1
|
Graziosi S, Puliga F, Iotti M, Amicucci A, Zambonelli A. In vitro interactions between Bradyrhizobium spp. and Tuber magnatum mycelium. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13271. [PMID: 38692852 PMCID: PMC11062863 DOI: 10.1111/1758-2229.13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/06/2024] [Indexed: 05/03/2024]
Abstract
Tuber magnatum is the most expensive truffle, but its large-scale cultivation is still a challenge compared to other valuable Tuber species. T. magnatum mycelium has never been grown profitably until now, which has led to difficulties to studying it in vitro. This study describes beneficial interactions between T. magnatum mycelium and never before described bradyrhizobia, which allows the in vitro growth of T. magnatum mycelium. Three T. magnatum strains were co-isolated on modified Woody Plant Medium (mWPM) with aerobic bacteria and characterised through microscopic observations. The difficulties of growing alone both partners, bacteria and T. magnatum mycelium, on mWPM demonstrated the reciprocal dependency. Three bacterial isolates for each T. magnatum strain were obtained and molecularly characterised by sequencing the 16S rRNA, glnII, recA and nifH genes. Phylogenetic analyses showed that all nine bacterial strains were distributed among five subclades included in a new monophyletic lineage belonging to the Bradyrhizobium genus within the Bradyrhizobium jicamae supergroup. The nifH genes were detected in all bacterial isolates, suggesting nitrogen-fixing capacities. This is the first report of consistent T. magnatum mycelium growth in vitro conditions. It has important implications for the development of new technologies in white truffle cultivation and for further studies on T. magnatum biology and genetics.
Collapse
Affiliation(s)
- Simone Graziosi
- Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | - Federico Puliga
- Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | - Mirco Iotti
- Department of Life, Health and Environmental ScienceUniversity of L'AquilaL'AquilaItaly
| | | | | |
Collapse
|
2
|
Giorgi V, Amicucci A, Landi L, Castelli I, Romanazzi G, Peroni C, Ranocchi B, Zambonelli A, Neri D. Effect of Bacteria Inoculation on Colonization of Roots by Tuber melanosporum and Growth of Quercus ilex Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:224. [PMID: 38256777 PMCID: PMC10819665 DOI: 10.3390/plants13020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Tuber melanosporum is an ascomycete that forms ectomycorrhizal (ECM) symbioses with a wide range of host plants, producing edible fruiting bodies with high economic value. The quality of seedlings in the early symbiotic stage is important for successful truffle cultivation. Numerous bacterial species have been reported to take part in the truffle biological cycle and influence the establishment of roots symbiosis in plant hosts and the development of the carpophore. In this work, three different bacteria formulations were co-inoculated in Quercus ilex L. seedlings two months after T. melanosporum inoculation. At four months of bacterial application, the T. melanosporum ECM root tip rate of colonization and bacterial presence were assessed using both morphological and molecular techniques. A 2.5-fold increase in ECM colonization rate was found in the presence of Pseudomonas sp. compared to the seedlings inoculated only with T. melanosporum. The same treatment caused reduced plant growth either for the aerial and root part. Meanwhile, the ECM colonization combined with Bradyrhizobium sp. and Pseudomonas sp. + Bradyrhizobium sp. reduced the relative density of fibrous roots (nutrient absorption). Our work suggests that the role of bacteria in the early symbiotic stages of ECM colonization involves both the mycorrhizal symbiosis rate and plant root development processes, both essential for improve the quality of truffle-inoculated seedlings produced in commercial nurseries.
Collapse
Affiliation(s)
- Veronica Giorgi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (V.G.); (L.L.); (I.C.); (G.R.); (D.N.)
| | - Antonella Amicucci
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy;
| | - Lucia Landi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (V.G.); (L.L.); (I.C.); (G.R.); (D.N.)
| | - Ivan Castelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (V.G.); (L.L.); (I.C.); (G.R.); (D.N.)
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (V.G.); (L.L.); (I.C.); (G.R.); (D.N.)
| | - Cristiano Peroni
- Agenzia per l’Innovazione nel Settore Agroalimentare e della Pesca “Marche Agricoltura Pesca”, AMAP, 60027 Osimo, Italy;
| | - Bianca Ranocchi
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy;
| | - Alessandra Zambonelli
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy;
| | - Davide Neri
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (V.G.); (L.L.); (I.C.); (G.R.); (D.N.)
| |
Collapse
|
3
|
Nasslahsen B, Prin Y, Ferhout H, Smouni A, Duponnois R. Management of Plant Beneficial Fungal Endophytes to Improve the Performance of Agroecological Practices. J Fungi (Basel) 2022; 8:1087. [PMID: 36294652 PMCID: PMC9604847 DOI: 10.3390/jof8101087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
By dint of the development of agroecological practices and organic farming, stakeholders are becoming more and more aware of the importance of soil life and banning a growing number of pesticide molecules, promoting the use of plant bio-stimulants. To justify and promote the use of microbes in agroecological practices and sustainable agriculture, a number of functions or services often are invoked: (i) soil health, (ii) plant growth promotion, (iii) biocontrol, (iv) nutrient acquiring, (v) soil carbon storage, etc. In this paper, a review and a hierarchical classification of plant fungal partners according to their ecosystemic potential with regard to the available technologies aiming at field uses will be discussed with a particular focus on interactive microbial associations and functions such as Mycorrhiza Helper Bacteria (MHB) and nurse plants.
Collapse
Affiliation(s)
- Bouchra Nasslahsen
- Laboratoire des Symbioses Tropicales & Méditerranéennes, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement, Institut Agro Montpellier, Université de Montpellier, 34398 Montpellier, France
- Société Agronutrition, 31390 Carbonne, France
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences, Université Mohammed V de Rabat, Rabat 10000, Morocco
| | - Yves Prin
- Laboratoire des Symbioses Tropicales & Méditerranéennes, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement, Institut Agro Montpellier, Université de Montpellier, 34398 Montpellier, France
| | | | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences, Université Mohammed V de Rabat, Rabat 10000, Morocco
- Laboratoire Mixte International—LMI AMIR, Rabat 10000, Morocco
| | - Robin Duponnois
- Laboratoire des Symbioses Tropicales & Méditerranéennes, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement, Institut Agro Montpellier, Université de Montpellier, 34398 Montpellier, France
| |
Collapse
|
4
|
Kang Z, Li X, Li Y, Ye L, Zhang B, Zhang X, Penttinen P, Gu Y. Black Truffles Affect Quercus aliena Physiology and Root-Associated nirK- and nirS-Type Denitrifying Bacterial Communities in the Initial Stage of Inoculation. Front Microbiol 2022; 13:792568. [PMID: 35572648 PMCID: PMC9096950 DOI: 10.3389/fmicb.2022.792568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/22/2022] [Indexed: 11/29/2022] Open
Abstract
Truffles (Tuber spp.) are edible ectomycorrhizal fungi with high economic value. Bacteria in ectomycorrhizosphere soils are considered to be associated with the nutrient uptake of truffles and hosts. Whether Tuber spp. inoculation can affect the growth of Quercus aliena, the ectomycorrhizosphere soil, and the rhizosphere nirK and nirS-denitrifier communities at the ectomycorrhizae formation stage is still unclear. Therefore, we inoculated Q. aliena with the black truffles Tuber melanosporum and Tuber indicum, determined the physiological activity and morphological indices of Q. aliena seedlings, analyzed the physicochemical properties of ectomycorrhizosphere soils, and applied DNA sequencing to assess the nirK and nirS- denitrifier community structure in ectomycorrhizosphere soils. Peroxidase activity was higher in the seedlings inoculated with T. melanosporum than in the T. indicum inoculation and uninoculated control treatments. The available phosphorus contents were lower and nitrate contents were higher in those with truffle inoculation, and T. melanosporum treatment differed more from the control than the T. indicum treatment. The richness of the nirK-community was highest in the T. indicum treatment and lowest in the uninoculated treatment. The differences in nirK-community composition across treatments were not statistically significant, but the nirS communities were different. The nirS-type bacteria correlated with three environmental factors (pH, available phosphorus, and nitrate contents), whereas the nirK-type bacteria were only associated with the nitrate contents. Generally, this work revealed that inoculation with Tuber spp. would change a few nutrient contents and richness of nirK-type bacteria and had little effects on growth of Q. aliena seedlings in the initial stage of inoculation. The results of this study may provide in-depth insights into the relationships between Tuber spp. and hosts, which should be taken into account when developing truffle production methods.
Collapse
Affiliation(s)
- Zongjing Kang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaolin Li
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yan Li
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lei Ye
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Bo Zhang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Petri Penttinen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
- Ecosystems and Environment Research Programme, University of Helsinki, Helsinki, Finland
| | - Yunfu Gu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Life Cycle and Phylogeography of True Truffles. Genes (Basel) 2022; 13:genes13010145. [PMID: 35052485 PMCID: PMC8775154 DOI: 10.3390/genes13010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
True truffle (Tuber spp.) is one group of ascomycetes with great economic importance. During the last 30 years, numerous fine-scale population genetics studies were conducted on different truffle species, aiming to answer several key questions regarding their life cycles; these questions are important for their cultivation. It is now evident that truffles are heterothallic, but with a prevalent haploid lifestyle. Strains forming ectomycorrhizas and germinating ascospores act as maternal and paternal partners respectively. At the same time, a number of large-scale studies were carried out, highlighting the influences of the last glaciation and river isolations on the genetic structure of truffles. A retreat to southern refugia during glaciation, and a northward expansion post glaciation, were revealed in all studied European truffles. The Mediterranean Sea, acting as a barrier, has led to the existence of several refugia in different peninsulas for a single species. Similarly, large rivers in southwestern China act as physical barriers to gene flow for truffles in this region. Further studies can pay special attention to population genetics of species with a wide distribution range, such as T. himalayense, and the correlation between truffle genetic structure and the community composition of truffle-associated bacteria.
Collapse
|
6
|
Kinoshita A, Sasaki H, Orihara T, Nakajima M, Nara K. Tuber iryudaense and T. tomentosum: Two new truffles encased in tomentose mycelium from Japan. Mycologia 2021; 113:653-663. [PMID: 33835893 DOI: 10.1080/00275514.2021.1875709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We describe two new Japanese truffle species, Tuber iryudaense and Tuber tomentosum, based on molecular and morphological analyses. Both species are clearly distinguishable from other Tuber species by the ocher tomentose mycelium covering the ascoma surfaces. Tuber iryudaense has one-spored asci that each contain a large (68-97 × 51-80 µm), reddish-brown ascospore; these microscopic characters are similar to those of closely related Chinese species, T. calosporum, T. gigantosporum, T. glabrum, T. monosporum, and T. sinomonosporum. Tuber tomentosum forms one to four ascospores per ascus with a reddish-brown color similar to that of ascospores of T. macrosporum and T. canaliculatum, although their spores are much larger than those of T. tomentosum (27‒64 × 26‒55 µm). Molecular phylogenetic analyses based on ribosomal internal transcribed spacer and partial 28S nuc rDNA sequences support that both species are distinct within the Macrosporum group.
Collapse
Affiliation(s)
- Akihiko Kinoshita
- Kyushu Research Center, Forestry and Forest Products Research Institute, Kurokami, Kumamoto City, Chuo-ku, Kumamoto 860-0862, Japan
| | - Hiromi Sasaki
- Mycologist Circle of Japan, Fujisawa City, Kanagawa, Japan
| | - Takamichi Orihara
- Kanagawa Prefectural Museum of Natural History, 499 Iryuda, Odawara City, Kanagawa 250-0031, Japan
| | | | - Kazuhide Nara
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa City, Chiba 277-8563, Japan
| |
Collapse
|
7
|
Obase K, Yamanaka S, Kinoshita A, Tamai Y, Yamanaka T. Phylogenetic placements and cultural characteristics of Tuber species isolated from ectomycorrhizas. MYCOSCIENCE 2021; 62:124-131. [PMID: 37089255 PMCID: PMC9157752 DOI: 10.47371/mycosci.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
Pure cultures of Tuber were isolated from ectomycorrhizal root tips in Abies sachalinensis plantations in Hokkaido, Japan. Their phylogenetic relationships as well as vegetative hyphal characteristics on culture media were reported. Phylogenetic analysis based on the internal transcribed spacer within ribosomal DNA settled well-supported eight lineages within Puberulum, Latisporum, and Maculatum clades in Tuber. Three and one lineages were grouped with undescribed species of Puberulum clade in Japan and that of the Latisporum group in China, respectively. Two lineages were closely associated to but distinct from an undescribed species of Puberulum clade in Japan. One lineage did not group with any sequences in the International Nucleotide Sequence Database (INSD), proposing a new taxon in the Latisporum group. One lineage was grouped with T. foetidum in Maculatum clade. All strains in each lineage displayed yellowish white, thin, filamentous colonies on Melin-Norkrans agar medium. Various differences in morphological characteristics of hyphae on pure cultures of various strains were noted, but they were frequently uncommon among strains of the same taxa. Isolation from ectomycorrhizal root tips can be among the effective ways to acquire pure cultures of Tuber strains.
Collapse
Affiliation(s)
- Keisuke Obase
- Microbial Ecology Laboratory, Department of Mushroom Science and Forest Microbiology, Forestry and Forest Products Research Institute
| | - Satoshi Yamanaka
- Hokkaido Research Center, Forestry and Forest Products Research Institute
| | - Akihiko Kinoshita
- Kyushu Research Center, Forestry and Forest Products Research Institute
| | - Yutaka Tamai
- Graduate School of Agriculture, Hokkaido University
| | - Takashi Yamanaka
- Microbial Ecology Laboratory, Department of Mushroom Science and Forest Microbiology, Forestry and Forest Products Research Institute
| |
Collapse
|
8
|
Krauß S, Vetter W. Geographical and Species Differentiation of Truffles ( Tuber spp.) by Means of Stable Isotope Ratio Analysis of Light Elements (H, C, and N). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14386-14392. [PMID: 32378890 DOI: 10.1021/acs.jafc.0c01051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Truffles (Tuber spp.) are considered the most expensive edible fungi and, therefore, are highly prone to food fraud. In this study, authentic truffles from different countries of origin and species were characterized by the determination of their stable carbon, nitrogen, and hydrogen isotope ratios (bulk δ2H, δ13C, and δ15N values). Chinese truffles from Yunnan or related provinces (n = 19) could be well-separated from all European samples (eight countries; n = 105) by means of their significantly (p < 0.05) more negative δ2H values. Furthermore, samples of the second most expensive European species Tuber magnatum were both more enriched in 15N and more depleted in 13C compared to the remaining samples, which allowed for an unequivocal differentiation. Hence, stable isotope ratio analysis could be of high value in terms of authentication of truffles.
Collapse
Affiliation(s)
- Stephanie Krauß
- Institute of Food Chemistry (170b), University of Hohenheim, Garbenstraße 28, D-70599 Stuttgart, Germany
| | - Walter Vetter
- Institute of Food Chemistry (170b), University of Hohenheim, Garbenstraße 28, D-70599 Stuttgart, Germany
| |
Collapse
|
9
|
Kang Z, Zou J, Huang Y, Zhang X, Ye L, Zhang B, Zhang X, Li X. Tuber melanosporum shapes nirS-type denitrifying and ammonia-oxidizing bacterial communities in Carya illinoinensis ectomycorrhizosphere soils. PeerJ 2020; 8:e9457. [PMID: 32953252 PMCID: PMC7474878 DOI: 10.7717/peerj.9457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/09/2020] [Indexed: 11/30/2022] Open
Abstract
Background NirS-type denitrifying bacteria and ammonia-oxidizing bacteria (AOB) play a key role in the soil nitrogen cycle, which may affect the growth and development of underground truffles. We aimed to investigate nirS-type denitrifying bacterial and AOB community structures in the rhizosphere soils of Carya illinoinensis seedlings inoculated with the black truffle (Tuber melanosporum) during the early symbiotic stage. Methods The C. illinoinensis seedlings inoculated with or without T. melanosporum were cultivated in a greenhouse for six months. Next-generation sequencing (NGS) technology was used to analyze nirS-type denitrifying bacterial and AOB community structures in the rhizosphere soils of these seedlings. Additionally, the soil properties were determined. Results The results indicated that the abundance and diversity of AOB were significantly reduced due to the inoculation of T. melanosporum, while these of nirS-type denitrifying bacteria increased significantly. Proteobacteria were the dominant bacterial groups, and Rhodanobacter, Pseudomonas, Nitrosospira and Nitrosomonas were the dominant classified bacterial genera in all the soil samples. Pseudomonas was the most abundant classified nirS-type denitrifying bacterial genus in ectomycorrhizosphere soils whose relative abundance could significantly increase after T. melanosporum inoculation. A large number of unclassified nirS-type denitrifying bacteria and AOB were observed. Moreover, T. melanosporum inoculation had little effect on the pH, total nitrogen (TN), nitrate-nitrogen (NO\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${}_{3}^{-}$\end{document}3−-N) and ammonium-nitrogen (NH\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${}_{4}^{+}$\end{document}4+-N) contents in ectomycorrhizosphere soils. Overall, our results showed that nirS-type denitrifying bacterial and AOB communities in C. illinoinensis rhizosphere soils were significantly affected by T. melanosporum on the initial stage of ectomycorrhizal symbiosis, without obvious variation of soil N contents.
Collapse
Affiliation(s)
- Zongjing Kang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jie Zou
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yue Huang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Zhang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lei Ye
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Bo Zhang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiaolin Li
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
10
|
Chen J, Li JM, Tang YJ, Xing YM, Qiao P, Li Y, Liu PG, Guo SX. Chinese Black Truffle-Associated Bacterial Communities of Tuber indicum From Different Geographical Regions With Nitrogen Fixing Bioactivity. Front Microbiol 2019; 10:2515. [PMID: 31749786 PMCID: PMC6848067 DOI: 10.3389/fmicb.2019.02515] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/18/2019] [Indexed: 11/13/2022] Open
Abstract
It is well known that the microbes associated with truffle fruiting bodies play a very important role during the truffle lifecycle. Tuber indicum, commonly called Chinese black truffle, is a species endemic to Eastern Asia and in the genus of Tuber. Here, we reported the bacterial communities of T. indicum from different geographical regions and described the bacterial diversity from three compartments (soil, ectomycorrhizae and ascocarps) of T. indicum using high-throughput sequencing combined tissue culture. The results revealed that Bradyrhizobium was the dominant genus in fruiting bodies of T. indicum from nine geographical sites in China, and the microbes in T. indicum ascocarps were influenced by geological locations and soil characteristics. More specific bacterial taxa were enriched in the fruiting bodies than in the ectomycorrhizae and soil. In addition, 60 cultural bacteria were isolated from T. indicum fruiting bodies (4 families, 24 genera), and Pseudomonas, Alcaligenes faecalis, Microbacterium, and Arthrobacter were dominant. One of 13 strains that have potential nitrogen-fixation activities was further verified by an acetylene reduction assay (ARA). Together, this research provides new and important data for better understanding of the interaction between truffle and associated microbe and the biology of truffle itself.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jia-Mei Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan-Jing Tang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yong-Mei Xing
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Peng Qiao
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, Yantai, China
| | - Yang Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pei-Gui Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shun-Xing Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Carrasco J, Preston GM. Growing edible mushrooms: a conversation between bacteria and fungi. Environ Microbiol 2019; 22:858-872. [DOI: 10.1111/1462-2920.14765] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Jaime Carrasco
- Department of Plant SciencesUniversity of Oxford, S Parks Rd Oxford OX1 3RB UK
- Centro Tecnológico de Investigación del Champiñón de La Rioja (CTICH) Autol Spain
| | - Gail M. Preston
- Department of Plant SciencesUniversity of Oxford, S Parks Rd Oxford OX1 3RB UK
| |
Collapse
|
12
|
Ormeño-Orrillo E, Martínez-Romero E. A Genomotaxonomy View of the Bradyrhizobium Genus. Front Microbiol 2019; 10:1334. [PMID: 31263459 PMCID: PMC6585233 DOI: 10.3389/fmicb.2019.01334] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/28/2019] [Indexed: 11/13/2022] Open
Abstract
Whole genome analysis of the Bradyrhizobium genus using average nucleotide identity (ANI) and phylogenomics showed the genus to be essentially monophyletic with seven robust groups within this taxon that includes nitrogen-fixing nodule forming bacteria as well as free living strains. Despite the wide genetic diversity of these bacteria no indication was found to suggest that the Bradyrhizobium genus have to split in different taxa. Bradyrhizobia have larger genomes than other genera of the Bradyrhizobiaceae family, probably reflecting their metabolic diversity and different lifestyles. Few plasmids in the sequenced strains were revealed from rep gene analysis and a relatively low proportion of the genome is devoted to mobile genetic elements. Sequence diversity of recA and glnII gene metadata was used to theoretically estimate the number of existing species and to predict how many would exist. There may be many more species than those presently described with predictions of around 800 species in nature. Different arguments are presented suggesting that nodulation might have arose in the ancestral genus Bradyrhizobium.
Collapse
Affiliation(s)
- Ernesto Ormeño-Orrillo
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru
| | | |
Collapse
|
13
|
|