1
|
Leśniowska-Nowak J, Bednarek PT, Czapla K, Nowak M, Niedziela A. Effect of Chromosomal Localization of NGS-Based Markers on Their Applicability for Analyzing Genetic Variation and Population Structure of Hexaploid Triticale. Int J Mol Sci 2024; 25:9568. [PMID: 39273515 PMCID: PMC11395606 DOI: 10.3390/ijms25179568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
This study aimed to determine whether using DNA-based markers assigned to individual chromosomes would detect the genetic structures of 446 winter triticale forms originating from two breeding companies more effectively than using the entire pool of markers. After filtering for quality control parameters, 6380 codominant single nucleotide polymorphisms (SNPs) markers and 17,490 dominant diversity array technology (silicoDArT) markers were considered for analysis. The mean polymorphic information content (PIC) values varied depending on the chromosomes and ranged from 0.30 (2R) to 0.43 (7A) for the SNPs and from 0.28 (2A) to 0.35 (6R) for the silicoDArTs. The highest correlation of genetic distance (GD) matrices based on SNP markers was observed among the 5B-5R (0.642), 5B-7B (0.626), and 5A-5R (0.605) chromosomes. When silicoDArTs were used for the analysis, the strongest correlations were found between 5B-5R (0.732) and 2B-5B (0.718). A Bayesian analysis showed that SNPs (total marker pool) allowed for the identification of a more complex structure (K = 4, ΔK = 2460.2) than the analysis based on silicoDArTs (K = 2, ΔK = 128). Triticale lines formed into groups, ranging from two (most of the chromosomes) to four (7A) groups depending on the analyzed chromosome when SNP markers were used for analysis. Linkage disequilibrium (LD) varied among individual chromosomes, ranging from 0.031 for 1A to 0.228 for 7R.
Collapse
Affiliation(s)
- Justyna Leśniowska-Nowak
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, Akademicka St. 15, 20-950 Lublin, Poland
| | - Piotr T Bednarek
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Karolina Czapla
- Department of Biochemistry and Molecular Biology, Faculty of Medical Sciences, Medical University of Lublin, Chodźki St. 1, 20-093 Lublin, Poland
| | - Michał Nowak
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, Akademicka St. 15, 20-950 Lublin, Poland
| | - Agnieszka Niedziela
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| |
Collapse
|
2
|
Hura T, Hura K, Dziurka K, Ostrowska A, Urban K. Cell dehydration of intergeneric hybrid induces subgenome-related specific responses. PHYSIOLOGIA PLANTARUM 2023; 175:e13855. [PMID: 36648214 PMCID: PMC10108068 DOI: 10.1111/ppl.13855] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/10/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The aim was to identify subgenome-related specific responses in two types of triticale, that is, of the wheat-dominated genome (WDG) and rye-dominated genome (RDG), to water stress induced in the early phase (tillering) of plant growth. Higher activity of the primary metabolism of carbohydrates is a feature of the WDG type, while the dominance of the rye genome is associated with a higher activity of the secondary metabolism of phenolic compounds in the RDG type. The study analyzed carbohydrates and key enzymes of their synthesis, free phenolic compounds and carbohydrate-related components of the cell wall, monolignols, and shikimic acid (ShA), which is a key link between the primary and secondary metabolism of phenolic compounds. Under water stress, dominance of the wheat genome in the WDG type was manifested by an increased accumulation of the large subunit of Rubisco and sucrose phosphate synthase and a higher content of raffinose and stachyose compared with the RDG type. In dehydrated RDG plants, higher activity of L-phenylalanine ammonia lyase (PAL) and L-tyrosine ammonia lyase (TAL), as well as a higher level of ShA, free and cell wall-bound p-hydroxybenzoic acid, free homovanillic acid, free sinapic acid, and cell wall-bound syringic acid can be considered biochemical indicators of the dominance of the rye genome.
Collapse
Affiliation(s)
- Tomasz Hura
- Polish Academy of SciencesThe Franciszek Górski Institute of Plant PhysiologyKrakówPoland
| | - Katarzyna Hura
- Department of Plant Breeding, Physiology and Seed Science, Faculty of Agriculture and EconomicsAgricultural UniversityKrakówPoland
| | - Kinga Dziurka
- Polish Academy of SciencesThe Franciszek Górski Institute of Plant PhysiologyKrakówPoland
| | - Agnieszka Ostrowska
- Polish Academy of SciencesThe Franciszek Górski Institute of Plant PhysiologyKrakówPoland
| | - Karolina Urban
- Polish Academy of SciencesThe Franciszek Górski Institute of Plant PhysiologyKrakówPoland
| |
Collapse
|
3
|
Moullet O, Díaz Bermúdez G, Fossati D, Brabant C, Mascher F, Schori A. Pyramiding wheat pre-harvest sprouting resistance genes in triticale breeding. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:60. [PMID: 37309488 PMCID: PMC10248708 DOI: 10.1007/s11032-022-01327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/07/2022] [Indexed: 06/14/2023]
Abstract
Pre -harvest sprouting (PHS) is an important problem in cereal production reducing yield and grain quality. After decades of improvement, triticale remains particularly susceptible to PHS but no resistance genes or QTLs were identified so far in this species. As wheat shares the A and B genomes with triticale, wheat PHS resistance genes can be introgressed into triticale genome by recombination after interspecific crosses. In this project, three PHS resistance genes have been transferred from wheat to triticale by marker-assisted interspecific crosses, followed by four backcrosses. The gene TaPHS1 from the 3AS chromosome of cultivar Zenkoujikomugi (Zen) and the TaMKK3 and TaQsd1, respectively located on the 4AL and 5BL chromosomes derived both from cultivar Aus1408, were pyramided in the triticale cultivar Cosinus. Only the TaPHS1 gene increases consistently the PHS resistance in triticale. The lack of efficacy of the other two genes, especially TaQsd1, could be the result of an imperfect linkage between the marker and the gene of interest. The introduction of PHS resistance genes did not alter agronomic nor disease resistance performances of triticale. This approach leads to two new, agronomically performant and PHS-resistant triticale cultivars. Today, two breeding triticale lines are ready to enter the official registration process.
Collapse
Affiliation(s)
- Odile Moullet
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | - Gemma Díaz Bermúdez
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | - Dario Fossati
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | - Cécile Brabant
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | - Fabio Mascher
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | | |
Collapse
|
4
|
Cao D, Wang D, Li S, Li Y, Hao M, Liu B. Genotyping-by-sequencing and genome-wide association study reveal genetic diversity and loci controlling agronomic traits in triticale. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1705-1715. [PMID: 35244733 DOI: 10.1007/s00122-022-04064-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The genetic diversity and loci underlying agronomic traits were analyzed by the reads coverage and genome-wide association study based genotyping-by-sequencing in a diverse population consisting of 199 accessions. Triticale (× Triticosecale Wittmack) is an economically important grain forage and energy crop planted worldwide for its high biomass. Little is known about the genetic diversity and loci underlying agronomic traits in triticale. We performed genotyping-by-sequencing of 199 cultivars and mapped reads to the A, B, D, and R genomes for karyotype analysis. These cultivars could mostly be grouped into five types. Some chromosome abnormalities occurred with high frequency, such as 2D (2R) substitution, deletion of the long arm of chromosome 2D or the short arm of 5R, and translocation of the long arms of 7D/7A, the short arms of 6D/6A, or the long arms of 1D/1A. We chose only widely planted hexaploid triticale cultivars (153) for genome-wide association study. These cultivars could be divided into nine distinct groups, and the linkage disequilibrium decay was 25.4 kb in this population. We identified 253 significant marker-trait associations (MTAs) on 20 chromosomes, except 7R. Twenty-one reliable MTAs were identified repeatedly over two environments. We predicted 16 putative candidate genes involved in plant growth and development using the genome sequences of wheat and rye. These results provide a basis for understanding the genetic mechanisms of agronomic traits and will benefit the breeding of improved hexaploid triticale.
Collapse
Affiliation(s)
- Dong Cao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Dongxia Wang
- Department of Agriculture and Forestry, College of Agriculture and Animal Husbandry, Qinghai University, Qinghai, Xining, 810016, People's Republic of China
| | - Shiming Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China
| | - Yun Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China.
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
5
|
Genetic mapping of male sterility and pollen fertility QTLs in triticale with sterilizing Triticum timopheevii cytoplasm. J Appl Genet 2020; 62:59-71. [PMID: 33230679 PMCID: PMC7822802 DOI: 10.1007/s13353-020-00595-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 01/15/2023]
Abstract
Cytoplasmic male sterility (CMS) phenomenon is widely exploited in commercial hybrid seed production in economically important crop species, including rye, wheat, maize, rice, sorghum, cotton, sugar beets, and many vegetables. Although some commercial successes, little is known about QTLs responsible for the trait in case of triticale with sterilizing Triticum timopheevii (Tt) cytoplasm. Recombinant inbred line (RIL) F6 mapping population encompassing 182 individuals derived from the cross of individual plants representing the HT352 line and cv Borwo was employed for genetic map construction using SNP markers and identification of QTLs conferring pollen sterility in triticale with CMS Tt. The phenotypes of the F1 lines resulting from crossing of the HT352 (Tt) with HT352 (maintainer) × Borwo were determined by assessing the number of the F2 seeds per spike. A genetic map with 21 linkage groups encompasses 29,737 markers and spanned over the distance of 2549 cM. Composite (CIM) and multiple (MIM) interval mappings delivered comparable results. Single QTLs mapped to the 1A, 1B, 2A, 2R, 3B, 3R, 4B, and 5B chromosomes, whereas the 5R and 6B chromosomes shared 3 and 2 QTLs, respectively. The QTLs with the highest LOD score mapped to the 5R, 3R, 1B, and 4B chromosomes; however, the QRft-5R.3 has the highest explained variance of the trait.
Collapse
|
6
|
Assessing the genetic diversity and characterizing genomic regions conferring Tan Spot resistance in cultivated rye. PLoS One 2019; 14:e0214519. [PMID: 30921415 PMCID: PMC6438500 DOI: 10.1371/journal.pone.0214519] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/14/2019] [Indexed: 11/19/2022] Open
Abstract
Rye (Secale cereale L.) is known for its wide adaptation due to its ability to tolerate harsh environments in semiarid areas. To assess the diversity in rye we genotyped a panel of 178 geographically diverse accessions of four Secale sp. from U.S. National Small Grains Collection using 4,037 high-quality SNPs (single nucleotide polymorphisms) developed by genotyping-by-sequencing (GBS). PCA and STRUCTURE analysis revealed three major clusters that separate S. cereale L. from S. strictum and S. sylvestre, however, genetic clusters did not correlate with geographic origins and growth habit (spring/winter). The panel was evaluated for response to Pyrenophora tritici-repentis race 5 (PTR race 5) and nearly 59% accessions showed resistance or moderate resistance. Genome-wide association study (GWAS) was performed on S. cereale subsp. cereale using the 4,037 high-quality SNPs. Two QTLs (QTs.sdsu-5R and QTs.sdsu-2R) on chromosomes 5R and 2R were identified conferring resistance to PTR race 5 (p < 0.001) that explained 13.1% and 11.6% of the phenotypic variation, respectively. Comparative analysis showed a high degree of synteny between rye and wheat with known rearrangements as expected. QTs.sdsu-2R was mapped in the genomic region corresponding to wheat chromosome group 2 and QTs.sdsu-5R was mapped to a small terminal region on chromosome 4BL. Based on the genetic diversity, a set of 32 accessions was identified to represents more than 99% of the allelic diversity with polymorphic information content (PIC) of 0.25. This set can be utilized for genetic characterization of useful traits and genetic improvement of rye, triticale, and wheat.
Collapse
|