1
|
Gauss C, Stone LD, Ghafouri M, Quan D, Johnson J, Fribley AM, Amm HM. Overcoming Resistance to Standard-of-Care Therapies for Head and Neck Squamous Cell Carcinomas. Cells 2024; 13:1018. [PMID: 38920648 PMCID: PMC11201455 DOI: 10.3390/cells13121018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Although there have been some advances during in recent decades, the treatment of head and neck squamous cell carcinoma (HNSCC) remains challenging. Resistance is a major issue for various treatments that are used, including both the conventional standards of care (radiotherapy and platinum-based chemotherapy) and the newer EGFR and checkpoint inhibitors. In fact, all the non-surgical treatments currently used for HNSCC are associated with intrinsic and/or acquired resistance. Herein, we explore the cellular mechanisms of resistance reported in HNSCC, including those related to epigenetic factors, DNA repair defects, and several signaling pathways. This article discusses these mechanisms and possible approaches that can be used to target different pathways to sensitize HNSCC to the existing treatments, obtain better responses to new agents, and ultimately improve the patient outcomes.
Collapse
Affiliation(s)
- Chester Gauss
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (C.G.); (M.G.)
| | - Logan D. Stone
- Oral & Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Mehrnoosh Ghafouri
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (C.G.); (M.G.)
| | - Daniel Quan
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (D.Q.)
| | - Jared Johnson
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (D.Q.)
| | - Andrew M. Fribley
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (C.G.); (M.G.)
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (D.Q.)
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48202, USA
| | - Hope M. Amm
- Oral & Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
2
|
Chen R, Zhu S, Zhao R, Liu W, Jin L, Ren X, He H. Targeting ferroptosis as a potential strategy to overcome the resistance of cisplatin in oral squamous cell carcinoma. Front Pharmacol 2024; 15:1402514. [PMID: 38711989 PMCID: PMC11071065 DOI: 10.3389/fphar.2024.1402514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 05/08/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a crucial public health problem, accounting for approximately 2% of all cancers globally and 90% of oral malignancies over the world. Unfortunately, despite the achievements in surgery, radiotherapy, and chemotherapy techniques over the past decades, OSCC patients still low 5-year survival rate. Cisplatin, a platinum-containing drug, serves as one of the first-line chemotherapeutic agents of OSCC. However, the resistance to cisplatin significantly limits the clinical practice and is a crucial factor in tumor recurrence and metastasis after conventional treatments. Ferroptosis is an iron-based form of cell death, which is initiated by the intracellular accumulation of lipid peroxidation and reactive oxygen species (ROS). Interestingly, cisplatin-resistant OSCC cells exhibit lower level of ROS and lipid peroxidation compared to sensitive cells. The reduced ferroptosis in cisplatin resistance cells indicates the potential relationship between cisplatin resistance and ferroptosis, which is proved by recent studies showing that in colorectal cancer cells. However, the modulation pathway of ferroptosis reversing cisplatin resistance in OSCC cells still remains unclear. This article aims to concisely summarize the molecular mechanisms and evaluate the relationship between ferroptosis and cisplatin resistance OSCC cells, thereby providing novel strategies for overcoming cisplatin resistance and developing new therapeutic approaches.
Collapse
Affiliation(s)
- Rongkun Chen
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Shuyu Zhu
- Department of Oral Implantology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Ruoyu Zhao
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Wang Liu
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Luxin Jin
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Xiaobin Ren
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Hongbing He
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
A novel BH3 mimetic Bcl-2 inhibitor promotes autophagic cell death and reduces in vivo Glioblastoma tumor growth. Cell Death Dis 2022; 8:433. [PMID: 36309485 PMCID: PMC9617882 DOI: 10.1038/s41420-022-01225-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022]
Abstract
Anti-apoptotic members of the Bcl-2 family proteins play central roles in the regulation of cell death in glioblastoma (GBM), the most malignant type of brain tumor. Despite the advances in GBM treatment, there is still an urgent need for new therapeutic approaches. Here, we report a novel 4-thiazolidinone derivative BH3 mimetic, BAU-243 that binds to Bcl-2 with a high affinity. BAU-243 effectively reduced overall GBM cell proliferation including a subpopulation of cancer-initiating cells in contrast to the selective Bcl-2 inhibitor ABT-199. While ABT-199 successfully induces apoptosis in high BCL2-expressing neuroblastoma SHSY-5Y cells, BAU-243 triggered autophagic cell death rather than apoptosis in GBM A172 cells, indicated by the upregulation of BECN1, ATG5, and MAP1LC3B expression. Lc3b-II, a potent autophagy marker, was significantly upregulated following BAU-243 treatment. Moreover, BAU-243 significantly reduced tumor growth in vivo in orthotopic brain tumor models when compared to the vehicle group, and ABT-199 treated animals. To elucidate the molecular mechanisms of action of BAU-243, we performed computational modeling simulations that were consistent with in vitro results. Our results indicate that BAU-243 activates autophagic cell death by disrupting the Beclin 1:Bcl-2 complex and may serve as a potential small molecule for treating GBM.
Collapse
|
4
|
Melo G, Silva CAB, Hague A, Parkinson EK, Rivero ERC. Anticancer effects of putative and validated BH3-mimetic drugs in head and neck squamous cell carcinomas: An overview of current knowledge. Oral Oncol 2022; 132:105979. [PMID: 35816876 DOI: 10.1016/j.oraloncology.2022.105979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/20/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022]
Abstract
The purpose of this review was to summarise available literature concerning the anticancer effects of both putative and validated BH3-mimetics in head and neck squamous cell carcinomas. A literature search was performed and studies assessing malignant cell lines, xenograft models, and/or humans were considered eligible. A total of 501 studies were identified, of which 40 were included. One phase-II clinical trial assessing gossypol (combined with docetaxel) was found. The remaining 39 preclinical studies investigated cell lines and/or xenograft models involving the use of six validated BH3-mimetics (A-1210477, A-1331852, ABT-737, navitoclax, S63845, venetoclax) and six putative BH3-mimetics (ApoG2, gossypol, obatoclax, sabutoclax, TW-37, and YC137). In preclinical settings, most validated BH3-mimetics were capable of inducing apoptosis (in-vitro) and tumour growth inhibition (in-vivo). The majority of putative BH3-mimetics were also capable of inducing cell death, although important off-target effects, such as autophagy induction, were also described. Combinations with conventional anticancer drugs, ionising radiation, or multiple BH3-mimetics generally resulted in enhanced anticancer effects, such as increased sensitivity to apoptotic stimuli, especially considering some cell lines that showed resistance to either treatment alone. In conclusion, although clinical data are still insufficient to evaluate the anticancer effects of BH3-mimetics in head and neck squamous cell carcinomas, promising results in preclinical settings were observed concerning induction of cell death and inhibition of tumour growth. Therefore, further clinical trials are highly encouraged.
Collapse
Affiliation(s)
- Gilberto Melo
- Postgraduate Program in Dentistry, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Carolina Amália Barcellos Silva
- Department of Morphological Sciences, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Angela Hague
- Senior Lecturer, Bristol Dental School, Bristol, United Kingdom.
| | - Eric Kenneth Parkinson
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| | - Elena Riet Correa Rivero
- Department of Pathology, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
5
|
Manifar S, Koopaie M, Lahiji SS. Assessment of MicroRNA-15a and MicroRNA-16-1 Salivary Level in Oral Squamous Cell Carcinoma Patients. Microrna 2021; 10:74-79. [PMID: 33970852 DOI: 10.2174/2211536610666210506125036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Squamous Cell Carcinoma (SCC) includes more than 90% of malignancies of the oral cavity. Early diagnosis could effectively improve patients' quality of life and treatment outcomes of oral cancers. MicroRNAs as non-encoding genes have great potential to initiate or suppress cancer progression. Recent studies have shown that disruption of micro-RNA regulation is a common occurrence in cancers. OBJECTIVE This study set out to evaluate the expression of microRNA-15a (miR-15a) and microRNA-16-1 (miR-16-1) in the saliva of Oral Squamous Cell Carcinoma (OSCC) patients in comparison with a healthy control group. METHODS This case-control study was performed on fifteen patients with OSCC and fifteen healthy volunteers as the control group. A 5 ml of non-stimulating whole saliva was collected by spitting method from patients and controls and stored at -70oC. The expression of miR-15a and miR-16-1 was investigated using quantitative Reverse-Transcription Polymerase Chain Reaction (RT-qPCR). RESULTS MiR-15a and miR-16-1 were downregulated in OSCC patients compared with the control group (p<0.001). The sensitivity of miR-15a and miR-16-1 in differentiating OSCC patients from healthy individuals was 93.3% and 86.67%, respectively, and their specificity was 86.67% and 92.33%, respectively. The diagnostic accuracy of miR-15a was 90%, and miR-16-1 was 93.3%. CONCLUSION The present study showed a decrease in the relative expression of miR-15a and miR-16-1 in OSCC patients compared with healthy individuals. It is probable to introduce salivary values of miR-15a and miR-16-1 as a non-invasive tool for early detection of OSCC. Decreased expression of miR-15a and miR-16-1 in OSCC indicates the possible effective role of these genes in OSCC etiopathogenesis.
Collapse
Affiliation(s)
- Soheila Manifar
- Department of Oral Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Koopaie
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahab Shokouhi Lahiji
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Gupta S, Kumar P, Das BC. HPV +ve/-ve oral-tongue cancer stem cells: A potential target for relapse-free therapy. Transl Oncol 2021; 14:100919. [PMID: 33129107 PMCID: PMC7590584 DOI: 10.1016/j.tranon.2020.100919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/27/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
The tongue squamous cell carcinoma (TSCC) is a highly prevalent head and neck cancer often associated with tobacco and/or alcohol abuse or high-risk human papillomavirus (HR-HPV) infection. HPV positive TSCCs present a unique mechanism of tumorigenesis as compared to tobacco and alcohol-induced TSCCs and show a better prognosis when treated. The poor prognosis and/or recurrence of TSCC is due to presence of a small subpopulation of tumor-initiating tongue cancer stem cells (TCSCs) that are intrinsically resistant to conventional chemoradio-therapies enabling cancer to relapse. Therefore, targeting TCSCs may provide efficient therapeutic strategy for relapse-free survival of TSCC patients. Indeed, the development of new TCSC targeting therapeutic approaches for the successful elimination of HPV+ve/-ve TCSCs could be achieved either by targeting the self-renewal pathways, epithelial mesenchymal transition, vascular niche, nanoparticles-based therapy, induction of differentiation, chemoradio-sensitization of TCSCs or TCSC-derived exosome-based drug delivery and inhibition of HPV oncogenes or by regulating epigenetic pathways. In this review, we have discussed all these potential approaches and highlighted several important signaling pathways/networks involved in the formation and maintenance of TCSCs, which are targetable as novel therapeutic targets to sensitize/eliminate TCSCs and to improve survival of TSCC patients.
Collapse
Affiliation(s)
- Shilpi Gupta
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India; National Institute of Cancer Prevention and Research (NICPR), I-7, Sector-39, Noida 201301, India
| | - Prabhat Kumar
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Bhudev C Das
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India.
| |
Collapse
|
7
|
Sharon D, Cathelin S, Mirali S, Di Trani JM, Yanofsky DJ, Keon KA, Rubinstein JL, Schimmer AD, Ketela T, Chan SM. Inhibition of mitochondrial translation overcomes venetoclax resistance in AML through activation of the integrated stress response. Sci Transl Med 2020; 11:11/516/eaax2863. [PMID: 31666400 DOI: 10.1126/scitranslmed.aax2863] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/07/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
Venetoclax is a specific B cell lymphoma 2 (BCL-2) inhibitor with promising activity against acute myeloid leukemia (AML), but its clinical efficacy as a single agent or in combination with hypomethylating agents (HMAs), such as azacitidine, is hampered by intrinsic and acquired resistance. Here, we performed a genome-wide CRISPR knockout screen and found that inactivation of genes involved in mitochondrial translation restored sensitivity to venetoclax in resistant AML cells. Pharmacologic inhibition of mitochondrial protein synthesis with antibiotics that target the ribosome, including tedizolid and doxycycline, effectively overcame venetoclax resistance. Mechanistic studies showed that both tedizolid and venetoclax suppressed mitochondrial respiration, with the latter demonstrating inhibitory activity against complex I [nicotinamide adenine dinucleotide plus hydrogen (NADH) dehydrogenase] of the electron transport chain (ETC). The drugs cooperated to activate a heightened integrated stress response (ISR), which, in turn, suppressed glycolytic capacity, resulting in adenosine triphosphate (ATP) depletion and subsequent cell death. Combination treatment with tedizolid and venetoclax was superior to either agent alone in reducing leukemic burden in mice engrafted with treatment-resistant human AML. The addition of tedizolid to azacitidine and venetoclax further enhanced the killing of resistant AML cells in vitro and in vivo. Our findings demonstrate that inhibition of mitochondrial translation is an effective approach to overcoming venetoclax resistance and provide a rationale for combining tedizolid, azacitidine, and venetoclax as a triplet therapy for AML.
Collapse
Affiliation(s)
- David Sharon
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
| | | | - Sara Mirali
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
| | - Justin M Di Trani
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - David J Yanofsky
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Kristine A Keon
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Troy Ketela
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
| | - Steven M Chan
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
8
|
Murray D, Mirzayans R. Cellular Responses to Platinum-Based Anticancer Drugs and UVC: Role of p53 and Implications for Cancer Therapy. Int J Mol Sci 2020; 21:ijms21165766. [PMID: 32796711 PMCID: PMC7461110 DOI: 10.3390/ijms21165766] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy is intended to induce cancer cell death through apoptosis and other avenues. Unfortunately, as discussed in this article, moderate doses of genotoxic drugs such as cisplatin typical of those achieved in the clinic often invoke a cytostatic/dormancy rather than cytotoxic/apoptosis response in solid tumour-derived cell lines. This is commonly manifested by an extended apoptotic threshold, with extensive apoptosis only being seen after very high/supralethal doses of such agents. The dormancy response can be associated with senescence-like features, polyploidy and/or multinucleation, depending in part on the p53 status of the cells. In most solid tumour-derived cells, dormancy represents a long-term survival mechanism, ultimately contributing to disease recurrence. This review highlights the nonlinearity of key aspects of the molecular and cellular responses to bulky DNA lesions in human cells treated with chemotherapeutic drugs (e.g., cisplatin) or ultraviolet light-C (a widely used tool for unraveling details of the DNA damage-response) as a function of the level of genotoxic stress. Such data highlight the growing realization that targeting dormant cancer cells, which frequently emerge following conventional anticancer treatments, may represent a novel strategy to prevent or, at least, significantly suppress cancer recurrence.
Collapse
|
9
|
Ghosh A, Chatterjee K, Chowdhury AR, Barui A. Clinico-pathological significance of Drp1 dysregulation and its correlation to apoptosis in oral cancer patients. Mitochondrion 2020; 52:115-124. [PMID: 32169612 DOI: 10.1016/j.mito.2020.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/06/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
Dysregulation in mitochondrial dynamics has been associated with several diseases including cancer. Present study assessed the alteration in mitochondrial fission protein (Drp1) in oral epithelial cells collected from clinically confirmed pre-cancer and cancer patients and further correlates it with the cellular apoptosis signaling. Results indicate the ROS accumulation in OSCC patients is accompanied by several changes including increase in mitochondrial mass, expression of mitochondrial fission protein (Drp1) and alteration in apoptotic signaling. The positive co-relation has been observed between the expressions of anti-apoptotic Bcl-2proteinswith mitochondrial fission protein Drp1. Higher mitochondrial fission in oral cancer cells was also correlated with the increased expression of cell cycle marker CyclinD1 indicating highly proliferative stage of oral cancer cells. The clinical correlation can be extended to develop biomarker for diagram and program in oral cancer management.
Collapse
Affiliation(s)
- Aritri Ghosh
- Centre for Healthcare Science and Technology, Indian Institute of Engineering, Science and Technology, P.O. Botanic Garden, Shibpur, Howrah 711103, WB, India
| | - Kabita Chatterjee
- Department of Oral and Maxillofacial Pathology, Buddha Institute of Dental Sciences, West of TV Tower, Gandhinagar, Kankarbagh, Patna 800020, Bihar, India
| | - Amit Roy Chowdhury
- Department of Aerospace and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, P.O. Botanic Garden, Shibpur, Howrah 711103, WB, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering, Science and Technology, P.O. Botanic Garden, Shibpur, Howrah 711103, WB, India.
| |
Collapse
|
10
|
α7-Nicotine acetylcholine receptor mediated nicotine induced cell survival and cisplatin resistance in oral cancer. Arch Oral Biol 2020; 111:104653. [DOI: 10.1016/j.archoralbio.2020.104653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 12/20/2022]
|
11
|
NF-κB-p62-NRF2 survival signaling is associated with high ROR1 expression in chronic lymphocytic leukemia. Cell Death Differ 2020; 27:2206-2216. [PMID: 31992855 DOI: 10.1038/s41418-020-0496-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/25/2022] Open
Abstract
Progression of chronic lymphocytic leukemia (CLL) and resistance to therapy are affected by tumor microenvironmental factors. One such factor is B-cell activating factor (BAFF), a cytokine that is produced mainly by nurse-like cells (NLC) and enhances CLL cells survival and modulates response to therapy. In CLL cells, BAFF activates NF-κB signaling, but how NF-κB supports CLL survival is not entirely clear. In this study we show that BAFF induces accumulation of the signaling and autophagy adaptor p62/SQSTM1 in a manner dependent on NF-κB activation. p62 potentiates mTORC1 signaling and activates NRF2, the master regulator of the anti-oxidant response. We found that expression of NRF2 target genes, such as NAD(P)H quinone oxidoreductase 1 (NQO1), is particularly enriched in CLL cells with high ROR1 surface expression (ROR1Hi). ROR1Hi CLL cells with elevated NQO1 expression exhibit resistance to drugs that induce ROS accumulation, such venetoclax. However, such cells are more sensitive to compound 29h, a pro-drug that only becomes active after being metabolized by NQO1. Accordingly, 29h sensitizes high NQO1 CLL cells to venetoclax. Collectively, our study unravels a previously unknown signaling network through which the NF-κB-p62-NRF2 axis protects ROR1-high CLL cells from ROS-inducing therapeutics.
Collapse
|
12
|
Jin L, Wang Q, Chen J, Wang Z, Xin H, Zhang D. Efficient Delivery of Therapeutic siRNA by Fe 3O 4 Magnetic Nanoparticles into Oral Cancer Cells. Pharmaceutics 2019; 11:E615. [PMID: 31744202 PMCID: PMC6921101 DOI: 10.3390/pharmaceutics11110615] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023] Open
Abstract
The incidence of oral cancer is increasing due to smoking, drinking, and human papillomavirus (HPV) infection, while the current treatments are not satisfactory. Small interfering RNA (siRNA)-based therapy has brought hope, but an efficient delivery system is still needed. Here, polyethyleneimine (PEI)-modified magnetic Fe3O4 nanoparticles were prepared for the delivery of therapeutic siRNAs targeting B-cell lymphoma-2 (BCL2) and Baculoviral IAP repeat-containing 5 (BIRC5) into Ca9-22 oral cancer cells. The cationic nanoparticles were characterized by transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), dynamic light scattering (DLS), and vibrating sample magnetometer (VSM). By gel retardation assay, the nanoparticles were found to block siRNA in a concentration-dependent manner. The cellular uptake of the nanoparticle/siRNA complexes under a magnetic field was visualized by Perl's Prussian blue staining and FAM labeling. High gene silencing efficiencies were determined by quantitative real-time PCR and western blotting. Furthermore, the nanoparticle-delivered siRNAs targeting BCL2 and BIRC5 were found to remarkably inhibit the viability and migration of Ca9-22 cells, by cell counting kit-8 assay and transwell assay. In this study, we have developed a novel siRNA-based therapeutic strategy targeting BCL2 and BIRC5 for oral cancer.
Collapse
Affiliation(s)
- Lili Jin
- School of Life Science, Liaoning University, Shenyang 110036, China; (L.J.); (Q.W.); (Z.W.)
| | - Qiuyu Wang
- School of Life Science, Liaoning University, Shenyang 110036, China; (L.J.); (Q.W.); (Z.W.)
| | - Jiayu Chen
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China;
| | - Zixiang Wang
- School of Life Science, Liaoning University, Shenyang 110036, China; (L.J.); (Q.W.); (Z.W.)
| | - Hongchuan Xin
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China;
| | - Dianbao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China;
| |
Collapse
|
13
|
Chong SJF, Lai JXH, Eu JQ, Bellot GL, Pervaiz S. Reactive Oxygen Species and Oncoprotein Signaling-A Dangerous Liaison. Antioxid Redox Signal 2018; 29:1553-1588. [PMID: 29186971 DOI: 10.1089/ars.2017.7441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE There is evidence to implicate reactive oxygen species (ROS) in tumorigenesis and its progression. This has been associated with the interplay between ROS and oncoproteins, resulting in enhanced cellular proliferation and survival. Recent Advances: To date, studies have investigated specific contributions of the crosstalk between ROS and signaling networks in cancer initiation and progression. These investigations have challenged the established dogma of ROS as agents of cell death by demonstrating a secondary function that fuels cell proliferation and survival. Studies have thus identified (onco)proteins (Bcl-2, STAT3/5, RAS, Rac1, and Myc) in manipulating ROS level as well as exploiting an altered redox environment to create a milieu conducive for cancer formation and progression. CRITICAL ISSUES Despite these advances, drug resistance and its association with an altered redox metabolism continue to pose a challenge at the mechanistic and clinical levels. Therefore, identifying specific signatures, altered protein expressions, and modifications as well as protein-protein interplay/function could not only enhance our understanding of the redox networks during cancer initiation and progression but will also provide novel targets for designing specific therapeutic strategies. FUTURE DIRECTIONS Not only a heightened realization is required to unravel various gene/protein networks associated with cancer formation and progression, particularly from the redox standpoint, but there is also a need for developing more sensitive tools for assessing cancer redox metabolism in clinical settings. This review attempts to summarize our current knowledge of the crosstalk between oncoproteins and ROS in promoting cancer cell survival and proliferation and treatment strategies employed against these oncoproteins. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Stephen Jun Fei Chong
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jolin Xiao Hui Lai
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jie Qing Eu
- 2 Cancer Science Institute , Singapore, Singapore
| | - Gregory Lucien Bellot
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,3 Department of Hand and Reconstructive Microsurgery, National University Health System , Singapore, Singapore
| | - Shazib Pervaiz
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,4 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,5 National University Cancer Institute, National University Health System , Singapore, Singapore .,6 School of Biomedical Sciences, Curtin University , Perth, Australia
| |
Collapse
|
14
|
The reversal effect of Ginsenoside Rh2 on drug resistance in human colorectal carcinoma cells and its mechanism. Hum Cell 2018; 31:189-198. [DOI: 10.1007/s13577-017-0189-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022]
|
15
|
D'Souza W, Saranath D. OMICS, Oral Cancer Molecular Landscapes, and Clinical Practice. ACTA ACUST UNITED AC 2017; 21:689-703. [DOI: 10.1089/omi.2017.0146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wendy D'Souza
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Mumbai, India
| | - Dhananjaya Saranath
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Mumbai, India
| |
Collapse
|
16
|
Schelch K, Kirschner MB, Williams M, Cheng YY, van Zandwijk N, Grusch M, Reid G. A link between the fibroblast growth factor axis and the miR-16 family reveals potential new treatment combinations in mesothelioma. Mol Oncol 2017; 12:58-73. [PMID: 29094504 PMCID: PMC5748487 DOI: 10.1002/1878-0261.12150] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/27/2017] [Accepted: 10/16/2017] [Indexed: 12/28/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive malignancy with very limited therapeutic options. Fibroblast growth factor (FGF) signals play important roles in mesothelioma cell growth. Several FGFs and FGF receptors (FGFRs) are predicted targets of the miR‐15/16 family, which is downregulated in MPM. The aim of this study was to explore the link between the miR‐15/16 family and the FGF axis in MPM. Expression analyses via RT‐qPCR showed downregulation of the FGF axis after transfection with miR‐15/16 mimics. Direct interaction was confirmed by luciferase reporter assays. Restoration of miR‐15/16 led to dose‐dependent growth inhibition in MPM cell lines, which significantly correlated with their sensitivity to FGFR inhibition. Treatment with recombinant FGF2 prevented growth inhibition and further reduced the levels of FGF/R‐targeting microRNAs, indicating a vicious cycle between miR‐15/16 down‐ and FGF/FGFR signaling upregulation. Combined inhibition of two independent miR‐15/16 targets, the FGF axis and Bcl‐2, resulted in additive or synergistic activity. Our data indicate that post‐transcriptional repression of FGF‐mediated signals contributes to the tumor suppressor function of the microRNA‐15/16 family. Inhibiting hyperactivated FGF signals and Bcl‐2 might serve as a novel therapeutic combination strategy in MPM.
Collapse
Affiliation(s)
- Karin Schelch
- Asbestos Diseases Research Institute, Sydney, Australia.,Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Austria
| | - Michaela B Kirschner
- Asbestos Diseases Research Institute, Sydney, Australia.,Division of Thoracic Surgery, University Hospital Zurich, Switzerland
| | | | - Yuen Y Cheng
- Asbestos Diseases Research Institute, Sydney, Australia
| | - Nico van Zandwijk
- Asbestos Diseases Research Institute, Sydney, Australia.,School of Medicine, University of Sydney, Australia
| | - Michael Grusch
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Austria
| | - Glen Reid
- Asbestos Diseases Research Institute, Sydney, Australia.,School of Medicine, University of Sydney, Australia
| |
Collapse
|