1
|
Zanganeh S, Zahedi AM, Sattarzadeh Bardsiri M, Bazi A, Bastanifard M, Shool S, Kouhbananinejad SM, Farsinejad A, Afgar A, Shahabi A, Mirzaei-Parsa MJ. Recent advances and applications of the CRISPR-Cas system in the gene therapy of blood disorders. Gene 2024; 931:148865. [PMID: 39168259 DOI: 10.1016/j.gene.2024.148865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Saeed Zanganeh
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran; Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran.
| | - Amir Mohammad Zahedi
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahla Sattarzadeh Bardsiri
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Bazi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdieh Bastanifard
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sanaz Shool
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Alireza Farsinejad
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Arman Shahabi
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
2
|
Khoshandam M, Soltaninejad H, Mousazadeh M, Hamidieh AA, Hosseinkhani S. Clinical applications of the CRISPR/Cas9 genome-editing system: Delivery options and challenges in precision medicine. Genes Dis 2024; 11:268-282. [PMID: 37588217 PMCID: PMC10425811 DOI: 10.1016/j.gendis.2023.02.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/08/2023] [Indexed: 03/29/2023] Open
Abstract
CRISPR/Cas9 is an effective gene editing tool with broad applications for the prevention or treatment of numerous diseases. It depends on CRISPR (clustered regularly interspaced short palindromic repeats) as a bacterial immune system and plays as a gene editing tool. Due to the higher specificity and efficiency of CRISPR/Cas9 compared to other editing approaches, it has been broadly investigated to treat numerous hereditary and acquired illnesses, including cancers, hemolytic diseases, immunodeficiency disorders, cardiovascular diseases, visual maladies, neurodegenerative conditions, and a few X-linked disorders. CRISPR/Cas9 system has been used to treat cancers through a variety of approaches, with stable gene editing techniques. Here, the applications and clinical trials of CRISPR/Cas9 in various illnesses are described. Due to its high precision and efficiency, CRISPR/Cas9 strategies may treat gene-related illnesses by deleting, inserting, modifying, or blocking the expression of specific genes. The most challenging barrier to the in vivo use of CRISPR/Cas9 like off-target effects will be discussed. The use of transfection vehicles for CRISPR/Cas9, including viral vectors (such as an Adeno-associated virus (AAV)), and the development of non-viral vectors is also considered.
Collapse
Affiliation(s)
- Mohadeseh Khoshandam
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom 3716986466, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14155-6463, Iran
| | - Hossein Soltaninejad
- Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran 14117-13116, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14155-6559, Iran
| | - Marziyeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14155-6559, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| |
Collapse
|
3
|
Meng X, Wu T, Lou Q, Niu K, Jiang L, Xiao Q, Xu T, Zhang L. Optimization of CRISPR-Cas system for clinical cancer therapy. Bioeng Transl Med 2023; 8:e10474. [PMID: 36925702 PMCID: PMC10013785 DOI: 10.1002/btm2.10474] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022] Open
Abstract
Cancer is a genetic disease caused by alterations in genome and epigenome and is one of the leading causes for death worldwide. The exploration of disease development and therapeutic strategies at the genetic level have become the key to the treatment of cancer and other genetic diseases. The functional analysis of genes and mutations has been slow and laborious. Therefore, there is an urgent need for alternative approaches to improve the current status of cancer research. Gene editing technologies provide technical support for efficient gene disruption and modification in vivo and in vitro, in particular the use of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems. Currently, the applications of CRISPR-Cas systems in cancer rely on different Cas effector proteins and the design of guide RNAs. Furthermore, effective vector delivery must be met for the CRISPR-Cas systems to enter human clinical trials. In this review article, we describe the mechanism of the CRISPR-Cas systems and highlight the applications of class II Cas effector proteins. We also propose a synthetic biology approach to modify the CRISPR-Cas systems, and summarize various delivery approaches facilitating the clinical application of the CRISPR-Cas systems. By modifying the CRISPR-Cas system and optimizing its in vivo delivery, promising and effective treatments for cancers using the CRISPR-Cas system are emerging.
Collapse
Affiliation(s)
- Xiang Meng
- College & Hospital of StomatologyAnhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiPeople's Republic of China
| | - Tian‐gang Wu
- College & Hospital of StomatologyAnhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiPeople's Republic of China
| | - Qiu‐yue Lou
- Anhui Provincial Center for Disease Control and PreventionHefeiPeople's Republic of China
| | - Kai‐yuan Niu
- Clinical Pharmacology, William Harvey Research Institute (WHRI), Barts and The London School of Medicine and DentistryQueen Mary University of London (QMUL) Heart Centre (G23)LondonUK
- Department of OtolaryngologyThe Third Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Lei Jiang
- College & Hospital of StomatologyAnhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiPeople's Republic of China
| | - Qing‐zhong Xiao
- Clinical Pharmacology, William Harvey Research Institute (WHRI), Barts and The London School of Medicine and DentistryQueen Mary University of London (QMUL) Heart Centre (G23)LondonUK
| | - Tao Xu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural ProductsAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceHefeiChina
| | - Lei Zhang
- College & Hospital of StomatologyAnhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiPeople's Republic of China
- Department of PeriodontologyAnhui Stomatology Hospital Affiliated to Anhui Medical UniversityHefeiChina
| |
Collapse
|
4
|
Huang J, Zhou Y, Li J, Lu A, Liang C. CRISPR/Cas systems: Delivery and application in gene therapy. Front Bioeng Biotechnol 2022; 10:942325. [PMID: 36483767 PMCID: PMC9723151 DOI: 10.3389/fbioe.2022.942325] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/04/2022] [Indexed: 10/17/2023] Open
Abstract
The CRISPR/Cas systems in prokaryotes such as bacteria and archaea are the adaptive immune system to prevent infection from viruses, phages, or other foreign substances. When viruses or phages first invade the bacteria, Cas proteins recognize and cut the DNA from viruses or phages into short fragments that will be integrated into the CRISPR array. Once bacteria are invaded again, the modified CRISPR and Cas proteins react quickly to cut DNA at the specified target location, protecting the host. Due to its high efficiency, versatility, and simplicity, the CRISPR/Cas system has become one of the most popular gene editing technologies. In this review, we briefly introduce the CRISPR/Cas systems, focus on several delivery methods including physical delivery, viral vector delivery, and non-viral vector delivery, and the applications of disease therapy. Finally, some problems in CRISPR/Cas9 technology have been proposed, such as the off-target effects, the efficiency of DNA repair mechanisms, and delivery of CRISPR/Cas system safely and efficiently to the target location.
Collapse
Affiliation(s)
- Jie Huang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yitong Zhou
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jie Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Chao Liang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
5
|
The power and the promise of CRISPR/Cas9 genome editing for clinical application with gene therapy. J Adv Res 2021; 40:135-152. [PMID: 36100322 PMCID: PMC9481961 DOI: 10.1016/j.jare.2021.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Due to its high accuracy and efficiency, CRISPR/Cas9 techniques may provide a great chance to treat some gene-related diseases. Researchers used the CRISPR/Cas9 technique to cure or alleviate cancers through different approaches, such as gene therapy and immune therapy. The treatment of ocular diseases by Cas9 has entered into clinical phases.
Background Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is derived from the bacterial innate immune system and engineered as a robust gene-editing tool. Due to the higher specificity and efficiency of CRISPR/Cas9, it has been widely applied to many genetic and non-genetic disease, including cancers, genetic hemolytic diseases, acquired immunodeficiency syndrome, cardiovascular diseases, ocular diseases, and neurodegenerative diseases, and some X-linked diseases. Furthermore, in terms of the therapeutic strategy of cancers, many researchers used the CRISPR/Cas9 technique to cure or alleviate cancers through different approaches, such as gene therapy and immune therapy. Aim of Review Here, we conclude the recent application and clinical trials of CRISPR/Cas9 in non-cancerous diseases and cancers and pointed out some of the problems to be solved. Key Scientific Concepts of Review CRISPR/Cas9, derived from the microbial innate immune system, is developed as a robust gene-editing tool and has been applied widely. Due to its high accuracy and efficiency, CRISPR/Cas9 techniques may provide a great chance to treat some gene-related diseases by disrupting, inserting, correcting, replacing, or blocking genes for clinical application with gene therapy.
Collapse
|
6
|
Song X, Liu C, Wang N, Huang H, He S, Gong C, Wei Y. Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy. Adv Drug Deliv Rev 2021; 168:158-180. [PMID: 32360576 DOI: 10.1016/j.addr.2020.04.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/19/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
The clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems are efficient and versatile gene editing tools, which offer enormous potential to treat cancer by editing genome, transcriptome or epigenome of tumor cells and/or immune cells. A large body of works have been done with CRISPR/Cas systems for genetic modification, and 16 clinical trials were conducted to treat cancer by ex vivo or in vivo gene editing approaches. Now, promising preclinical works have begun using CRISPR/Cas systems in vivo. However, efficient and safe delivery of CRISPR/Cas systems in vivo is still a critical challenge for their clinical applications. This article summarizes delivery of CRISPR/Cas systems by physical methods, viral vectors and non-viral vectors for cancer gene therapy and immunotherapy. The prospects for the development of physical methods, viral vectors and non-viral vectors for delivery of CRISPR/Cas systems are reviewed, and promising advances in cancer treatment using CRISPR/Cas systems are discussed.
Collapse
Affiliation(s)
- Xiangrong Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ning Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hai Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Siyan He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
7
|
Brooks J, Minnick G, Mukherjee P, Jaberi A, Chang L, Espinosa HD, Yang R. High Throughput and Highly Controllable Methods for In Vitro Intracellular Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004917. [PMID: 33241661 PMCID: PMC8729875 DOI: 10.1002/smll.202004917] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/06/2020] [Indexed: 05/03/2023]
Abstract
In vitro and ex vivo intracellular delivery methods hold the key for releasing the full potential of tissue engineering, drug development, and many other applications. In recent years, there has been significant progress in the design and implementation of intracellular delivery systems capable of delivery at the same scale as viral transfection and bulk electroporation but offering fewer adverse outcomes. This review strives to examine a variety of methods for in vitro and ex vivo intracellular delivery such as flow-through microfluidics, engineered substrates, and automated probe-based systems from the perspective of throughput and control. Special attention is paid to a particularly promising method of electroporation using micro/nanochannel based porous substrates, which expose small patches of cell membrane to permeabilizing electric field. Porous substrate electroporation parameters discussed include system design, cells and cargos used, transfection efficiency and cell viability, and the electric field and its effects on molecular transport. The review concludes with discussion of potential new innovations which can arise from specific aspects of porous substrate-based electroporation platforms and high throughput, high control methods in general.
Collapse
Affiliation(s)
- Justin Brooks
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Grayson Minnick
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Arian Jaberi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Lingqian Chang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Horacio D. Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
8
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 412] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
9
|
He ZY, Men K, Qin Z, Yang Y, Xu T, Wei YQ. Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field. SCIENCE CHINA. LIFE SCIENCES 2017; 60:458-467. [PMID: 28527117 DOI: 10.1007/s11427-017-9033-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/16/2017] [Indexed: 02/08/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) system provides a novel genome editing technology that can precisely target a genomic site to disrupt or repair a specific gene. Some CRISPR-Cas9 systems from different bacteria or artificial variants have been discovered or constructed by biologists, and Cas9 nucleases and single guide RNAs (sgRNA) are the major components of the CRISPR-Cas9 system. These Cas9 systems have been extensively applied for identifying therapeutic targets, identifying gene functions, generating animal models, and developing gene therapies. Moreover, CRISPR-Cas9 systems have been used to partially or completely alleviate disease symptoms by mutating or correcting related genes. However, the efficient transfer of CRISPR-Cas9 system into cells and target organs remains a challenge that affects the robust and precise genome editing activity. The current review focuses on delivery systems for Cas9 mRNA, Cas9 protein, or vectors encoding the Cas9 gene and corresponding sgRNA. Non-viral delivery of Cas9 appears to help Cas9 maintain its on-target effect and reduce off-target effects, and viral vectors for sgRNA and donor template can improve the efficacy of genome editing and homology-directed repair. Safe, efficient, and producible delivery systems will promote the application of CRISPR-Cas9 technology in human gene therapy.
Collapse
Affiliation(s)
- Zhi-Yao He
- Department of Pharmacy, and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Zhou Qin
- Department of Pharmacy, and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Ting Xu
- Department of Pharmacy, and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| | - Yu-Quan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| |
Collapse
|