1
|
Forecasting Spare Parts Demand of Military Aircraft: Comparisons of Data Mining Techniques and Managerial Features from the Case of South Korea. SUSTAINABILITY 2020. [DOI: 10.3390/su12156045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In a weapon system, the accurate forecasting of the spare parts demand can help avoid the excess inventory, leading to the efficient use of budget. It can also help develop the combat readiness of the weapon system by improving weapon system utilization. Moreover, as performance-based logistics (PBL) projects have recently emerged, the accurate demand forecasting of spare parts has become an important issue for the PBL contractors as well. However, for the demand forecasting of spare parts, the time series methods, typically used in the military sector, have low prediction accuracies and the PBL contractors are mostly based on the judgment of practitioners. Meanwhile, most of the previous studies in the military sector have not considered the managerial characteristics of spare parts (e.g., reparability and the irregularity of maintenance). No previous work has considered any such features, which can indicate the reliability of spare parts (e.g., mean time between failures (MTBF)), although they can affect the spare parts demand. Therefore, to develop a more accurate forecasting of the spare parts demand of military aircraft, we designed and examined a systematic approach that uses data mining techniques. To fill up the research gaps of related works, our approach also considered the managerial characteristics of spare parts and included the new features that represent the reliability of spare parts. Consequently, given the case of South Korea and the full feature set, we found random forest gave better results than the other data mining techniques and the conventional time series methods. Using the best technique Random Forest, we identified the contribution of each managerial feature set to improving the prediction accuracy, and we found the reliability and operation environment are valuable feature sets in a significant way, so they should be collected, managed more carefully, and included for better prediction of spare parts demand of military aircraft.
Collapse
|
2
|
SocialTERM-Extractor: Identifying and Predicting Social-Problem-Specific Key Noun Terms from a Large Number of Online News Articles Using Text Mining and Machine Learning Techniques. SUSTAINABILITY 2019. [DOI: 10.3390/su11010196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the digital age, the abundant unstructured data on the Internet, particularly online news articles, provide opportunities for identifying social problems and understanding social systems for sustainability. However, the previous works have not paid attention to the social-problem-specific perspectives of such big data, and it is currently unclear how information technologies can use the big data to identify and manage the ongoing social problems. In this context, this paper introduces and focuses on social-problem-specific key noun terms, namely SocialTERMs, which can be used not only to search the Internet for social-problem-related data, but also to monitor the ongoing and future events of social problems. Moreover, to alleviate time-consuming human efforts in identifying the SocialTERMs, this paper designs and examines the SocialTERM-Extractor, which is an automatic approach for identifying the key noun terms of social-problem-related topics, namely SPRTs, in a large number of online news articles and predicting the SocialTERMs among the identified key noun terms. This paper has its novelty as the first trial to identify and predict the SocialTERMs from a large number of online news articles, and it contributes to literature by proposing three types of text-mining-based features, namely temporal weight, sentiment, and complex network structural features, and by comparing the performances of such features with various machine learning techniques including deep learning. Particularly, when applied to a large number of online news articles that had been published in South Korea over a 12-month period and mostly written in Korean, the experimental results showed that Boosting Decision Tree gave the best performances with the full feature sets. They showed that the SocialTERMs can be predicted with high performances by the proposed SocialTERM-Extractor. Eventually, this paper can be beneficial for individuals or organizations who want to explore and use social-problem-related data in a systematical manner for understanding and managing social problems even though they are unfamiliar with ongoing social problems.
Collapse
|