1
|
Afsari M, Li Q, Karbassiyazdi E, Shon HK, Razmjou A, Tijing LD. Electrospun nanofiber composite membranes for geothermal brine treatment with lithium enrichment via membrane distillation. CHEMOSPHERE 2023; 318:137902. [PMID: 36669538 DOI: 10.1016/j.chemosphere.2023.137902] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
In this study, a composite electrospun nanofiber membrane was fabricated and used to treat a geothermal brine source with lithium enrichment. An in-situ growth technique was applied to incorporate silica nanoparticles on the surface of nanofibers with (3-Aminopropyl) triethoxysilane as the nucleation site. The fabricated composite nanofiber membrane was heat pressed to enhance the integration of the membrane and its mechanical stability. The fabricated membranes were tested to evaluate their performance in feedwater containing different concentrations of NaCl in the range of 0-100 g/L, and the wetting resistivity of the membranes was examined. Finally, the optimal membrane was applied to treat the simulated geothermal brine. The experimental results revealed that the in-situ growth of nanoparticles and coating of flourosilane agent dramatically improved the separation performance of the membrane with high salt rejection, and adequate flux was achieved. The heat-pressed membrane obtained >99% salt rejection and flux of 14-19 L/m2h at varying feedwater salinity (0-100 g/L), and the concentration of the Li during the 24 h test reached >1100 ppm from the initial 360 ppm. Evaluation of the energy efficiency of the membranes showed that the heat-pressed membrane obtained the optimum energy efficiency in the high concentration of salts. Additionally, the economic analysis indicated that MD could achieve a levelized cost of 2.9 USD/m3 of lithium brine concentration as the heat source is within the feed. Overall, this technology would represent a viable alternative to the solar pond to concentrate Li brine, enabling a compact, efficient, and continuous operating system.
Collapse
Affiliation(s)
- Morteza Afsari
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, P. O. Box 123, 15 Broadway, NSW, 2007, Australia; ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, New South Wales, 2007, Australia
| | - Qiyuan Li
- School of Chemical Engineering, The University of New South Wales (UNSW), Kensington, New South Wales, 2052, Australia
| | - Elika Karbassiyazdi
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, P. O. Box 123, 15 Broadway, NSW, 2007, Australia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, P. O. Box 123, 15 Broadway, NSW, 2007, Australia; ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, New South Wales, 2007, Australia
| | - Amir Razmjou
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Leonard D Tijing
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, P. O. Box 123, 15 Broadway, NSW, 2007, Australia; ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, New South Wales, 2007, Australia.
| |
Collapse
|
2
|
Lin J, Zong C, Chen B, Wang T, Xu J, Du J, Lin Y, Gu Y, Zhu J. Improvement in the healing of bone fractures using a cyclodextrin/Ni-MOF nanofibers network: the development of a novel substrate to increase the surface area with desirable functional properties. RSC Adv 2023; 13:5600-5608. [PMID: 36798749 PMCID: PMC9926337 DOI: 10.1039/d2ra05464g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/16/2023] [Indexed: 02/16/2023] Open
Abstract
In this study, a β-cyclodextrins (β-CDs)/Ni-based MOF (β-CDs/Ni-based MOF) fibrous network with focus on biocompatible and biodegradable properties was used as a new material for orthopedic applications. The final products were synthesized by an efficient, rapid, and controllable electrospinning route under optimal conditions, including a flow rate of 0.3 mL g-1, applied voltage of 18 kV, and spinning distance of 20 cm. Efficient characterization by various analyzes showed that the β-CDs/Ni-based MOF fibrous nanostructures had a thermal stability at about 320 °C and homogeneous particles with a narrow size distribution. The BET analysis results showed a specific surface area of 2140 m2 g-1 for these compounds, which facilized potential conditions needed for the application of these compounds as a new substrate to improve the healing of bone fractures. The results showed the better porosity of the β-CDs/Ni-based MOF scaffolds as an essential property, leading to higher proliferation and nutrition and oxygen delivery, resulting in more tissue regeneration. This study proposes a novel strategy for a fibrous network substrate with distinct properties for orthopedic purposes.
Collapse
Affiliation(s)
- Junfei Lin
- Department of Orthopedics, Affiliated Hospital of Nantong University Nantong Jiangsu China
| | - Chenyu Zong
- Department of Orthopedics, Affiliated Hospital of Nantong University Nantong Jiangsu China
| | - Baisen Chen
- Department of Orthopedics, Nantong First People's Hospital Nantong Jiangsu China
| | - Teng Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University Chongqing China
| | - Jiacheng Xu
- Department of Orthopedics, Affiliated Hospital of Nantong University Nantong Jiangsu China
| | - Jiashang Du
- Department of Orthopedics, Affiliated Hospital of Nantong University Nantong Jiangsu China
| | - Yinghao Lin
- Department of Orthopedics, Affiliated Hospital of Nantong University Nantong Jiangsu China
| | - Yuming Gu
- Department of Orthopedics, Affiliated Hospital of Nantong University Nantong Jiangsu China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University Nantong Jiangsu China
| |
Collapse
|
3
|
İnce Yardimci A, TanoĞlu M, Yilmaz S, Selamet Y. Effect of CNT incorporation on PAN/PPy nanofibers synthesized by electrospinning method. Turk J Chem 2021; 44:1002-1015. [PMID: 33488208 PMCID: PMC7751919 DOI: 10.3906/kim-1911-49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/31/2020] [Indexed: 11/03/2022] Open
Abstract
In this study, carbon nanotubes (CNTs) added polyacrylonitrile/polypyrrole (PAN/PPy) electrospun nanofibers were produced. Average diameters of the nanofibers were measured as 268 and 153 nm for 10 and 25 wt% of PPy contents, respectively. A relatively higher strain to failure values (23.3%) were observed for the low PPy content. When as-grown CNTs (1 and 4 wt%) were added into the PAN/PPy blends, disordered nanofibers were observed to form within the microstructure. To improve the interfacial properties of CNTs/PAN/PPy composites, CNTs were functionalized with H2SO4/HNO3/HCl solution. The functionalized CNTs were well dispersed within the nanofibers and aligned along the direction of nanofibers. Therefore, beads formation on nanofibers decreased. The impedance of the nanofibers was found to decrease with the PPy content and CNT addition. These nanofibers had a great potential to be used as an electrochemical actuator or a tissue engineering scaffold.
Collapse
Affiliation(s)
- Atike İnce Yardimci
- Department of Material Science and Engineering, İzmir Institute of Technology, İzmir Turkey.,Technology Transfer Office, Uşak University, Uşak Turkey
| | - Metin TanoĞlu
- Department of Mechanical Engineering, İzmir Institute of Technology, İzmir Turkey
| | - Selahattin Yilmaz
- Department of Chemical Engineering, İzmir Institute of Technology, İzmir Turkey
| | - Yusuf Selamet
- Department of Physics, İzmir Institute of Technology, İzmir Turkey
| |
Collapse
|
4
|
Arias-Monje PJ, Lu M, Ramachandran J, Kirmani MH, Kumar S. Processing, structure and properties of polyacrylonitrile fibers with 15 weight percent single wall carbon nanotubes. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Xu TC, Han DH, Zhu YM, Duan GG, Liu KM, Hou HQ. High Strength Electrospun Single Copolyacrylonitrile (coPAN) Nanofibers with Improved Molecular Orientation by Drawing. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2516-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Gas-Wetting Alteration by Fluorochemicals and Its Application for Enhancing Gas Recovery in Gas-Condensate Reservoirs: A Review. ENERGIES 2020. [DOI: 10.3390/en13184591] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Gas-wetting alteration is a versatile and effective approach for alleviating liquid-blockage that occurs when the wellbore pressure of a gas-condensate reservoir drops below the dew point. Fluorochemicals are of growing interest in gas-wetting alteration because of their high density of fluorine groups and thermal stability, which can change the reservoir wettability into more favorable conditions for liquids. This review aims to integrate the overlapping research between the current knowledge in organic chemistry and enhanced oil and gas recovery. The difference between wettability alteration and gas-wetting alteration is illustrated, and the methods used to evaluate gas-wetting are summarized. Recent advances in the applications of fluorochemicals for gas-wetting alteration are highlighted. The mechanisms of self-assembling adsorption layers formed by fluorochemicals with different surface morphologies are also reviewed. The factors that affect the gas-wetting performance of fluorochemicals are summarized. Meanwhile, the impacts of gas-wetting alteration on the migration of fluids in the pore throat are elaborated. Furthermore, the Wenzel and Cassie-Baxter theories are often used to describe the wettability model, but they are limited in reflecting the wetting regime of the gas-wetting surface; therefore, a wettability model for gas-wetting is discussed. Considering the promising prospects of gas-wetting alteration, this study is expected to provide insights into the relevance of gas-wetting, surface morphology and fluorochemicals, further exploring the mechanism of flow efficiency improvement of fluids in unconventional oil and gas reservoirs.
Collapse
|
7
|
Jang W, Yun J, Seo Y, Byun H, Hou J, Kim JH. Mixed Dye Removal Efficiency of Electrospun Polyacrylonitrile-Graphene Oxide Composite Membranes. Polymers (Basel) 2020; 12:E2009. [PMID: 32899232 PMCID: PMC7563693 DOI: 10.3390/polym12092009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/16/2022] Open
Abstract
Exfoliated graphene oxide (GO) was reliably modified with a cetyltrimethylammonium chloride (CTAC) surfactant to greatly improve the dispersity of the GO in a polyacrylonitrile (PAN) polymer precursor solution. Subsequent electrospinning of the mixture readily resulted in the formation of GO-PAN composite nanofibers containing up to 30 wt % of GO as a filler without notable defects. The absence of common electrospinning problems associated with clogging and phase separation indicated the systematic and uniform integration of the GO within the PAN nanofibers beyond the typical limits. After thoroughly examining the formation and maximum loading efficiency of the modified GO in the PAN nanofibers, the resulting composite nanofibers were thermally treated to form membrane-type sheets. The wettability and pore properties of the composite membranes were notably improved with respect to the pristine PAN nanofiber membrane, possibly due to the reinforcing filler effect. In addition, the more GO loaded into the PAN nanofiber membranes, the higher the removal ability of the methylene blue (MB) and methyl red (MR) dyes in the aqueous system. The adsorption kinetics of a mixed dye solution were also monitored to understand how these MB and MR dyes interact differently with the composite nanofiber membranes. The simple surface modification of the fillers greatly facilitated the integration efficiency and improved the ability to control the overall physical properties of the nanofiber-based membranes, which highly impacted the removal performance of various dyes from water.
Collapse
Affiliation(s)
- Wongi Jang
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA; (W.J.); (J.Y.)
- Department of Chemical Engineering, Keimyung University, Daegu 42601, Korea; (Y.S.); (H.B.)
| | - Jaehan Yun
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA; (W.J.); (J.Y.)
- Department of Chemical Engineering, Keimyung University, Daegu 42601, Korea; (Y.S.); (H.B.)
| | - Younggee Seo
- Department of Chemical Engineering, Keimyung University, Daegu 42601, Korea; (Y.S.); (H.B.)
| | - Hongsik Byun
- Department of Chemical Engineering, Keimyung University, Daegu 42601, Korea; (Y.S.); (H.B.)
| | - Jian Hou
- Department of Chemical Engineering, Keimyung University, Daegu 42601, Korea; (Y.S.); (H.B.)
| | - Jun-Hyun Kim
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA; (W.J.); (J.Y.)
| |
Collapse
|
8
|
Ben Osman M, Yin W, Petenzi T, Jousselme B, Cornut R, Raymundo-Pinero E, Grimaud A, Robert CL. Electrospun carbon fibers as air cathodes for aprotic Li–O2 battery: Towards cathode design for enhanced capacity. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Multi-walled carbon nanotube-incorporating electrospun composite fibrous mats for controlled drug release profile. Int J Pharm 2019; 568:118513. [DOI: 10.1016/j.ijpharm.2019.118513] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022]
|
10
|
Gürsoy M, Özcan F, Karaman M. Improvement of carbon nanotube dispersion in electrospun polyacrylonitrile fiber through plasma surface modification. J Appl Polym Sci 2019. [DOI: 10.1002/app.47768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mehmet Gürsoy
- Department of Chemical EngineeringKonya Technical University Konya 42075 Turkey
| | - Fatih Özcan
- Advanced Technology Research & Application CenterSelcuk University Konya 42075 Turkey
- Department of Chemistry, Faculty of ScienceSelcuk University Konya 42075 Turkey
| | - Mustafa Karaman
- Department of Chemical EngineeringKonya Technical University Konya 42075 Turkey
- Advanced Technology Research & Application CenterSelcuk University Konya 42075 Turkey
| |
Collapse
|
11
|
CNT Incorporated Polyacrilonitrile/Polypyrrole Nanofibers as Keratinocytes Scaffold. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2019. [DOI: 10.4028/www.scientific.net/jbbbe.41.69] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polypyrrole (PPy) is an attractive scaffold material for tissue engineering with its non-toxic and electrically conductive properties. There has not been enough information about PPy usage in skin tissue engineering. The aim of this study is to investigate biocompatibility of polyacrilonitrile (PAN)/PPy nanofibrous scaffold for human keratinocytes. PAN/PPy bicomponent nanofibers were prepared by electrospinning, in various PPy concentrations and with carbon nanotube (CNT) incorporation. The average diameter of electrospun nanofibers decreased with increasing PPy concentration. Further, agglomerated CNTs caused beads and disordered parts on the surface of nanofibers. Biocompatibility of these PAN/PPy and PAN/PPy/CNT scaffolds were analyzed in vitro. Both scaffolds provided adhesion and proliferation of keratinocytes. Nanofiber diameter did not significantly influence the morphology of cells. However, with increasing number of cells, cells stayed among nanofibers and this affected their shape and size. In this study, we demonstrated that PAN/PPy and PAN/PPy/CNT scaffolds enabled the growth of keratinocytes, showing their biocompatibility.
Collapse
|
12
|
Smith JR, Olusanya TOB, Lamprou DA. Characterization of drug delivery vehicles using atomic force microscopy: current status. Expert Opin Drug Deliv 2018; 15:1211-1221. [PMID: 30417712 DOI: 10.1080/17425247.2018.1546693] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The field of nanomedicine, utilizing nano-sized vehicles (nanoparticles and nanofibers) for targeted local drug delivery, has a promising future. This is dependent on the ability to analyze the chemical and physical properties of these drug carriers at the nanoscale and hence atomic force microscopy (AFM), a high-resolution imaging and local force-measurement technique, is ideally suited. AREAS COVERED Following a brief introduction to the technique, the review describes how AFM has been used in selected publications from 2015 to 2018 to characterize nanoparticles and nanofibers as drug delivery vehicles. These sections are ordered into areas of increasing AFM complexity: imaging/particle sizing, surface roughness/quantitative analysis of images, and analysis of force curves (to extract nanoindentation and adhesion data). EXPERT OPINION AFM imaging/sizing is used extensively for the characterization of nanoparticle and nanofiber drug delivery vehicles, with surface roughness and nanomechanical/adhesion data acquisition being less common. The field is progressing into combining AFM with other techniques, notably SEM, ToF-SIMS, Raman, Confocal, and UV. Current limitations include a 50 nm resolution limit of nanoparticles imaged within live cells and AFM tip-induced activation of cytoskeleton proteins. Following drug release real-time with AFM-spectroscopic techniques and studying drug interactions on cell receptors appear to be on the horizon.
Collapse
Affiliation(s)
- James R Smith
- a School of Pharmacy and Biomedical Sciences , University of Portsmouth , Portsmouth , UK
| | - Temidayo O B Olusanya
- b Department of Pharmaceutics, Faculty of Applied Sciences , University of Sunderland , Sunderland , UK
| | | |
Collapse
|
13
|
Lee J, Yoon J, Kim JH, Lee T, Byun H. Electrospun PAN-GO composite nanofibers as water purification membranes. J Appl Polym Sci 2017. [DOI: 10.1002/app.45858] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jeonghun Lee
- Department of Chemical Engineering; Keimyung University; Daegu 704-701 South Korea
| | - Jaehan Yoon
- Department of Chemical Engineering; Keimyung University; Daegu 704-701 South Korea
| | - Jun-Hyun Kim
- Department of Chemistry; Illinois State University; Normal Illinois 61790-4160
| | - Taegwan Lee
- Department of Environmental Science; Keimyung University; Daegu 704-701 South Korea
| | - Hongsik Byun
- Department of Chemical Engineering; Keimyung University; Daegu 704-701 South Korea
| |
Collapse
|