1
|
Chen Z, Zhang A, Xu X, Ding L, Zhang X, Qian C, Zhu B. Toll-interacting protein participates in immunity and development of the lepidopteran insect Antheraea pernyi. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:497-507. [PMID: 37278204 DOI: 10.1017/s0007485323000184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Toll-interacting protein (Tollip) participates in multiple biological processes. However, the biological functions of Tollip proteins in insects remain to be further explored. Here, the genomic sequence of tollip gene from Antheraea pernyi (named Ap-Tollip) was identified with a length of 15,060 bp, including eight exons and seven introns. The predicted Ap-Tollip protein contained conserved C2 and CUE domains and was highly homologous to those tollips from invertebrates. Ap-Tollip was highly expressed in fat body compared with other determined tissues. As far as the developmental stages were concerned, the highest expression level was found at the 14th day in eggs or the 3rd day of the 1st instar. Ap-Tollip was also obviously regulated by lipopolysaccharide, polycytidylic acid or 20E in different tissues. In addition, the interaction between Ap-Tollip and ubiquitin was confirmed by western blotting and pull-down assay. RNAi of Ap-Tollip significantly affected the expression levels of apoptosis and autophagy-related genes. These results indicated that Ap-Tollip was involved in immunity and development of A. pernyi.
Collapse
Affiliation(s)
- Zhe Chen
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Awei Zhang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xuan Xu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Lu Ding
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xiaojiao Zhang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Cen Qian
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Baojian Zhu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
2
|
Wang W, Liu Y, Mao Y, Xu Y, Wang Z, Zhang R, Liu B, Xia K, Yang M, Yan J. Toll-interacting protein negatively regulated innate immune response via NF-κB signal pathway in blunt snout bream, Megalobrama amblycephala. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104595. [PMID: 36427557 DOI: 10.1016/j.dci.2022.104595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/20/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Toll-interacting protein (Tollip) is an important negative regulator of Toll-like receptor-mediated innate immunity by preventing excessive proinflammatory responses. The structure and function of Tollip have been well identified in mammals, but the piscine Tollip remains poorly understood. In the present study, a homologue of Tollip was identified and characterized from blunt snout bream (named MaTollip), which was composed of an 831 bp open reading frame encoding a protein of 276 amino acids. Phylogenetic analysis indicated that MaTollip is a novel member of Tollip family and possessed the highest similarity to that of grass carp (99.28%). Multiple alignment of amino acid sequence showed that MaTOLLIP shared a high degree of structural conservation, including a TBD domain, a C2 domain and a CUE domain, with its counterparts from other vertebrates. With regard to tissue-specific expression without immune challenge, MaTollip was constitutively expressed in a wide range of normal tissues, with the highest in the head-kidney and the lowest in the intestine. MaTollip expression in the head-kidney was strongly upregulated upon LPS stimulation and A. hydrophila infection. Fluorescence microscopic analysis revealed that the green fluorescent protein-TOLLIP was localized predominantly in the cytoplasm of EPC cells in a dot-like state. When MaTollip was overexpressed in HEK-293T and EPC cells, it could significantly inhibit the activity of nuclear factor-κB (NF-κB) promoter in a dose dependent manner. MaTollip overexpression in MAF cells lowered drastically the transcriptional expression level of lipopolysaccharide-induced proinflammatory cytokines (IL-1β, IL-6 and IL-8), whereas they were dramatically promoted by MaTollip knock down with siRNA. Taken together, this study demonstrated that MaTollip played a pivotal role in mediating host innate immune response to pathogen invasion, and unveiled the involvement of MaTollip in NF-κB-mediated transcription of inflammation genes, which paved the way for further studies of immune negative regulation mechanisms mediated by Tollip in fish.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Yang Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Ying Mao
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Yandong Xu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Zuzhen Wang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Ru Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Bing Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Kuanyu Xia
- Xiangya School of Medicine, Central South University, Changsha, 410017, China
| | - Moci Yang
- Xiangya School of Medicine, Central South University, Changsha, 410017, China
| | - Jinpeng Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China.
| |
Collapse
|
3
|
Liang Y, Liu R, Zhang J, Chen Y, Shan S, Zhu Y, Yang G, Li H. Negative regulation of interferon regulatory factor 6 (IRF6) in interferon and NF-κB signalling pathways of common carp (Cyprinus carpio L.). BMC Vet Res 2022; 18:433. [PMID: 36503433 PMCID: PMC9743528 DOI: 10.1186/s12917-022-03538-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Interferon (IFN) regulatory factors (IRFs) is a kind of transcription factors, which play an important role in regulating the expression of type I IFN and related genes. In mammals, IRF6 is not relevant with IFN expression, while zebrafish IRF6 was reported to be a positive regulator of IFN expression and could be phosphorylated by both MyD88 and TBK1. However, the role of IRF6 in the immune response and IFN transcription of common carp is unknown. RESULTS In the present study, the cDNA of IRF6 gene (CcIRF6) was cloned from common carp using RACE technique, with a total length of 1905 bp, encoding 471 amino acid residues, which possesses two functional domains of DBD and IAD. Similarity analysis showed that CcIRF6 had more than 50% similarity with IRFs of other vertebrates, and had the highest similarity with grass carp and zebrafish, among which the DBD domain was much more conserved. The phylogenetic analysis showed that CcIRF6 is in the branch of Osteichthyes and has the closest relationship with grass carp. In healthy common carp, the CcIRF6 was expressed in all the examined tissues, with the highest level in the oral epithelium, and the lowest level in the head kidney. After intraperitoneal injection of poly(I:C) or Aeromonas hydrophila, the expression of CcIRF6 increased in spleen, head kidney, foregut and hindgut of common carp. Moreover, poly(I:C), LPS, PGN and flagellin induced the expression of CcIRF6 in peripheral leukocytes and head kidney leukocytes of common carp in vitro. In EPC cells, CcIRF6 inhibited the expression of some IFN-related genes and pro-inflammatory cytokines, and dual luciferase reporter assay showed that CcIRF6 reduced the activity of IFN and NF-κB reporter genes. CONCLUSIONS The present study suggests that CcIRF6 is involved in the antiviral and antibacterial immune response of common carp, and negatively regulate the expression of IFN and NF-κB signalling pathways, which provides a theoretical basis for the study and prevention of fish disease pathogenesis.
Collapse
Affiliation(s)
- Yaxin Liang
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 China
| | - Rongrong Liu
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 China
| | - Jiahui Zhang
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 China
| | - Yixin Chen
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 China
| | - Shijuan Shan
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 China
| | - Yaoyao Zhu
- grid.449397.40000 0004 1790 3687College of Fisheries and Life Science, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya, 572022 China
| | - Guiwen Yang
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 China
| | - Hua Li
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 China
| |
Collapse
|
4
|
Development of an attenuated vaccine against Koi Herpesvirus Disease (KHVD) suitable for oral administration and immersion. NPJ Vaccines 2022; 7:106. [PMID: 36068296 PMCID: PMC9448810 DOI: 10.1038/s41541-022-00525-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Since the end of the1990ies, Cyprinid herpesvirus 3 (also known as koi herpesvirus, KHV) has caused mass mortality events of koi and common carp all over the globe. This induced a high economic impact, since the KHV disease cannot be cured up to now, but only prevented by vaccination. Unfortunately, there is only one commercial vaccine available which is not approved in most countries. Therefore, there is an urgent need for new, safe and available vaccines. In this study, a live attenuated vaccine virus was generated by cell culture passages of virulent KHV, and shown to protect carp or koi after immersion or oral application against wild type challenge. An advantage of boost immunization was demonstrated, especially after oral application. Vaccination induced no or mild clinical signs and protecting antibodies have been measured. Additionally, the vaccine virus allowed differentiation of infected from vaccinated animals (DIVA) by PCR. The attenuation of the newly generated vaccine was tracked down to a partial deletion of open reading frame 150. This was confirmed by the generation of engineered ORF150 deletion mutants of wild-type KHV which exhibited a similar attenuation in vivo.
Collapse
|
5
|
Li YJ, Yao CL. Tollip suppresses MyD88-mediated NF-κB activation by enhancing MyD88 ubiquitination levels in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2022; 128:455-465. [PMID: 35988714 DOI: 10.1016/j.fsi.2022.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Toll-interacting protein (Tollip) plays an important role in the innate immune response by negative regulation of the TLR-IL-1R signaling pathway. MyD88 serves as a universal adaptor in TLR-mediated NF-κB activation. However, the regulation mechanisms of Tollip in piscine MyD88-mediated NF-κB activation is largely unknown. In the present study, the cDNA sequence of LcTollip was identified from the large yellow croaker (Larimichthys crocea). The putative LcTollip protein encoded 275 amino acid residues, containing a N-terminal TBD domain, a central C2 domain, and a C-terminal CUE domain. Quantitative PCR showed that the most predominant constitutive expression of LcTollip was detected in spleen. In addition, LcTollip transcripts enhanced significantly after LPS and poly I:C challenge (P < 0.05). Cellular localization revealed that LcTollip existed in the cytoplasm and nucleus. Furthermore, the overexpression plasmids of wild type LcTollip as well as its six domain truncated mutants of LcTollip were constructed by overlap PCR. Dual luciferase analysis showed that NF-κB activation could not be induced by overexpression of LcTollip or its domain truncated mutants alone. However, the LcMyD88-induced-NF-κB activation was significantly suppressed by overexpression with LcTollip, and the truncated mutants LcTollip-ΔTBD, LcTollip-ΔC2, LcTollip-ΔCUE and LcTollip-ΔTBDΔCUE while not by LcTollip-ΔLR and LcTollip-ΔTBDΔC2. Moreover, co-immunoprecipitation (Co-IP) assay revealed that the interaction between LcTollip and LcMyD88 was through CUE domain. More interesting, IP and immunoblotting examination of HEK293T cells co-transfected with LcMyD88, LcTollip and HA-ubiquitin showed that LcMyD88 induced a dose-dependent de-ubiquitination of LcTollip while LcTollip enhanced a dose-dependent ubiquitination of LcMyD88. However, protein degradation investigation displayed that the proteolysis and ubiquitination of LcMyD88 were not connected. Our findings suggested that the LcTollip might involve in negative regulation TLR pathway by suppressing LcMyD88-mediated immune activation and improving the ubiquitination level of LcMyD88.
Collapse
Affiliation(s)
- Yong-Jian Li
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Cui-Luan Yao
- Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
6
|
Zhao H, Wang H, Liu R, Liang Y, Li K, Shan S, An L, Yang G, Li H. Activation of the NLRP1 inflammasome and its ligand recognition in the antibacterial immune response of common carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2022; 125:238-246. [PMID: 35588906 DOI: 10.1016/j.fsi.2022.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
NLRP1 (NLR family pyrin domain containing 1) is the first member of NOD-like receptors (NLRs) which can form inflammasome and play critical roles in innate immunity and pathogenesis of various diseases. To date, many NLRs and inflammasome-related genes have been identified in teleost, however, the activation of NLRP1 inflammasome is only found in zebrafish, and the activator of fish NLRP1 is unclear. In the present study, the activation of CcNLRP1 inflammasome and its function in innate immune defence of common carp was investigated. The expression of CcNLRP1 was induced in immune-related tissues of common carp upon challenge with Edwardsiella tarda and Aeromonas hydrophila. The colocalization of CcNLRP1 and CcASC, ASC oligomerization, and interaction between CcNLRP1CARD and CcASC was observed in 293T, Hela and EPC cells, suggesting that the CcNLRP1 inflammasome was activated in common carp. Furthermore, we found that MDP may be the specific ligand of CcNLRP1, which can activate the CcNLRP1 inflammasome. Taken together, the present study identifies a new inflammasome in common carp, and is beneficial to the control of infectious diseases in carp farming.
Collapse
Affiliation(s)
- Huaping Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Hui Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Yaxin Liang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Kaimin Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Liguo An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China.
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China.
| |
Collapse
|
7
|
Wu C, Deng H, Li D, Fan L, Yao D, Zhi X, Mao H, Hu C. Ctenopharyngodon idella Tollip regulates MyD88-induced NF-κB activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104162. [PMID: 34090930 DOI: 10.1016/j.dci.2021.104162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Toll-interacting protein (Tollip) and MyD88 are key components of the TLR/IL-1R signaling pathway in mammals. MyD88 is known as a universal adaptor protein involving in TLR/IL-1R-induced NF-κB activation. Tollip is a crucial negative regulator of TLR-mediated innate immune responses. Previous studies have demonstrated that teleost Tollip served as a negative regulator of MyD88-dependent TLR signaling pathway. However, the mechanism is still unclear. In particular, the effect of TBD, C2, and CUE domains of Tollip on MyD88-NF-κB signaling pathway remains to be elucidated. In this study, we found that the response of grass carp Tollip (CiTollip) to LPS stimulation was faster and stronger than that of poly I:C treatment, and CiTollip diminished the expression of tnf-α induced by LPS. Further assays indicated that except for the truncated mutant of △CUE2 (1-173 aa), wild type CiTollip and other truncated mutants (△N-(52-276 aa), △C2-(173-276 aa) and △CUE1-(1-231 aa)) could associate with MyD88 and negatively regulate MyD88-induced NF-κB activation. It suggested that the C-terminal (173-276 aa), in particular the connection section between C2 and CUE domains (173-231 aa), played a pivotal role in suppressing MyD88-induced activation of NF-κB.
Collapse
Affiliation(s)
- Chuxin Wu
- Yuzhang Normal University, Nanchang, 330103, China
| | - Hang Deng
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Dongming Li
- Fuzhou Medical College, Nanchang University, Fuzhou, 344000, China
| | - Lihua Fan
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Dong Yao
- Yuzhang Normal University, Nanchang, 330103, China
| | - Xiaoping Zhi
- Yuzhang Normal University, Nanchang, 330103, China
| | - Huiling Mao
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
8
|
Li H, Chen X, Zhu Y, Liu R, Zheng L, Shan S, Zhang F, An L, Yang G. Molecular characterization and immune functional analysis of IRF2 in common carp (Cyprinus carpio L.): different regulatory role in the IFN and NF-κB signalling pathway. BMC Vet Res 2021; 17:303. [PMID: 34503504 PMCID: PMC8428054 DOI: 10.1186/s12917-021-03012-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/02/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Interferon regulatory factor 2 (IRF2) is an important transcription factor, which can regulate the IFN response and plays a role in antiviral innate immunity in teleost. RESULTS In the present study, the full-length cDNA sequence of IRF2 (CcIRF2) was characterized in common carp (Cyprinus carpio L.), which encoded a protein containing a conserved DNA-binding domain (DBD) and an IRF-associated domain (IAD). Phylogenetic analysis showed that CcIRF2 was most closely related with IRF2 of Ctenopharyngodon idella. CcIRF2 transcripts were detectable in all examined tissues, with higher expression in the gills, spleen and brain. CcIRF2 expression was upregulated in immune-related tissues of common carp upon polyinosinic:polycytidylic acid (poly (I:C)) and Aeromonas hydrophila stimulation and induced by poly (I:C), lipopolysaccharide (LPS), peptidoglycan (PGN) and flagellin in the peripheral blood leucocytes (PBLs) and head kidney leukocytes (HKLs). In addition, overexpression of CcIRF2 decreased the expression of IFN and IFN-stimulated genes (ISGs), and a dual-luciferase reporter assay revealed that CcIRF2 could increase the activation of NF-κB. CONCLUSIONS These results indicate that CcIRF2 participates in antiviral and antibacterial immune response and negatively regulates the IFN response, which provide a new insight into the regulation of IFN system in common carp, and are helpful for the prevention and control of infectious diseases in carp farming.
Collapse
Affiliation(s)
- Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| | - Xinping Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Yaoyao Zhu
- College of Fisheries and Life Science, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya, 572022, China
| | - Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Linlin Zheng
- Jinan Eco-environmental Monitoring Center of Shandong Province, No. 17199 Lvyou Road, Jinan, 250101, China
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Fumiao Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Liguo An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
9
|
Mohanty A, Sadangi S, Paichha M, Saha A, Das S, Samanta M. Toll-interacting protein in the freshwater fish Labeo rohita exhibits conserved structural motifs of higher eukaryotes and is distinctly expressed in pathogen-associated molecular pattern stimulations and bacterial infections. Microbiol Immunol 2021; 65:281-289. [PMID: 32237168 DOI: 10.1111/1348-0421.12792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 11/30/2022]
Abstract
Toll-interacting protein (Tollip) is a critical regulator of TOLL- like receptor (TLR)-signaling pathway. It is predominantly associated with TLR2 and TLR4 during acute inflammatory conditions and inhibits the TLR-mediated nuclear factor-kappa activation by suppressing the autophosphorylation of interleukin-1 receptor-associated kinase and its kinase activity. This article describes the Tollip of Labeo rohita (LrTollip), a highly valuable freshwater fish from the Indian subcontinent. The full-length LrTollip complementary DNA (1412 nucleotides) encodes a 276-amino acid (aa) protein, depicting a highly conserved target of the Myb1 (Tom1)-binding domain (TBD; 1-53 aa), conserved core domain 2 (C2; 54-151 aa), and coupling of ubiquitin to endoplasmic reticulum degradation (CUE; 231-273 aa) domains of mouse and human counterparts. The key amino acids exerting the critical functions of Tollip, such as phospholipids recognition and ubiquitination, are present in the C2 and CUE domains of LrTollip, respectively. LrTollip is widely expressed in the kidneys, gills, spleen, liver, and blood, and among these tested tissues, the highest expression is observed in blood. In response to TLR ligands and NOD-like receptor (NLR) ligands stimulations and Aeromonas hydrophila, Edwardsiella tarda, and Bacillus subtilis infections, LrTollip gene expression is induced in various organs/tissues with remarkable difference in their kinetics. These data together suggest the important role of LrTollip in TLR- and NLR-signal transduction pathways and immune-related diseases in fish.
Collapse
Affiliation(s)
- Arpita Mohanty
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India
| | - Sushmita Sadangi
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India
| | - Mahismita Paichha
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India
| | - Ashis Saha
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Mrinal Samanta
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, 751002, India
| |
Collapse
|
10
|
Zhu Y, Shan S, Zhao H, Liu R, Wang H, Chen X, Yang G, Li H. Identification of an IRF10 gene in common carp (Cyprinus carpio L.) and analysis of its function in the antiviral and antibacterial immune response. BMC Vet Res 2020; 16:450. [PMID: 33213475 PMCID: PMC7678311 DOI: 10.1186/s12917-020-02674-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022] Open
Abstract
Background Interferon (IFN) regulatory factors (IRFs), as transcriptional regulatory factors, play important roles in regulating the expression of type I IFN and IFN- stimulated genes (ISGs) in innate immune responses. In addition, they participate in cell growth and development and regulate oncogenesis. Results In the present study, the cDNA sequence of IRF10 in common carp (Cyprinus carpio L.) was characterized (abbreviation, CcIRF10). The predicted protein sequence of CcIRF10 shared 52.7–89.2% identity with other teleost IRF10s and contained a DNA-binding domain (DBD), a nuclear localization signal (NLS) and an IRF-associated domain (IAD). Phylogenetic analysis showed that CcIRF10 had the closest relationship with IRF10 of Ctenopharyngodon idella. CcIRF10 transcripts were detectable in all examined tissues, with the highest expression in the gonad and the lowest expression in the head kidney. CcIRF10 expression was upregulated in the spleen, head kidney, foregut and hindgut upon polyinosinic:polycytidylic acid (poly I:C) and Aeromonas hydrophila stimulation and induced by poly I:C, lipopolysaccharide (LPS) and peptidoglycan (PGN) in peripheral blood leucocytes (PBLs) and head kidney leukocytes (HKLs) of C. carpio. In addition, overexpression of CcIRF10 was able to decrease the expression of the IFN and IFN-stimulated genes PKR and ISG15. Conclusions These results indicate that CcIRF10 participates in antiviral and antibacterial immunity and negatively regulates the IFN response, which provides new insights into the IFN system of C. carpio. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-020-02674-z.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.,College of Fisheries and Life Science, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya, 572022, China
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Huaping Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Hui Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Xinping Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
11
|
Di G, Li Y, Zhao X, Wang N, Fu J, Li M, Huang M, You W, Kong X, Ke C. Differential proteomic profiles and characterizations between hyalinocytes and granulocytes in ivory shell Babylonia areolata. FISH & SHELLFISH IMMUNOLOGY 2019; 92:405-420. [PMID: 31212011 DOI: 10.1016/j.fsi.2019.06.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
The haemocytes of the ivory shell, Babylonia areolata are classified by morphologic observation into the following types: hyalinocytes (H) and granulocytes (G). Haemocytes comprise diverse cell types with morphological and functional heterogene and play indispensable roles in immunological homeostasis of invertebrates. In the present study, two types of haemocytes were morphologically identified and separated as H and G by Percoll density gradient centrifugation. The differentially expressed proteins were investigated between H and G using mass spectrometry. The results showed that total quantitative proteins between H and G samples were 1644, the number of up-regulated proteins in G was 215, and the number of down-regulated proteins in G was 378. Among them, cathepsin, p38 MAPK, toll-interacting protein-like and beta-adrenergic receptor kinase 2-like were up-regulated in G; alpha-2-macroglobulin-like protein, C-type lectin, galectin-2-1, galectin-3, β-1,3-glucan-binding protein, ferritin, mega-hemocyanin, mucin-17-like, mucin-5AC-like and catalytic subunit of protein kinase A were down-regulated in G. The results showed that the most significantly enriched KEGG pathways were the pathways related to ribosome, phagosome, endocytosis, carbon metabolism, protein processing in endoplasmic reticulum and oxidative phosphorylation. For phagosome and endocytosis pathway, the number of down-regulation proteins in G was more than that of up-regulation proteins. For lysosome pathway, the number of up-regulation proteins in G was more than that of down-regulation proteins. These results suggested that two sub-population haemocytes perform the different immune functions in B. areolata.
Collapse
Affiliation(s)
- Guilan Di
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Yanfei Li
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xianliang Zhao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Ning Wang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Jingqiang Fu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Min Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Miaoqin Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xianghui Kong
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
12
|
Dong X, Xu H, Wu X, Yang L. Multiple bioanalytical method to reveal developmental biological responses in zebrafish embryos exposed to triclocarban. CHEMOSPHERE 2018; 193:251-258. [PMID: 29136572 DOI: 10.1016/j.chemosphere.2017.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Triclocarban (TCC) is a well-known antibacterial agent that is frequently detected in environmental, wildlife and human samples. The potential toxicological effects and action mechanism of TCC on vertebrate development has remained unclear. In the present study, we analyzed phenotypic alterations, thyroid hormone levels, thyroid hormone responsive genes, and proteomic profiles of zebrafish embryos after exposure to a series of concentrations of TCC from 6 h post-fertilization (hpf) to 120 hpf. The most nonlethal concentration (MNLC), lethal concentration 10% (LC10) and lethal concentration 50% (LC50) of TCC for exposures of 96 h were 133.3 μg/L, 147.5 μg/L and 215.8 μg/L, respectively. Our results showed that exposure to TCC decreased heart rate, delayed yolk absorption and swim bladder development at MNLC and LC10. Exposure to MNLC of TCC inhibited thyroid hormone and altered expression of thyroid hormone responsive genes. Furthermore, exposure to 1/20 MNLC of TCC altered expression of proteins related to binding and metabolism, skeletal muscle development and function, as well as proteins involved in nervous system development and immune response, indicating TCC has potential health risks in wildlife and humans at low concentration level.
Collapse
Affiliation(s)
- Xing Dong
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Liuqing Yang
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| |
Collapse
|