1
|
Hu X, Qin S, Huang X, Yuan Y, Tan Z, Gu Y, Cheng X, Wang D, Lian XF, He C, Su Z. Region-Restrict Astrocytes Exhibit Heterogeneous Susceptibility to Neuronal Reprogramming. Stem Cell Reports 2019; 12:290-304. [PMID: 30713039 PMCID: PMC6373495 DOI: 10.1016/j.stemcr.2018.12.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022] Open
Abstract
The adult CNS has poor ability to replace degenerated neurons following injury or disease. Recently, direct reprogramming of astrocytes into induced neurons has been proposed as an innovative strategy toward CNS repair. As a cell population that shows high diversity on physiological properties and functions depending on their spatiotemporal distribution, however, whether the astrocyte heterogeneity affect neuronal reprogramming is not clear. Here, we show that astrocytes derived from cortex, cerebellum, and spinal cord exhibit biological heterogeneity and possess distinct susceptibility to transcription factor-induced neuronal reprogramming. The heterogeneous expression level of NOTCH1 signaling in the different CNS regions-derived astrocytes is shown to be responsible for the neuronal reprogramming diversity. Taken together, our findings demonstrate that region-restricted astrocytes reveal different intrinsic limitation of the response to neuronal reprogramming. Region-restrict astrocytes (ACs) exhibit obvious heterogeneity Region-restrict ACs show distinct susceptibility to neuronal reprogramming AC heterogeneity does not affect the maturation of induced neurons Notch1 is involved in the neuronal reprogramming diversity of region-restrict ACs
Collapse
Affiliation(s)
- Xin Hu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai 200433, China; Department of Neurological Surgery, Xixi Hospital of Hangzhou, Hangzhou 200233 China
| | - Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai 200433, China
| | - Xiao Huang
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai 200433, China
| | - Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai 200433, China
| | - Zijian Tan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai 200433, China
| | - Yakun Gu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai 200433, China
| | - Xueyan Cheng
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai 200433, China
| | - Dan Wang
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai 200433, China
| | - Xiao-Feng Lian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 310009, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai 200433, China.
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Takahashi S, Hisatsune A, Kurauchi Y, Seki T, Katsuki H. Polysulfide protects midbrain dopaminergic neurons from MPP+-induced degeneration via enhancement of glutathione biosynthesis. J Pharmacol Sci 2018; 137:47-54. [DOI: 10.1016/j.jphs.2018.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/21/2018] [Accepted: 04/06/2018] [Indexed: 01/03/2023] Open
|