Keszthelyi D, Gaudet-Blavignac C, Bjelogrlic M, Lovis C. Patient Information Summarization in Clinical Settings: Scoping Review.
JMIR Med Inform 2023;
11:e44639. [PMID:
38015588 DOI:
10.2196/44639]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/15/2023] [Accepted: 07/25/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND
Information overflow, a common problem in the present clinical environment, can be mitigated by summarizing clinical data. Although there are several solutions for clinical summarization, there is a lack of a complete overview of the research relevant to this field.
OBJECTIVE
This study aims to identify state-of-the-art solutions for clinical summarization, to analyze their capabilities, and to identify their properties.
METHODS
A scoping review of articles published between 2005 and 2022 was conducted. With a clinical focus, PubMed and Web of Science were queried to find an initial set of reports, later extended by articles found through a chain of citations. The included reports were analyzed to answer the questions of where, what, and how medical information is summarized; whether summarization conserves temporality, uncertainty, and medical pertinence; and how the propositions are evaluated and deployed. To answer how information is summarized, methods were compared through a new framework "collect-synthesize-communicate" referring to information gathering from data, its synthesis, and communication to the end user.
RESULTS
Overall, 128 articles were included, representing various medical fields. Exclusively structured data were used as input in 46.1% (59/128) of papers, text in 41.4% (53/128) of articles, and both in 10.2% (13/128) of papers. Using the proposed framework, 42.2% (54/128) of the records contributed to information collection, 27.3% (35/128) contributed to information synthesis, and 46.1% (59/128) presented solutions for summary communication. Numerous summarization approaches have been presented, including extractive (n=13) and abstractive summarization (n=19); topic modeling (n=5); summary specification (n=11); concept and relation extraction (n=30); visual design considerations (n=59); and complete pipelines (n=7) using information extraction, synthesis, and communication. Graphical displays (n=53), short texts (n=41), static reports (n=7), and problem-oriented views (n=7) were the most common types in terms of summary communication. Although temporality and uncertainty information were usually not conserved in most studies (74/128, 57.8% and 113/128, 88.3%, respectively), some studies presented solutions to treat this information. Overall, 115 (89.8%) articles showed results of an evaluation, and methods included evaluations with human participants (median 15, IQR 24 participants): measurements in experiments with human participants (n=31), real situations (n=8), and usability studies (n=28). Methods without human involvement included intrinsic evaluation (n=24), performance on a proxy (n=10), or domain-specific tasks (n=11). Overall, 11 (8.6%) reports described a system deployed in clinical settings.
CONCLUSIONS
The scientific literature contains many propositions for summarizing patient information but reports very few comparisons of these proposals. This work proposes to compare these algorithms through how they conserve essential aspects of clinical information and through the "collect-synthesize-communicate" framework. We found that current propositions usually address these 3 steps only partially. Moreover, they conserve and use temporality, uncertainty, and pertinent medical aspects to varying extents, and solutions are often preliminary.
Collapse