1
|
Meyer N, Xu Y, Karjalainen K, Adamczyk S, Biasi C, van Delden L, Martin A, Mganga K, Myller K, Sietiö OM, Suominen O, Karhu K. Living, dead, and absent trees-How do moth outbreaks shape small-scale patterns of soil organic matter stocks and dynamics at the Subarctic mountain birch treeline? GLOBAL CHANGE BIOLOGY 2022; 28:441-462. [PMID: 34672044 DOI: 10.1111/gcb.15951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Mountain birch forests (Betula pubescens Ehrh. ssp. czerepanovii) at the subarctic treeline not only benefit from global warming, but are also increasingly affected by caterpillar outbreaks from foliage-feeding geometrid moths. Both of these factors have unknown consequences on soil organic carbon (SOC) stocks and biogeochemical cycles. We measured SOC stocks down to the bedrock under living trees and under two stages of dead trees (12 and 55 years since moth outbreak) and treeless tundra in northern Finland. We also measured in-situ soil respiration, potential SOC decomposability, biological (enzyme activities and microbial biomass), and chemical (N, mineral N, and pH) soil properties. SOC stocks were significantly higher under living trees (4.1 ± 2.1 kg m²) than in the treeless tundra (2.4 ± 0.6 kg m²), and remained at an elevated level even 12 (3.7 ± 1.7 kg m²) and 55 years (4.9 ± 3.0 kg m²) after tree death. Effects of tree status on SOC stocks decreased with increasing distance from the tree and with increasing depth, that is, a significant effect of tree status was found in the organic layer, but not in mineral soil. Soil under living trees was characterized by higher mineral N contents, microbial biomass, microbial activity, and soil respiration compared with the treeless tundra; soils under dead trees were intermediate between these two. The results suggest accelerated organic matter turnover under living trees but a positive net effect on SOC stocks. Slowed organic matter turnover and continuous supply of deadwood may explain why SOC stocks remained elevated under dead trees, despite the heavy decrease in aboveground C stocks. We conclude that the increased occurrence of moth damage with climate change would have minor effects on SOC stocks, but ultimately decrease ecosystem C stocks (49% within 55 years in this area), if the mountain birch forests will not be able to recover from the outbreaks.
Collapse
Affiliation(s)
- Nele Meyer
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Department of Soil Ecology, University of Bayreuth, Bayreuth, Germany
| | - Yi Xu
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Katri Karjalainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sylwia Adamczyk
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Christina Biasi
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Lona van Delden
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Angela Martin
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Kevin Mganga
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Department of Agricultural Sciences, South Eastern Kenya University, Kitui, Kenya
| | - Kristiina Myller
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Outi-Maaria Sietiö
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Otso Suominen
- Biodiversity Unit, Kevo Subarctic Research Institute, University of Turku, Turku, Finland
| | - Kristiina Karhu
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (Hilife), University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Markkula I, Turunen M, Rasmus S. A review of climate change impacts on the ecosystem services in the Saami Homeland in Finland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1070-1085. [PMID: 31539939 DOI: 10.1016/j.scitotenv.2019.07.272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
The aim of this work is (i) to review the recent studies on weather and climate change in Finnish Sápmi and to present the literature review findings alongside our survey on the observations made by local reindeer herders on the same phenomena, and, further, (ii) to review the impacts of climate change on the ecosystem services (ES) in Finnish Sápmi. The focus of the study is on the impacts of climate change on those habitat, provisioning and cultural ecosystem services which are interconnected with the Saami way of life as Indigenous people and thus support the continuity of their culture. In the holistic world view of Arctic Indigenous peoples, material culture and non-material culture are not separated, and there is no boundary between nature and culture. However, cultural and spiritual meanings of ecosystems, species and landscapes are rarely taken into account in scientific research on ecosystems services. Our review indicates that mostly negative impacts of climate warming on ecosystems and traditional livelihoods are to be expected in Sápmi. The most profound negative impacts will be on palsa mire and fell ecosystems, in particular snowbeds, snow patches and mountain birch forests. Consequently, changes in ecosystems may erode cultural meanings, stories, memories and traditional knowledge attached to them and affect the nature-based traditional livelihoods. In a situation where our rapidly changing climate is affecting the foundations of the nature-based cultures, the present review can provide a knowledge base for developing adaptation actions and strategies for local communities and Indigenous peoples to cope with changes caused by climate change and other drivers.
Collapse
Affiliation(s)
- Inkeri Markkula
- Arctic Centre, University of Lapland, POB 122, FI-96101 Rovaniemi, Finland
| | - Minna Turunen
- Arctic Centre, University of Lapland, POB 122, FI-96101 Rovaniemi, Finland.
| | - Sirpa Rasmus
- Arctic Centre, University of Lapland, POB 122, FI-96101 Rovaniemi, Finland
| |
Collapse
|
3
|
Abstract
This review weighs the importance of human–animal sociality in Northern ethnographies through an examination of key concepts such as totemism, ideas of the entitlement, and domestication. It shows how classic narratives of cultural evolution are linked to conservation discourse, whereas current theoretical conversations such as the “ontological turn” are rooted in older idioms of liberal egalitarianism. Using a broad comparative approach with literature from all parts of the circumpolar North, this review weighs the effect of older metaphors on the discipline and suggests that a focus on landscape sociality—or sentient ecology—would best represent Northern situations and stories.
Collapse
Affiliation(s)
- David G. Anderson
- Department of Anthropology, University of Aberdeen, Aberdeen AB24 3QY, Scotland
| |
Collapse
|