1
|
Abdelmissih S, Hosny SA, Elwi HM, Sayed WM, Eshra MA, Shaker OG, Samir NF. Chronic Caffeine Consumption, Alone or Combined with Agomelatine or Quetiapine, Reduces the Maximum EEG Peak, As Linked to Cortical Neurodegeneration, Ovarian Estrogen Receptor Alpha, and Melatonin Receptor 2. Psychopharmacology (Berl) 2024; 241:2073-2101. [PMID: 38842700 PMCID: PMC11442587 DOI: 10.1007/s00213-024-06619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
RATIONALE Evidence of the effects of chronic caffeine (CAFF)-containing beverages, alone or in combination with agomelatine (AGO) or quetiapine (QUET), on electroencephalography (EEG), which is relevant to cognition, epileptogenesis, and ovarian function, remains lacking. Estrogenic, adenosinergic, and melatonergic signaling is possibly linked to the dynamics of these substances. OBJECTIVES The brain and ovarian effects of CAFF were compared with those of AGO + CAFF and QUET + CAFF. The implications of estrogenic, adenosinergic, and melatonergic signaling and the brain-ovarian crosstalk were investigated. METHODS Adult female rats were administered AGO (10 mg/kg), QUET (10 mg/kg), CAFF, AGO + CAFF, or QUET + CAFF, once daily for 8 weeks. EEG, estrous cycle progression, and microstructure of the brain and ovaries were examined. Brain and ovarian 17β-estradiol (E2), antimullerian hormone (AMH), estrogen receptor alpha (E2Rα), adenosine receptor 2A (A2AR), and melatonin receptor 2 (MT2R) were assessed. RESULTS CAFF, alone or combined with AGO or QUET, reduced the maximum EEG peak, which was positively linked to ovarian E2Rα, negatively correlated to cortical neurodegeneration and ovarian MT2R, and associated with cystic ovaries. A large corpus luteum emerged with AGO + CAFF and QUET + CAFF, antagonizing the CAFF-mediated increased ovarian A2AR and reduced cortical E2Rα. AGO + CAFF provoked TTP delay and increased ovarian AMH, while QUET + CAFF slowed source EEG frequency to δ range and increased brain E2. CONCLUSIONS CAFF treatment triggered brain and ovarian derangements partially antagonized with concurrent AGO or QUET administration but with no overt affection of estrus cycle progression. Estrogenic, adenosinergic, and melatonergic signaling and brain-ovarian crosstalk may explain these effects.
Collapse
Affiliation(s)
- Sherine Abdelmissih
- Department of Medical Pharmacology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt.
| | - Sara Adel Hosny
- Department of Medical Histology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Heba M Elwi
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Walaa Mohamed Sayed
- Department of Anatomy and Embryology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Mohamed Ali Eshra
- Department of Medical Physiology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Olfat Gamil Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Nancy F Samir
- Department of Medical Physiology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Franzmeier N, Dehsarvi A, Steward A, Biel D, Dewenter A, Roemer SN, Wagner F, Groß M, Brendel M, Moscoso A, Arunachalam P, Blennow K, Zetterberg H, Ewers M, Schöll M. Elevated CSF GAP-43 is associated with accelerated tau accumulation and spread in Alzheimer's disease. Nat Commun 2024; 15:202. [PMID: 38172114 PMCID: PMC10764818 DOI: 10.1038/s41467-023-44374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
In Alzheimer's disease, amyloid-beta (Aβ) triggers the trans-synaptic spread of tau pathology, and aberrant synaptic activity has been shown to promote tau spreading. Aβ induces aberrant synaptic activity, manifesting in increases in the presynaptic growth-associated protein 43 (GAP-43), which is closely involved in synaptic activity and plasticity. We therefore tested whether Aβ-related GAP-43 increases, as a marker of synaptic changes, drive tau spreading in 93 patients across the aging and Alzheimer's spectrum with available CSF GAP-43, amyloid-PET and longitudinal tau-PET assessments. We found that (1) higher GAP-43 was associated with faster Aβ-related tau accumulation, specifically in brain regions connected closest to subject-specific tau epicenters and (2) that higher GAP-43 strengthened the association between Aβ and connectivity-associated tau spread. This suggests that GAP-43-related synaptic changes are linked to faster Aβ-related tau spread across connected regions and that synapses could be key targets for preventing tau spreading in Alzheimer's disease.
Collapse
Affiliation(s)
- Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal and Gothenburg, Sweden.
| | - Amir Dehsarvi
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Anna Steward
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Davina Biel
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Niclas Roemer
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Fabian Wagner
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Mattes Groß
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Alexis Moscoso
- University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal and Gothenburg, Sweden
| | - Prithvi Arunachalam
- University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal and Gothenburg, Sweden
| | - Kaj Blennow
- University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal and Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal and Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Michael Schöll
- University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal and Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
3
|
Wei G, Tian X, Yang H, Luo Y, Liu G, Sun S, Wang X, Wen H. Adjunct Methods for Alzheimer's Disease Detection: A Review of Auditory Evoked Potentials. J Alzheimers Dis 2024; 97:1503-1517. [PMID: 38277292 DOI: 10.3233/jad-230822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The auditory afferent pathway as a clinical marker of Alzheimer's disease (AD) has sparked interest in investigating the relationship between age-related hearing loss (ARHL) and AD. Given the earlier onset of ARHL compared to cognitive impairment caused by AD, there is a growing emphasis on early diagnosis and intervention to postpone or prevent the progression from ARHL to AD. In this context, auditory evoked potentials (AEPs) have emerged as a widely used objective auditory electrophysiological technique for both the clinical diagnosis and animal experimentation in ARHL due to their non-invasive and repeatable nature. This review focuses on the application of AEPs in AD detection and the auditory nerve system corresponding to different latencies of AEPs. Our objective was to establish AEPs as a systematic and non-invasive adjunct method for enhancing the diagnostic accuracy of AD. The success of AEPs in the early detection and prediction of AD in research settings underscores the need for further clinical application and study.
Collapse
Affiliation(s)
- Guoliang Wei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xuelong Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hong Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yinpei Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Guisong Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shuqing Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xing Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Huizhong Wen
- Department of Neurobiology, School of Basic Medicine, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing, China
| |
Collapse
|
4
|
Yang L, Xiao X, Yu L, Shen Z, Luo Y, Zhao G, Dou Z, Lin W, Yang J, Yang L, Yu S. Neural mechanisms of working memory dysfunction in patients with chronic insomnia disorder. Sleep Med 2023; 112:151-158. [PMID: 37865032 DOI: 10.1016/j.sleep.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/17/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVE This study aimed to investigate the neural mechanisms underlying working memory impairment in patients with chronic insomnia disorder (CID) using event-related potentials (ERP) and resting-state functional connectivity (rsFC) approaches. METHODS Participants, including CID patients and healthy controls (HCs), completed clinical scales and underwent electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). EEG analysis compared reaction times, P3 amplitudes, event-related spectral perturbations (ERSP), and inter-trial phase synchronisation (ITPS) between CID patients and HCs. Subsequently, frontal regions (i.e., the Superior Frontal Gyrus [SFG] and Middle Frontal Gyrus [MFG]) corresponding to the EEG were selected as seeds for rsFC analysis. Correlation analyses were conducted to further investigate the relationship between functional connectivity abnormalities in brain regions and clinical symptom severity and P3 amplitude in CID patients. RESULTS Compared to HCs, CID patients exhibited slower reaction times across all working memory conditions, with the deficits becoming more pronounced as memory load increased. ERP analysis revealed increased P3 amplitude, theta wave power, and reduced inter-trial synchrony in CID patients. rsFC analysis showed decreased connectivity of SFG-posterior cingulated cortex (PCC), SFG-MFG, and MFG-frontal pole (FP), and increased connectivity of MFG- Middle Temporal Gyrus (MTG)in CID patients. Importantly, a significant correlation was found between the rsFC of SFG-MTG and P3 amplitude during 1-back. CONCLUSION This study confirms deficits in working memory capacity in patients with CID, specifically in the neural mechanisms of cognitive processing that vary depending on the level of cognitive load. Alterations in connectivity patterns within and between the frontal and temporal regions may be the neural basis of the cognitive impairment.
Collapse
Affiliation(s)
- Lu Yang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiangwen Xiao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyong Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhifu Shen
- Center of Interventional Medicine, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, China
| | - Yucai Luo
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangli Zhao
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zeyang Dou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenting Lin
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Yang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lili Yang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Siyi Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
5
|
Ahmadnezhad P, Burns JM, Akinwuntan AE, Ranchet M, Kondyli A, Mahnken JD, Devos H. Driving Automation for Older Adults with Preclinical Alzheimer's Disease. Gerontology 2023; 69:1307-1314. [PMID: 37557082 PMCID: PMC10843675 DOI: 10.1159/000531263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/12/2023] [Indexed: 08/11/2023] Open
Abstract
INTRODUCTION Older adults with preclinical Alzheimer's disease (AD) show changes in on-road driving performance. The impact of preclinical AD on using automated vehicle (AV) technology is unknown. The aim was to evaluate safety and cognitive workload while operating AV technology in drivers with preclinical AD. INTRODUCTION This cross-sectional study included 40 participants: 19 older adults (age 74.16 ± 4.78; MOCA scores 26.42 ± 2.52) with preclinical AD, evidenced by elevated cortical beta-amyloid; and 21 controls (age 73.81 ± 5.62; MOCA scores 28.24 ± 1.67). All participants completed two scenarios in a driving simulator. Scenario 1 included conditional automation with an emergency event that required a manual take-over maneuver. Scenario 2 was identical but with a cognitive distractor task. Emergency response time was the main safety outcome measure. Cognitive workload was calculated using moment-to-moment changes in pupillary size and converted into an Index of Cognitive Activity (ICA). Mann-Whitney U and independent t tests were used to compare group differences. RESULTS Emergency response times were similar between drivers with preclinical AD and controls in scenario 1 (20.85 s ± 1.08 vs. 20.52 s ± 3.18; p = 0.83) and scenario 2 (14.83 s ± 7.37 vs. 13.45 s ± 10.43; p = 0.92). Likewise, no differences were found in ICA between drivers with preclinical AD and controls in scenario 1 (0.34 ± 0.08 vs. 0.33 ± 0.17; p = 0.74) or scenario 2 (0.30 ± 0.07 vs. 0.29 ± 0.17; p = 0.93). CONCLUSIONS Older drivers with preclinical AD may safely operate AV technology, without increased response times or cognitive workload. Future on-road studies with AV technology should confirm these preliminary results in drivers with preclinical AD.
Collapse
Affiliation(s)
- Pedram Ahmadnezhad
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas, USA,
| | - Jeffrey M Burns
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Abiodun E Akinwuntan
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas, USA
- University of Kansas Center for Community Access, Rehabilitation Research, Education, and Service (KU-CARES), University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Maud Ranchet
- Université Gustave Eiffel, IFSTTAR, University Lyon, Lyon, France
| | - Alexandra Kondyli
- Department of Civil, Environmental, Architectural Engineering at University of Kansas, Kansas City, Kansas, USA
| | - Jonathan D Mahnken
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hannes Devos
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas, USA
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, Kansas, USA
- University of Kansas Center for Community Access, Rehabilitation Research, Education, and Service (KU-CARES), University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
6
|
Wijaya A, Setiawan NA, Ahmad AH, Zakaria R, Othman Z. Electroencephalography and mild cognitive impairment research: A scoping review and bibliometric analysis (ScoRBA). AIMS Neurosci 2023; 10:154-171. [PMID: 37426780 PMCID: PMC10323261 DOI: 10.3934/neuroscience.2023012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/27/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Mild cognitive impairment (MCI) is often considered a precursor to Alzheimer's disease (AD) and early diagnosis may help improve treatment effectiveness. To identify accurate MCI biomarkers, researchers have utilized various neuroscience techniques, with electroencephalography (EEG) being a popular choice due to its low cost and better temporal resolution. In this scoping review, we analyzed 2310 peer-reviewed articles on EEG and MCI between 2012 and 2022 to track the research progress in this field. Our data analysis involved co-occurrence analysis using VOSviewer and a Patterns, Advances, Gaps, Evidence of Practice, and Research Recommendations (PAGER) framework. We found that event-related potentials (ERP), EEG, epilepsy, quantitative EEG (QEEG), and EEG-based machine learning were the primary research themes. The study showed that ERP/EEG, QEEG, and EEG-based machine learning frameworks provide high-accuracy detection of seizure and MCI. These findings identify the main research themes in EEG and MCI and suggest promising avenues for future research in this field.
Collapse
Affiliation(s)
- Adi Wijaya
- Department of Health Information Management, Universitas Indonesia Maju, Jakarta, Indonesia
| | - Noor Akhmad Setiawan
- Department of Electrical and Information Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Asma Hayati Ahmad
- School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kota Bharu, Malaysia
| | - Rahimah Zakaria
- School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kota Bharu, Malaysia
| | - Zahiruddin Othman
- School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kota Bharu, Malaysia
| |
Collapse
|
7
|
Prado P, Moguilner S, Mejía JA, Sainz-Ballesteros A, Otero M, Birba A, Santamaria-Garcia H, Legaz A, Fittipaldi S, Cruzat J, Tagliazucchi E, Parra M, Herzog R, Ibáñez A. Source space connectomics of neurodegeneration: One-metric approach does not fit all. Neurobiol Dis 2023; 179:106047. [PMID: 36841423 PMCID: PMC11170467 DOI: 10.1016/j.nbd.2023.106047] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Brain functional connectivity in dementia has been assessed with dissimilar EEG connectivity metrics and estimation procedures, thereby increasing results' heterogeneity. In this scenario, joint analyses integrating information from different metrics may allow for a more comprehensive characterization of brain functional interactions in different dementia subtypes. To test this hypothesis, resting-state electroencephalogram (rsEEG) was recorded in individuals with Alzheimer's Disease (AD), behavioral variant frontotemporal dementia (bvFTD), and healthy controls (HCs). Whole-brain functional connectivity was estimated in the EEG source space using 101 different types of functional connectivity, capturing linear and nonlinear interactions in both time and frequency-domains. Multivariate machine learning and progressive feature elimination was run to discriminate AD from HCs, and bvFTD from HCs, based on joint analyses of i) EEG frequency bands, ii) complementary frequency-domain metrics (e.g., instantaneous, lagged, and total connectivity), and iii) time-domain metrics with different linearity assumption (e.g., Pearson correlation coefficient and mutual information). <10% of all possible connections were responsible for the differences between patients and controls, and atypical connectivity was never captured by >1/4 of all possible connectivity measures. Joint analyses revealed patterns of hypoconnectivity (patientsHCs) in both groups was mainly identified in frontotemporal regions. These atypicalities were differently captured by frequency- and time-domain connectivity metrics, in a bandwidth-specific fashion. The multi-metric representation of source space whole-brain functional connectivity evidenced the inadequacy of single-metric approaches, and resulted in a valid alternative for the selection problem in EEG connectivity. These joint analyses reveal patterns of brain functional interdependence that are overlooked with single metrics approaches, contributing to a more reliable and interpretable description of atypical functional connectivity in neurodegeneration.
Collapse
Affiliation(s)
- Pavel Prado
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Sebastian Moguilner
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina
| | - Jhony A Mejía
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Departamento de Ingeniería Biomédica, Universidad de Los Andes, Bogotá, Colombia
| | | | - Mónica Otero
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile; Centro BASAL Ciencia & Vida, Universidad San Sebastián, Santiago, Chile
| | - Agustina Birba
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina
| | - Hernando Santamaria-Garcia
- PhD Neuroscience Program, Physiology and Psychiatry Departments, Pontificia Universidad Javeriana, Bogotá, Colombia; Memory and Cognition Center Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia; Global Brain Health Institute, University of California San Francisco, San Francisco, California; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Agustina Legaz
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina; National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Sol Fittipaldi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Josephine Cruzat
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA -CONICET), Buenos Aires, Argentina
| | - Mario Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom
| | - Rubén Herzog
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Fundación para el Estudio de la Conciencia Humana (EcoH), Chile
| | - Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina; PhD Neuroscience Program, Physiology and Psychiatry Departments, Pontificia Universidad Javeriana, Bogotá, Colombia; Memory and Cognition Center Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia; Trinity College Dublin (TCD), Dublin, Ireland.
| |
Collapse
|
8
|
Cui SS, Jiang QW, Chen SD. Sex difference in biological change and mechanism of Alzheimer’s disease: from macro- to micro-landscape. Ageing Res Rev 2023; 87:101918. [PMID: 36967089 DOI: 10.1016/j.arr.2023.101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/16/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and numerous studies reported a higher prevalence and incidence of AD among women. Although women have longer lifetime, longevity does not wholly explain the higher frequency and lifetime risk in women. It is important to understand sex differences in AD pathophysiology and pathogenesis, which could provide foundation for future clinical AD research. Here, we reviewed the most recent and relevant literature on sex differences in biological change of AD from macroscopical neuroimaging to microscopical pathologic change (neuronal degeneration, synaptic dysfunction, amyloid-beta and tau accumulation). We also discussed sex differences in cellular mechanisms related to AD (neuroinflammation, mitochondria dysfunction, oxygen stress, apoptosis, autophagy, blood-brain-barrier dysfunction, gut microbiome alteration, bulk and single cell/nucleus omics) and possible causes underlying these differences including sex-chromosome, sex hormone and hypothalamic-pituitary- adrenal (HPA) axis effects.
Collapse
Affiliation(s)
- Shi-Shuang Cui
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Geriatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian-Wen Jiang
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Geriatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng-Di Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
9
|
Devos H, Gustafson KM, Liao K, Ahmadnezhad P, Kuhlmann E, Estes BJ, Martin LE, Mahnken JD, Brooks WM, Burns JM. Effect of Cognitive Reserve on Physiological Measures of Cognitive Workload in Older Adults with Cognitive Impairments. J Alzheimers Dis 2023; 92:141-151. [PMID: 36710677 PMCID: PMC10023364 DOI: 10.3233/jad-220890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cognitive reserve may protect against cognitive decline. OBJECTIVE This cross-sectional study investigated the association between cognitive reserve and physiological measures of cognitive workload in older adults with cognitive impairment. METHODS 29 older adults with cognitive impairment (age: 75±6, 11 (38%) women, MoCA: 20±7) and 19 with normal cognition (age: 74±6; 11 (58%) women; MoCA: 28±2) completed a working memory test of increasing task demand (0-, 1-, 2-back). Cognitive workload was indexed using amplitude and latency of the P3 event-related potential (ERP) at electrode sites Fz, Cz, and Pz, and changes in pupillary size, converted to an index of cognitive activity (ICA). The Cognitive Reserve Index questionnaire (CRIq) evaluated Education, Work Activity, and Leisure Time as a proxy of cognitive reserve. Linear mixed models evaluated the main effects of cognitive status, CRIq, and the interaction effect of CRIq by cognitive status on ERP and ICA. RESULTS The interaction effect of CRIq total score by cognitive status on P3 ERP and ICA was not significant. However, higher CRIq total scores were associated with lower ICA (p = 0.03). The interaction effects of CRIq subscores showed that Work Activity affected P3 amplitude (p = 0.03) and ICA (p = 0.03) differently between older adults with and without cognitive impairments. Similarly, Education affected ICA (p = 0.02) differently between the two groups. No associations were observed between CRIq and P3 latency. CONCLUSION Specific components of cognitive reserve affect cognitive workload and neural efficiency differently in older adults with and without cognitive impairments.
Collapse
Affiliation(s)
- Hannes Devos
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA.,University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kathleen M Gustafson
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ke Liao
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Pedram Ahmadnezhad
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Emily Kuhlmann
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bradley J Estes
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Laura E Martin
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Population Health, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jonathan D Mahnken
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - William M Brooks
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeffrey M Burns
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
10
|
Alexandersen CG, de Haan W, Bick C, Goriely A. A multi-scale model explains oscillatory slowing and neuronal hyperactivity in Alzheimer's disease. J R Soc Interface 2023; 20:20220607. [PMID: 36596460 PMCID: PMC9810432 DOI: 10.1098/rsif.2022.0607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease is the most common cause of dementia and is linked to the spreading of pathological amyloid-β and tau proteins throughout the brain. Recent studies have highlighted stark differences in how amyloid-β and tau affect neurons at the cellular scale. On a larger scale, Alzheimer's patients are observed to undergo a period of early-stage neuronal hyperactivation followed by neurodegeneration and frequency slowing of neuronal oscillations. Herein, we model the spreading of both amyloid-β and tau across a human connectome and investigate how the neuronal dynamics are affected by disease progression. By including the effects of both amyloid-β and tau pathology, we find that our model explains AD-related frequency slowing, early-stage hyperactivation and late-stage hypoactivation. By testing different hypotheses, we show that hyperactivation and frequency slowing are not due to the topological interactions between different regions but are mostly the result of local neurotoxicity induced by amyloid-β and tau protein.
Collapse
Affiliation(s)
| | - Willem de Haan
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Christian Bick
- Mathematical Institute, University of Oxford, Oxford, UK,Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,Amsterdam Neuroscience—Systems and Network Neuroscience, Amsterdam, The Netherlands
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, UK
| |
Collapse
|