1
|
Gachara G, Suleiman R, Kilima B, Taoussi M, El Kadili S, Fauconnier ML, Barka EA, Vujanovic V, Lahlali R. Pre- and post-harvest aflatoxin contamination and management strategies of Aspergillus spoilage in East African Community maize: review of etiology and climatic susceptibility. Mycotoxin Res 2024; 40:495-517. [PMID: 39264500 DOI: 10.1007/s12550-024-00555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
Globally, maize (Zea mays L.) is deemed an important cereal that serves as a staple food and feed for humans and animals, respectively. Across the East African Community, maize is the staple food responsible for providing over one-third of calories in diets. Ideally, stored maize functions as man-made grain ecosystems, with nutritive quality changes influenced predominantly by chemical, biological, and physical factors. Food spoilage and fungal contamination are convergent reasons that contribute to the exacerbation of mycotoxins prevalence, particularly when storage conditions have deteriorated. In Kenya, aflatoxins are known to be endemic with the 2004 acute aflatoxicosis outbreak being described as one of the most ravaging epidemics in the history of human mycotoxin poisoning. In Tanzania, the worst aflatoxin outbreak occurred in 2016 with case fatalities reaching 50%. Similar cases of aflatoxicoses have also been reported in Uganda, scenarios that depict the severity of mycotoxin contamination across this region. Rwanda, Burundi, and South Sudan seemingly have minimal occurrences and fatalities of aflatoxicoses and aflatoxin contamination. Low diet diversity tends to aggravate human exposure to aflatoxins since maize, as a dietetic staple, is highly aflatoxin-prone. In light of this, it becomes imperative to formulate and develop workable control frameworks that can be embraced in minimizing aflatoxin contamination throughout the food chain. This review evaluates the scope and magnitude of aflatoxin contamination in post-harvest maize and climate susceptibility within an East African Community context. The paper also treats the potential green control strategies against Aspergillus spoilage including biocontrol-prophylactic handling for better and durable maize production.
Collapse
Affiliation(s)
- G Gachara
- Department of Plant Protection, Phytopathology Unit, Ecole Nationale d'Agriculture de Meknès, Km 10, Route Haj Kaddour, BP S/40, 50001, Meknès, Morocco.
- Department of AgroBiosciences, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir, 43150, Morocco.
- Department of Food Sciences and Agro-Processing, School of Engineering and Technology, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania.
| | - R Suleiman
- Department of Food Sciences and Agro-Processing, School of Engineering and Technology, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
| | - B Kilima
- Department of Food Sciences and Agro-Processing, School of Engineering and Technology, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
| | - M Taoussi
- Department of Plant Protection, Phytopathology Unit, Ecole Nationale d'Agriculture de Meknès, Km 10, Route Haj Kaddour, BP S/40, 50001, Meknès, Morocco
- Environment and Valorization of Microbial and Plant Resources Unit, Faculty of Sciences, Moulay Ismail University, Meknès, Morocco
| | - S El Kadili
- Department of Animal Production, Ecole Nationale d'Agriculture de Meknès, Route Haj Kaddour, BP S/40, 50001, Meknes, Morocco
| | - M L Fauconnier
- Gembloux AgroBiotech, University of Liege, Gembloux, Belgium
| | - E A Barka
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707, Université de Reims Champagne-Ardenne, 51100, Reims, France
| | - V Vujanovic
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - R Lahlali
- Department of Plant Protection, Phytopathology Unit, Ecole Nationale d'Agriculture de Meknès, Km 10, Route Haj Kaddour, BP S/40, 50001, Meknès, Morocco.
- Department of AgroBiosciences, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir, 43150, Morocco.
| |
Collapse
|
2
|
Tan S, Ma F, Wu Y, Xu Y, Niu A, Chen Y, Wang G, Qiu W. The biodiversity of Aspergillus flavus in stored rice grain leads to a decrease in the overall aflatoxin B 1 production in these species. Int J Food Microbiol 2023; 406:110416. [PMID: 37769398 DOI: 10.1016/j.ijfoodmicro.2023.110416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
Aspergillus flavus is a significant fungus that poses a threat to food safety by producing mycotoxins in various crops. In this study, A. flavus isolates were obtained from storage rice collected from seven provinces in southern China, and their AFB1 production, biosynthesis genes presence, and diversity were detected. Results showed that 56 out of the 81 A. flavus isolates produced detectable levels of AFB1, and 71 isolates (87.6 %) possessed aflR gene in their AF synthesis gene cluster, while only 41 isolates (50.6 %) had the ver-1 gene present. Genetic diversity analysis using inter-simple sequence repeats (ISSR) markers revealed seven main clusters among the isolates and the genetic similarity coefficients of 81 A. flavus isolates ranged from 0.53 to 1.00. Additionally, coculture assays were conducted using two toxigenic and two atoxigenic isolates from the same grain depot to investigate the effect of intraspecific inhibition on AFB1 production and to assess the AFB1 contamination risk of storage rice. The in situ results demonstrated that the atoxigenic isolates effectively inhibited the AFB1 contamination of toxigenic isolates. These findings provide insight into the genetic diversity of A. flavus isolates populations and highlight the potential food safety hazards of them in stored rice grain in China.
Collapse
Affiliation(s)
- Song Tan
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Fang Ma
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yajie Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yuancheng Xu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Ajuan Niu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yuping Chen
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Guangyu Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Weifen Qiu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
3
|
Abstract
Aflatoxins are endemic in Kenya. The 2004 outbreak of acute aflatoxicosis in the country was one of the unprecedented epidemics of human aflatoxin poisoning recorded in mycotoxin history. In this study, an elaborate review was performed to synthesize Kenya’s major findings in relation to aflatoxins, their prevalence, detection, quantification, exposure assessment, prevention, and management in various matrices. Data retrieved indicate that the toxins are primarily biosynthesized by Aspergillus flavus and A. parasiticus, with the eastern part of the country reportedly more aflatoxin-prone. Aflatoxins have been reported in maize and maize products (Busaa, chan’gaa, githeri, irio, muthokoi, uji, and ugali), peanuts and its products, rice, cassava, sorghum, millet, yams, beers, dried fish, animal feeds, dairy and herbal products, and sometimes in tandem with other mycotoxins. The highest total aflatoxin concentration of 58,000 μg/kg has been reported in maize. At least 500 acute human illnesses and 200 deaths due to aflatoxins have been reported. The causes and prevalence of aflatoxins have been grossly ascribed to poor agronomic practices, low education levels, and inadequate statutory regulation and sensitization. Low diet diversity has aggravated exposure to aflatoxins in Kenya because maize as a dietetic staple is aflatoxin-prone. Detection and surveillance are only barely adequate, though some exposure assessments have been conducted. There is a need to widen diet diversity as a measure of reducing exposure due to consumption of aflatoxin-contaminated foods.
Collapse
|
4
|
Benkerroum N. Aflatoxins: Producing-Molds, Structure, Health Issues and Incidence in Southeast Asian and Sub-Saharan African Countries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1215. [PMID: 32070028 PMCID: PMC7068566 DOI: 10.3390/ijerph17041215] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 12/14/2022]
Abstract
This review aims to update the main aspects of aflatoxin production, occurrence and incidence in selected countries, and associated aflatoxicosis outbreaks. Means to reduce aflatoxin incidence in crops were also presented, with an emphasis on the environmentally-friendly technology using atoxigenic strains of Aspergillus flavus. Aflatoxins are unavoidable widespread natural contaminants of foods and feeds with serious impacts on health, agricultural and livestock productivity, and food safety. They are secondary metabolites produced by Aspergillus species distributed on three main sections of the genus (section Flavi, section Ochraceorosei, and section Nidulantes). Poor economic status of a country exacerbates the risk and the extent of crop contamination due to faulty storage conditions that are usually suitable for mold growth and mycotoxin production: temperature of 22 to 29 °C and water activity of 0.90 to 0.99. This situation paralleled the prevalence of high liver cancer and the occasional acute aflatoxicosis episodes that have been associated with these regions. Risk assessment studies revealed that Southeast Asian (SEA) and Sub-Saharan African (SSA) countries remain at high risk and that, apart from the regulatory standards revision to be more restrictive, other actions to prevent or decontaminate crops are to be taken for adequate public health protection. Indeed, a review of publications on the incidence of aflatoxins in selected foods and feeds from countries whose crops are classically known for their highest contamination with aflatoxins, reveals that despite the intensive efforts made to reduce such an incidence, there has been no clear tendency, with the possible exception of South Africa, towards sustained improvements. Nonetheless, a global risk assessment of the new situation regarding crop contamination with aflatoxins by international organizations with the required expertise is suggested to appraise where we stand presently.
Collapse
Affiliation(s)
- Noreddine Benkerroum
- Department of Food Science and Agricultural Chemistry, MacDonald Campus, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
5
|
Monda E, Masanga J, Alakonya A. Variation in Occurrence and Aflatoxigenicity of Aspergillus flavus from Two Climatically Varied Regions in Kenya. Toxins (Basel) 2020; 12:toxins12010034. [PMID: 31935922 PMCID: PMC7020432 DOI: 10.3390/toxins12010034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/11/2019] [Accepted: 12/26/2019] [Indexed: 02/01/2023] Open
Abstract
Aflatoxins are carcinogenic chemical metabolites produced by Aspergillus spp. of the section Flavi. In Kenya, Aspergillus flavus is the most prevalent and has been associated with several acute and chronic aflatoxin outbreaks in the past. In this study, we evaluated the occurrence of A. flavus in soils from two agro-ecological regions with contrasting climatic conditions, aflatoxin contamination histories and cropping systems. Aspergillus spp. were first isolated from soils before the identification and determination of their aflatoxigenicity. Further, we determined the occurrence of Pseudomonas and Bacillus spp. in soils from the two regions. These bacterial species have long been associated with biological control of several plant pathogens including Aspergillus spp. Our results show that A. flavus occurred widely and produced comparatively higher total aflatoxin levels in all (100%) study sites from the eastern to the western regions of Kenya. For the western region, A. flavus was detected in 4 locations (66.7%) that were previously under maize cultivation with the isolates showing low aflatoxigenicity. A. flavus was not isolated from soils under sugarcane cultivation. Distribution of the two bacterial species varied across the regions but we detected a weak relationship between occurrence of bacterial species and A. flavus. We discuss these findings in the context of the influence of climate, microbial profiles, cropping systems and applicability in the deployment of biological control remedies against aflatoxin contamination.
Collapse
Affiliation(s)
- Ethel Monda
- Department of Biochemistry, Biotechnology and Microbiology, Kenyatta University, Thika Road, Nairobi P.O. Box 43844-00100, Kenya; (E.M.); (J.M.)
| | - Joel Masanga
- Department of Biochemistry, Biotechnology and Microbiology, Kenyatta University, Thika Road, Nairobi P.O. Box 43844-00100, Kenya; (E.M.); (J.M.)
| | - Amos Alakonya
- Seed Health Unit, Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera Mexico-Veracruz Km. 45 El Batan, Texcoco, Mexico C.P. 56237, Mexico
- Correspondence:
| |
Collapse
|
6
|
Peles F, Sipos P, Győri Z, Pfliegler WP, Giacometti F, Serraino A, Pagliuca G, Gazzotti T, Pócsi I. Adverse Effects, Transformation and Channeling of Aflatoxins Into Food Raw Materials in Livestock. Front Microbiol 2019; 10:2861. [PMID: 31921041 PMCID: PMC6917664 DOI: 10.3389/fmicb.2019.02861] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/26/2019] [Indexed: 01/18/2023] Open
Abstract
Aflatoxins are wide-spread harmful carcinogenic secondary metabolites produced by Aspergillus species, which cause serious feed and food contaminations and affect farm animals deleteriously with acute or chronic manifestations of mycotoxicoses. On farm, both pre-harvest and post-harvest strategies are applied to minimize the risk of aflatoxin contaminations in feeds. The great economic losses attributable to mycotoxin contaminations have initiated a plethora of research projects to develop new, effective technologies to prevent the highly toxic effects of these secondary metabolites on domestic animals and also to block the carry-over of these mycotoxins to humans through the food chain. Among other areas, this review summarizes the latest findings on the effects of silage production technologies and silage microbiota on aflatoxins, and it also discusses the current applications of probiotic organisms and microbial products in feeding technologies. After ingesting contaminated foodstuffs, aflatoxins are metabolized and biotransformed differently in various animals depending on their inherent and acquired physiological properties. These mycotoxins may cause primary aflatoxicoses with versatile, species-specific adverse effects, which are also dependent on the susceptibility of individual animals within a species, and will be a function of the dose and duration of aflatoxin exposures. The transfer of these undesired compounds from contaminated feed into food of animal origin and the aflatoxin residues present in foods become an additional risk to human health, leading to secondary aflatoxicoses. Considering the biological transformation of aflatoxins in livestock, this review summarizes (i) the metabolism of aflatoxins in different animal species, (ii) the deleterious effects of the mycotoxins and their derivatives on the animals, and (iii) the major risks to animal health in terms of the symptoms and consequences of acute or chronic aflatoxicoses, animal welfare and productivity. Furthermore, we traced the transformation and channeling of Aspergillus-derived mycotoxins into food raw materials, particularly in the case of aflatoxin contaminated milk, which represents the major route of human exposure among animal-derived foods. The early and reliable detection of aflatoxins in feed, forage and primary commodities is an increasingly important issue and, therefore, the newly developed, easy-to-use qualitative and quantitative aflatoxin analytical methods are also summarized in the review.
Collapse
Affiliation(s)
- Ferenc Peles
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Péter Sipos
- Institute of Nutrition, University of Debrecen, Debrecen, Hungary
| | - Zoltán Győri
- Institute of Nutrition, University of Debrecen, Debrecen, Hungary
| | - Walter P. Pfliegler
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Giampiero Pagliuca
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Teresa Gazzotti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
7
|
Preparation, characterization and anti-aflatoxigenic activity of chitosan packaging films incorporated with turmeric essential oil. Int J Biol Macromol 2019; 131:420-434. [DOI: 10.1016/j.ijbiomac.2019.02.169] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 11/18/2022]
|