neurología Conductual, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Modesto Gómez-López
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Gabriel Gutierrez-Ospina
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
4
|
Ruiz-Ortega ED, Wilkaniec A, Adamczyk A. Liquid-liquid phase separation and conformational strains of α-Synuclein: implications for Parkinson's disease pathogenesis. Front Mol Neurosci 2024; 17:1494218. [PMID: 39507104 PMCID: PMC11537881 DOI: 10.3389/fnmol.2024.1494218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Parkinson's disease (PD) and other synucleinopathies are characterized by the aggregation and deposition of alpha-synuclein (α-syn) in brain cells, forming insoluble inclusions such as Lewy bodies (LBs) and Lewy neurites (LNs). The aggregation of α-syn is a complex process involving the structural conversion from its native random coil to well-defined secondary structures rich in β-sheets, forming amyloid-like fibrils. Evidence suggests that intermediate species of α-syn aggregates formed during this conversion are responsible for cell death. However, the molecular events involved in α-syn aggregation and its relationship with disease onset and progression remain not fully elucidated. Additionally, the clinical and pathological heterogeneity observed in various synucleinopathies has been highlighted. Liquid-liquid phase separation (LLPS) and condensate formation have been proposed as alternative mechanisms that could underpin α-syn pathology and contribute to the heterogeneity seen in synucleinopathies. This review focuses on the role of the cellular environment in α-syn conformational rearrangement, which may lead to pathology and the existence of different α-syn conformational strains with varying toxicity patterns. The discussion will include cellular stress, abnormal LLPS formation, and the potential role of LLPS in α-syn pathology.
Collapse
Affiliation(s)
| | | | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Iwaide S, Murakami T, Sedghi Masoud N, Kobayashi N, Fortin JS, Miyahara H, Higuchi K, Chambers JK. Classification of amyloidosis and protein misfolding disorders in animals 2024: A review on pathology and diagnosis. Vet Pathol 2024:3009858241283750. [PMID: 39389927 DOI: 10.1177/03009858241283750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Amyloidosis is a group of diseases in which proteins become amyloid, an insoluble fibrillar aggregate, resulting in organ dysfunction. Amyloid deposition has been reported in various animal species. To diagnose and understand the pathogenesis of amyloidosis, it is important to identify the amyloid precursor protein involved in each disease. Although 42 amyloid precursor proteins have been reported in humans, little is known about amyloidosis in animals, except for a few well-described amyloid proteins, including amyloid A (AA), amyloid light chain (AL), amyloid β (Aβ), and islet amyloid polypeptide-derived amyloid. Recently, several types of novel amyloidosis have been identified in animals using immunohistochemistry and mass spectrometry-based proteomic analysis. Certain species are predisposed to specific types of amyloidosis, suggesting a genetic background for its pathogenesis. Age-related amyloidosis has also emerged due to the increased longevity of captive animals. In addition, experimental studies have shown that some amyloids may be transmissible. Accurate diagnosis and understanding of animal amyloidosis are necessary for appropriate therapeutic intervention and comparative pathological studies. This review provides an updated classification of animal amyloidosis, including associated protein misfolding disorders of the central nervous system, and the current understanding of their pathogenesis. Pathologic features are presented together with state-of-the-art diagnostic methods that can be applied for routine diagnosis and identification of novel amyloid proteins in animals.
Collapse
Affiliation(s)
- Susumu Iwaide
- Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | - Tomoaki Murakami
- Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | | | | | | | | | - Keiichi Higuchi
- Shinshu University, Matsumoto, Japan
- Meio University, Nago, Japan
| | | |
Collapse
|
6
|
Woerman AL, Bartz JC. Effect of host and strain factors on α-synuclein prion pathogenesis. Trends Neurosci 2024; 47:538-550. [PMID: 38806297 PMCID: PMC11236502 DOI: 10.1016/j.tins.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 05/04/2024] [Indexed: 05/30/2024]
Abstract
Prion diseases are a group of neurodegenerative disorders caused by misfolding of proteins into pathogenic conformations that self-template to spread disease. Although this mechanism is largely associated with the prion protein (PrP) in classical prion diseases, a growing literature indicates that other proteins, including α-synuclein, rely on a similar disease mechanism. Notably, α-synuclein misfolds into distinct conformations, or strains, that cause discrete clinical disorders including multiple system atrophy (MSA) and Parkinson's disease (PD). Because the recognized similarities between PrP and α-synuclein are increasing, this review article draws from research on PrP to identify the host and strain factors that impact disease pathogenesis, predominantly in rodent models, and focuses on key considerations for future research on α-synuclein prions.
Collapse
Affiliation(s)
- Amanda L Woerman
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, USA.
| | - Jason C Bartz
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, USA; Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, USA.
| |
Collapse
|
7
|
Li B, Xiao X, Bi M, Jiao Q, Chen X, Yan C, Du X, Jiang H. Modulating α-synuclein propagation and decomposition: Implications in Parkinson's disease therapy. Ageing Res Rev 2024; 98:102319. [PMID: 38719160 DOI: 10.1016/j.arr.2024.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/03/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024]
Abstract
α-Synuclein (α-Syn) is closely related to the pathogenesis of Parkinson's disease (PD). Under pathological conditions, the conformation of α-syn changes and different forms of α-syn lead to neurotoxicity. According to Braak stages, α-syn can propagate in different brain regions, inducing neurodegeneration and corresponding clinical manifestations through abnormal aggregation of Lewy bodies (LBs) and lewy axons in different types of neurons in PD. So far, PD lacks early diagnosis biomarkers, and treatments are mainly targeted at some clinical symptoms. There is no effective therapy to delay the progression of PD. This review first summarized the role of α-syn in physiological and pathological states, and the relationship between α-syn and PD. Then, we focused on the origin, secretion, aggregation, propagation and degradation of α-syn as well as the important regulatory factors in these processes systematically. Finally, we reviewed some potential drug candidates for alleviating the abnormal aggregation of α-syn in order to provide valuable targets for the treatment of PD to cope with the occurrence and progression of this disease.
Collapse
Affiliation(s)
- Beining Li
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xue Xiao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Mingxia Bi
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Qian Jiao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xi Chen
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Chunling Yan
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xixun Du
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China.
| | - Hong Jiang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China; School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China.
| |
Collapse
|
8
|
Lv QK, Tao KX, Yao XY, Pang MZ, Cao BE, Liu CF, Wang F. Melatonin MT1 receptors regulate the Sirt1/Nrf2/Ho-1/Gpx4 pathway to prevent α-synuclein-induced ferroptosis in Parkinson's disease. J Pineal Res 2024; 76:e12948. [PMID: 38488331 DOI: 10.1111/jpi.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/19/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic (DA) neurons and aggregation of α-synuclein (α-syn). Ferroptosis, a form of cell death induced by iron accumulation and lipid peroxidation, is involved in the pathogenesis of PD. It is unknown whether melatonin receptor 1 (MT1) modulates α-syn and ferroptosis in PD. Here, we used α-syn preformed fibrils (PFFs) to induce PD models in vivo and in vitro. In PD mice, α-syn aggregation led to increased iron deposition and ferroptosis. MT1 knockout exacerbated these changes and resulted in more DA neuronal loss and severe motor impairment. MT1 knockout also suppressed the Sirt1/Nrf2/Ho1/Gpx4 pathway, reducing resistance to ferroptosis, and inhibited expression of ferritin Fth1, leading to more release of ferrous ions. In vitro experiments confirmed these findings. Knockdown of MT1 enhanced α-syn PFF-induced intracellular α-syn aggregation and suppressed expression of the Sirt1/Nrf2/Ho1/Gpx4 pathway and Fth1 protein, thereby aggravating ferroptosis. Conversely, overexpression of MT1 reversed these effects. Our findings reveal a novel mechanism by which MT1 activation prevents α-syn-induced ferroptosis in PD, highlighting the neuroprotective role of MT1 in PD.
Collapse
Affiliation(s)
- Qian-Kun Lv
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Kang-Xin Tao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiao-Yu Yao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng-Zhu Pang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Bing-Er Cao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
9
|
Stolzer I, Scherer E, Süß P, Rothhammer V, Winner B, Neurath MF, Günther C. Impact of Microbiome-Brain Communication on Neuroinflammation and Neurodegeneration. Int J Mol Sci 2023; 24:14925. [PMID: 37834373 PMCID: PMC10573483 DOI: 10.3390/ijms241914925] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
The gut microbiome plays a pivotal role in maintaining human health, with numerous studies demonstrating that alterations in microbial compositions can significantly affect the development and progression of various immune-mediated diseases affecting both the digestive tract and the central nervous system (CNS). This complex interplay between the microbiota, the gut, and the CNS is referred to as the gut-brain axis. The role of the gut microbiota in the pathogenesis of neurodegenerative diseases has gained increasing attention in recent years, and evidence suggests that gut dysbiosis may contribute to disease development and progression. Clinical studies have shown alterations in the composition of the gut microbiota in multiple sclerosis patients, with a decrease in beneficial bacteria and an increase in pro-inflammatory bacteria. Furthermore, changes within the microbial community have been linked to the pathogenesis of Parkinson's disease and Alzheimer's disease. Microbiota-gut-brain communication can impact neurodegenerative diseases through various mechanisms, including the regulation of immune function, the production of microbial metabolites, as well as modulation of host-derived soluble factors. This review describes the current literature on the gut-brain axis and highlights novel communication systems that allow cross-talk between the gut microbiota and the host that might influence the pathogenesis of neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Iris Stolzer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Eveline Scherer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Patrick Süß
- Department of Molecular Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Veit Rothhammer
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Center of Rare Diseases Erlangen (ZSEER), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
10
|
Graves NJ, Gambin Y, Sierecki E. α-Synuclein Strains and Their Relevance to Parkinson's Disease, Multiple System Atrophy, and Dementia with Lewy Bodies. Int J Mol Sci 2023; 24:12134. [PMID: 37569510 PMCID: PMC10418915 DOI: 10.3390/ijms241512134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Like many neurodegenerative diseases, Parkinson's disease (PD) is characterized by the formation of proteinaceous aggregates in brain cells. In PD, those proteinaceous aggregates are formed by the α-synuclein (αSyn) and are considered the trademark of this neurodegenerative disease. In addition to PD, αSyn pathological aggregation is also detected in atypical Parkinsonism, including Dementia with Lewy Bodies (DLB), Multiple System Atrophy (MSA), as well as neurodegeneration with brain iron accumulation, some cases of traumatic brain injuries, and variants of Alzheimer's disease. Collectively, these (and other) disorders are referred to as synucleinopathies, highlighting the relation between disease type and protein misfolding/aggregation. Despite these pathological relationships, however, synucleinopathies cover a wide range of pathologies, present with a multiplicity of symptoms, and arise from dysfunctions in different neuroanatomical regions and cell populations. Strikingly, αSyn deposition occurs in different types of cells, with oligodendrocytes being mainly affected in MSA, while aggregates are found in neurons in PD. If multiple factors contribute to the development of a pathology, especially in the cases of slow-developing neurodegenerative disorders, the common presence of αSyn aggregation, as both a marker and potential driver of disease, is puzzling. In this review, we will focus on comparing PD, DLB, and MSA, from symptomatology to molecular description, highlighting the role and contribution of αSyn aggregates in each disorder. We will particularly present recent evidence for the involvement of conformational strains of αSyn aggregates and discuss the reciprocal relationship between αSyn strains and the cellular milieu. Moreover, we will highlight the need for effective methodologies for the strainotyping of aggregates to ameliorate diagnosing capabilities and therapeutic treatments.
Collapse
Affiliation(s)
| | | | - Emma Sierecki
- EMBL Australia Node for Single Molecule Sciences and School of Biomedical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia; (N.J.G.)
| |
Collapse
|
11
|
So RWL, Watts JC. α-Synuclein Conformational Strains as Drivers of Phenotypic Heterogeneity in Neurodegenerative Diseases. J Mol Biol 2023:168011. [PMID: 36792008 DOI: 10.1016/j.jmb.2023.168011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
The synucleinopathies, which include Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, are a class of human neurodegenerative disorders unified by the presence of α-synuclein aggregates in the brain. Considerable clinical and pathological heterogeneity exists within and among the individual synucleinopathies. A potential explanation for this variability is the existence of distinct conformational strains of α-synuclein aggregates that cause different disease manifestations. Like prion strains, α-synuclein strains can be delineated based on their structural architecture, with structural differences among α-synuclein aggregates leading to unique biochemical attributes and neuropathological properties in humans and animal models. Bolstered by recent high-resolution structural data from patient brain-derived material, it has now been firmly established that there are conformational differences among α-synuclein aggregates from different human synucleinopathies. Moreover, recombinant α-synuclein can be polymerized into several structurally distinct aggregates that exhibit unique pathological properties. In this review, we outline the evidence supporting the existence of α-synuclein strains and highlight how they can act as drivers of phenotypic heterogeneity in the human synucleinopathies.
Collapse
Affiliation(s)
- Raphaella W L So
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada. https://twitter.com/xsakuraphie
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada. https://twitter.com/JoelWattsLab
| |
Collapse
|
12
|
Peelaerts W, Baekelandt V. ⍺-Synuclein Structural Diversity and the Cellular Environment in ⍺-Synuclein Transmission Models and Humans. Neurotherapeutics 2023; 20:67-82. [PMID: 37052776 PMCID: PMC10119367 DOI: 10.1007/s13311-023-01365-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2023] [Indexed: 04/14/2023] Open
Abstract
Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA) are termed synucleinopathies, disorders that are characterized by the intracellular aggregation of the protein ɑ-synuclein. The cellular tropism of synuclein pathology in these syndromes is notably distinct since in the Lewy disorders, PD and DLB, ɑSyn forms aggregates in neurons whereas in MSA ɑSyn forms aggregates in oligodendrocytes. Studies examining ɑSyn pathology in experimental models and in human brain have now identified fibrillar ɑSyn with unique but distinct molecular signatures, suggesting that the structure of these ɑSyn fibrils might be closely tied to their cellular ontogeny. In contrast to the native structural heterogeneity of ɑSyn in vitro, the conformational landscape of fibrillar ɑSyn in human brain and in vivo transmission models appears to be remarkably uniform. Here, we review the studies by which we propose a hypothesis that the cellular host environment might be in part responsible for how ɑSyn filaments assemble into phenotype-specific strains. We postulate that the maturation of ɑSyn strains develops as a function of their in vivo transmission routes and cell-specific risk factors. The impact of the cellular environment on the structural diversity of ɑSyn might have important implications for the design of preclinical studies and their use for the development of ɑSyn-based biomarkers and therapeutic strategies. By combining phenotype-specific fibrils and relevant synucleinopathy transmission models, preclinical models might more closely reflect unique disease phenotypes.
Collapse
Affiliation(s)
- Wouter Peelaerts
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Yang R, Gao G, Yang H. The Pathological Mechanism Between the Intestine and Brain in the Early Stage of Parkinson's Disease. Front Aging Neurosci 2022; 14:861035. [PMID: 35813958 PMCID: PMC9263383 DOI: 10.3389/fnagi.2022.861035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common chronic progressive neurodegenerative disease. The main pathological features are progressive degeneration of neurons and abnormal accumulation of α-synuclein. At present, the pathogenesis of PD is not completely clear, and many changes in the intestinal tract may be the early pathogenic factors of PD. These changes affect the central nervous system (CNS) through both nervous and humoral pathways. α-Synuclein deposited in the intestinal nerve migrates upward along the vagus nerve to the brain. Inflammation and immune regulation mediated by intestinal immune cells may be involved, affecting the CNS through local blood circulation. In addition, microorganisms and their metabolites may also affect the progression of PD. Therefore, paying attention to the multiple changes in the intestinal tract may provide new insight for the early diagnosis and treatment of PD.
Collapse
|
14
|
Lopes DM, Llewellyn SK, Harrison IF. Propagation of tau and α-synuclein in the brain: therapeutic potential of the glymphatic system. Transl Neurodegener 2022; 11:19. [PMID: 35314000 PMCID: PMC8935752 DOI: 10.1186/s40035-022-00293-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Many neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease, are characterised by the accumulation of misfolded protein deposits in the brain, leading to a progressive destabilisation of the neuronal network and neuronal death. Among the proteins that can abnormally accumulate are tau and α-synuclein, which can propagate in a prion-like manner and which upon aggregation, represent the most common intracellular proteinaceous lesions associated with neurodegeneration. For years it was thought that these intracellular proteins and their accumulation had no immediate relationship with extracellular homeostasis pathways such as the glymphatic clearance system; however, mounting evidence has now suggested that this is not the case. The involvement of the glymphatic system in neurodegenerative disease is yet to be fully defined; however, it is becoming increasingly clear that this pathway contributes to parenchymal solute clearance. Importantly, recent data show that proteins prone to intracellular accumulation are subject to glymphatic clearance, suggesting that this system plays a key role in many neurological disorders. In this review, we provide a background on the biology of tau and α-synuclein and discuss the latest findings on the cell-to-cell propagation mechanisms of these proteins. Importantly, we discuss recent data demonstrating that manipulation of the glymphatic system may have the potential to alleviate and reduce pathogenic accumulation of propagation-prone intracellular cytotoxic proteins. Furthermore, we will allude to the latest potential therapeutic opportunities targeting the glymphatic system that might have an impact as disease modifiers in neurodegenerative diseases.
Collapse
|
15
|
Wang ZL, Yuan L, Li W, Li JY. Ferroptosis in Parkinson’s disease: glia–neuron crosstalk. Trends Mol Med 2022; 28:258-269. [DOI: 10.1016/j.molmed.2022.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/14/2022]
|
16
|
Jellinger KA, Wenning GK, Stefanova N. Is Multiple System Atrophy a Prion-like Disorder? Int J Mol Sci 2021; 22:10093. [PMID: 34576255 PMCID: PMC8472631 DOI: 10.3390/ijms221810093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Multiple system atrophy (MSA) is a rapidly progressive, fatal neurodegenerative disease of uncertain aetiology that belongs to the family of α-synucleinopathies. It clinically presents with parkinsonism, cerebellar, autonomic, and motor impairment in variable combinations. Pathological hallmarks are fibrillary α-synuclein (αSyn)-rich glial cytoplasmic inclusions (GCIs) mainly involving oligodendroglia and to a lesser extent neurons, inducing a multisystem neurodegeneration, glial activation, and widespread demyelinization. The neuronal αSyn pathology of MSA has molecular properties different from Lewy bodies in Parkinson's disease (PD), both of which could serve as a pool of αSyn (prion) seeds that could initiate and drive the pathogenesis of synucleinopathies. The molecular cascade leading to the "prion-like" transfer of "strains" of aggregated αSyn contributing to the progression of the disease is poorly understood, while some presented evidence that MSA is a prion disease. However, this hypothesis is difficult to reconcile with postmortem analysis of human brains and the fact that MSA-like pathology was induced by intracerebral inoculation of human MSA brain homogenates only in homozygous mutant 53T mice, without production of disease-specific GCIs, or with replication of MSA prions in primary astrocyte cultures from transgenic mice expressing human αSyn. Whereas recent intrastriatal injection of Lewy body-derived or synthetic human αSyn fibrils induced PD-like pathology including neuronal αSyn aggregates in macaques, no such transmission of αSyn pathology in non-human primates by MSA brain lysate has been reported until now. Given the similarities between αSyn and prions, there is a considerable debate whether they should be referred to as "prions", "prion-like", "prionoids", or something else. Here, the findings supporting the proposed nature of αSyn as a prion and its self-propagation through seeding as well as the transmissibility of neurodegenerative disorders are discussed. The proof of disease causation rests on the concordance of scientific evidence, none of which has provided convincing evidence for the classification of MSA as a prion disease or its human transmission until now.
Collapse
Affiliation(s)
| | - Gregor K. Wenning
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (G.K.W.); (N.S.)
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (G.K.W.); (N.S.)
| |
Collapse
|