1
|
Conti F, McCue JJ, DiTuro P, Galpin AJ, Wood TR. Mitigating Traumatic Brain Injury: A Narrative Review of Supplementation and Dietary Protocols. Nutrients 2024; 16:2430. [PMID: 39125311 PMCID: PMC11314487 DOI: 10.3390/nu16152430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Traumatic brain injuries (TBIs) constitute a significant public health issue and a major source of disability and death in the United States and worldwide. TBIs are strongly associated with high morbidity and mortality rates, resulting in a host of negative health outcomes and long-term complications and placing a heavy financial burden on healthcare systems. One promising avenue for the prevention and treatment of brain injuries is the design of TBI-specific supplementation and dietary protocols centred around nutraceuticals and biochemical compounds whose mechanisms of action have been shown to interfere with, and potentially alleviate, some of the neurophysiological processes triggered by TBI. For example, evidence suggests that creatine monohydrate and omega-3 fatty acids (DHA and EPA) help decrease inflammation, reduce neural damage and maintain adequate energy supply to the brain following injury. Similarly, melatonin supplementation may improve some of the sleep disturbances often experienced post-TBI. The scope of this narrative review is to summarise the available literature on the neuroprotective effects of selected nutrients in the context of TBI-related outcomes and provide an evidence-based overview of supplementation and dietary protocols that may be considered in individuals affected by-or at high risk for-concussion and more severe head traumas. Prophylactic and/or therapeutic compounds under investigation include creatine monohydrate, omega-3 fatty acids, BCAAs, riboflavin, choline, magnesium, berry anthocyanins, Boswellia serrata, enzogenol, N-Acetylcysteine and melatonin. Results from this analysis are also placed in the context of assessing and addressing important health-related and physiological parameters in the peri-impact period such as premorbid nutrient and metabolic health status, blood glucose regulation and thermoregulation following injury, caffeine consumption and sleep behaviours. As clinical evidence in this research field is rapidly emerging, a comprehensive approach including appropriate nutritional interventions has the potential to mitigate some of the physical, neurological, and emotional damage inflicted by TBIs, promote timely and effective recovery, and inform policymakers in the development of prevention strategies.
Collapse
Affiliation(s)
- Federica Conti
- School of Physics, University of Sydney, Sydney, NSW 2050, Australia;
| | - Jackson J. McCue
- School of Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Paul DiTuro
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Andrew J. Galpin
- Center for Sport Performance, California State University, Fullerton, CA 92831, USA;
| | - Thomas R. Wood
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Institute for Human and Machine Cognition, Pensacola, FL 32502, USA
| |
Collapse
|
2
|
Blach W, Smolders P, Simenko J, Mackala K. Diagnostics of tissue involved injury occurrence of top-level judokas during the competition: suggestion for prevention. PeerJ 2022; 10:e13074. [PMID: 35402103 PMCID: PMC8988935 DOI: 10.7717/peerj.13074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 02/15/2022] [Indexed: 01/12/2023] Open
Abstract
Background Judo, as a high-intensity contact sport, may lead to the occurrence of injuries, especially in competitions. This work aims to assess the likelihood of soft and hard tissue injuries in top-level judokas during competition with defining factors that determine the probability of injury occurrence. Methods The injuries that occurred in 123 official international competitions from 2005-2019 were recorded by the European Judo Union (EJU) Medical Commission as a survey that was a part of the EJU Injury Registration form with internal consistency shown by a Crombach Alpha of 0.69. This survey data identified factors such as: sex, anatomical localisation of injury, type of injury, tissue involved and mechanisms of the injury. A total of 650 tissue injuries were reported correctly in terms of tissue injury definition. Results The most frequent soft tissue injury (STI) reported was a ligament STI (48.15%), closely followed by skin STI (12.15%) and muscles STI (11.38%). In turn, the most frequent hard tissue injury occurred in bones (8.56%). The highest rates of injuries occurred during the fight in the standing position (78%). Injuries in the standing position mainly occurred while executing a throw (25.85%) and followed by the attempt to throw, i.e., the action of reaching the throwing position (22.30%), grip fighting (15.07%), and during falls (14.77%). Opposite to this, fight in groundwork reached only 18.30% soft and hard tissue injuries combined. The ongoing registration of injuries during judo combat and training and the early diagnosis of risk factors for injuries are the basis for the development of effective strategies for injury prevention and further treatment.
Collapse
Affiliation(s)
- Wieslaw Blach
- Faculty of Physical Education and Sport, University School of Physical Education in Wroclaw, Wroclaw, Polska,European Judo Union, Austria, Vienna, Austria
| | | | - Jozef Simenko
- Essex Pathways Department, University of Essex, Colchester, United Kingdom
| | - Krzysztof Mackala
- Department of Track and Field, Faculty of Physical Education and Sport, University School of Physical Education in Wroclaw, Wroclaw, Polska
| |
Collapse
|
3
|
Physiological Responses to Combat Sports in Metabolic Diseases: A Systematic Review. J Clin Med 2022; 11:jcm11041070. [PMID: 35207343 PMCID: PMC8878771 DOI: 10.3390/jcm11041070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this systematic review was to investigate how individuals with metabolic diseases respond to combat sports and if they are feasible, safe, and applicable. A systematic literature search was conducted in PubMed, from inception until 22 January 2021. Studies were included if combat sport exercise sessions were clearly defined and participants had the following types of metabolic disease: type 1 or 2 diabetes mellitus, metabolic syndrome, overweight, and obesity. Eleven studies, involving 472 participants of all age groups with type 1 diabetes mellitus, metabolic syndrome, overweight, or obesity were included in this systematic review. No studies involving combat sports and individuals with type 2 diabetes were found. Combat sports showed improved HbA1c levels over time in individuals with type 1 diabetes mellitus, which was not significantly different compared to the control group (p = 0.57). During the follow-up period, glycaemic variability decreased in those actively participating in combat sports. Fat-mass was higher in athletes performing combat sports with metabolic syndrome, compared to athletes without an increased cardiometabolic risk. In overweight/obese adolescents, combat sports showed improved parameters of physical fitness, cardio autonomic control, strength, and body composition compared to control groups. In all studies included in this systematic review, no adverse event associated with combat sports was reported. In conclusion, combat sports are safe and feasible in individuals with diabetes and/or obesity. For individuals with type 2 diabetes mellitus, no recommendations can be made, due to the lack of evidence in this cohort. Future studies investigating combat sports and metabolic diseases should aim for a structured exercise regimen and acknowledge the experience of the participants prior to starting an exercise intervention involving combat sports.
Collapse
|
4
|
Bray MJC, Tsai J, Bryant BR, Narapareddy BR, Richey LN, Krieg A, Tobolowsky W, Jahed S, Shan G, Bernick CB, Peters ME. Effect of Weight Class on Regional Brain Volume, Cognition, and Other Neuropsychiatric Outcomes among Professional Fighters. Neurotrauma Rep 2021; 2:169-179. [PMID: 34223552 PMCID: PMC8240832 DOI: 10.1089/neur.2020.0057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Traumatic brain injury (TBI) is a common source of functional impairment among athletes, military personnel, and the general population. Professional fighters in both boxing and mixed martial arts (MMA) are at particular risk for repetitive TBI and may provide valuable insight into both the pathophysiology of TBI and its consequences. Currently, effects of fighter weight class on brain volumetrics (regional and total) and functional outcomes are unknown. Fifty-three boxers and 103 MMA fighters participating in the Professional Fighters Brain Health Study (PRBHS) underwent volumetric magnetic resonance imaging (MRI) and neuropsychological testing. Fighters were divided into lightweight (≤139.9 lb), middleweight (140.0–178.5 lb), and heavyweight (>178.5 lb). Compared with lightweight fighters, heavyweights displayed greater yearly reductions in regional brain volume (boxers: bilateral thalami; MMA: left thalamus, right putamen) and functional performance (boxers: processing speed, simple and choice reaction; MMA: Trails A and B tests). Lightweights suffered greater reductions in regional brain volume on a per-fight basis (boxers: left thalamus; MMA: right putamen). Heavyweight fighters bore greater yearly burden of regional brain volume and functional decrements, possibly related to differing fight dynamics and force of strikes in this division. Lightweights demonstrated greater volumetric decrements on a per-fight basis. Although more research is needed, greater per-fight decrements in lightweights may be related to practices of weight-cutting, which may increase vulnerability to neurodegeneration post-TBI. Observed decrements associated with weight class may result in progressive impairments in fighter performance, suggesting interventions mitigating the burden of TBI in professional fighters may both improve brain health and increase professional longevity.
Collapse
Affiliation(s)
- Michael J C Bray
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jerry Tsai
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Barry R Bryant
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bharat R Narapareddy
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Psychiatry, Institute of Living, Hartford Hospital, Hartford, Connecticut, USA
| | - Lisa N Richey
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Akshay Krieg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William Tobolowsky
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sahar Jahed
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Guogen Shan
- Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Charles B Bernick
- Department of Neurology, University of Washington, Seattle, Washington, USA.,Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA
| | - Matthew E Peters
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Kraemer WJ, Caldwell LK, Post EM, DuPont WH, Martini ER, Ratamess NA, Szivak TK, Shurley JP, Beeler MK, Volek JS, Maresh CM, Todd JS, Walrod BJ, Hyde PN, Fairman C, Best TM. Body Composition in Elite Strongman Competitors. J Strength Cond Res 2020; 34:3326-3330. [PMID: 33235016 DOI: 10.1519/jsc.0000000000003763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Kraemer, WJ, Caldwell, LK, Post, EM, DuPont, WH, Martini, ER, Ratamess, NA, Szivak, TK, Shurley, JP, Beeler, MK, Volek, JS, Maresh, CM, Todd, JS, Walrod, BJ, Hyde, PN, Fairman, C, and Best, TM. Body composition in elite strongman competitors. J Strength Cond Res 34(12): 3326-3330, 2020-The purpose of this descriptive investigation was to characterize a group of elite strongman competitors to document the body composition of this unique population of strength athletes. Data were collected from eligible competitors as part of a health screening program conducted over 5 consecutive years. Imaging was acquired using dual-energy x-ray absorptiometry (DXA), providing total body measures of fat mass, lean mass, and bone mineral content (BMC). Year to year, testing groups showed a homogenous grouping of anthropometric, body composition, and bone density metrics. Composite averages were calculated to provide an anthropometric profile of the elite strongman competitor (N = 18; mean ± SD): age, 33.0 ± 5.2 years; body height, 187.4 ± 7.1 cm; body mass, 152.9 ± 19.3 kg; body mass index, 43.5 ± 4.8 kg·m; fat mass, 30.9 ± 11.1 kg; lean mass, 118.0 ± 11.7 kg, body fat, 18.7 ± 6.2%, total BMC, 5.23 ± 0.41 kg, and bone mineral density, 1.78 ± 0.14 g·cm. These data demonstrate that elite strongman competitors are among the largest human male athletes, and in some cases, they are at the extreme limits reported for body size and structure. Elite strongman competitors undergo a high degree of mechanical stress, providing further insight into the potent role of physical training in mediating structural remodeling even into adulthood. Such data provide a glimpse into a unique group of competitive athletes pushing the limits not only of human performance but also of human physiology.
Collapse
Affiliation(s)
- William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Lydia K Caldwell
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Emily M Post
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - William H DuPont
- School of Health Sciences-Biomedical Sciences, Quinnipiac University, Hamden, Connecticut
| | - Emily R Martini
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Nicholas A Ratamess
- Department of Health and Exercise Science, the College of New Jersey, Ewing, New Jersey
| | - Tunde K Szivak
- School of Health Sciences, Merrimack College, North Andover, Massachusetts
| | - Jason P Shurley
- Department of Health, Physical Education, Recreation and Coaching, University of Wisconsin-Whitewater, Whitewater, Wisconsin
| | - Matthew K Beeler
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Jeff S Volek
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Carl M Maresh
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Janice S Todd
- Department of Kinesiology and Health Education, Stark Center for Physical Culture and Sports, University of Texas, at Austin, Austin, Texas
| | - Bryant J Walrod
- The Jameson Crane Sports Medicine Institute, OSU Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Parker N Hyde
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Ciaran Fairman
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia; and
| | - Thomas M Best
- Division of Sports Medicine, Department of Orthopedics, Miller School of Medicine, University of Miami Sports Medicine Institute, Coral Gables, Florida
| |
Collapse
|
6
|
Abe T, Bell ZW, Wong V, Spitz RW, Loenneke JP. Why is low body fat rarely seen in large-sized male athletes? Am J Hum Biol 2020; 32:e23399. [PMID: 32022361 DOI: 10.1002/ajhb.23399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES It is unknown why low body fat is rarely seen in large-sized athletes (>100 kg body mass). The aim of this review was to examine the relationship between body mass and body composition (fat mass and fat-free mass) in elite male athletes, and to discuss the possible reasons why low body fat is rarely seen in large-sized male athletes. METHODS A search using two electronic databases was conducted. Eighteen studies estimated body composition in elite athletes by dual-energy X-ray absorptiometry, totaling 2249 elite male athletes and 72 data points. RESULTS Our results indicated that low body fat (eg, less than 10% body fat) was rarely seen in large-sized male athletes over 100 kg body mass. The larger the body mass, the higher the fat-free mass, with fat-free mass leveling off when body mass exceeds approximately 120 kg. CONCLUSION Possible reasons for this are unknown but we provide some ideas for why this might occur. The two different stages to consider with respect to skeletal muscle growth: the amount of growth during development and the amount of growth as a result of long-term resistance training. In certain sporting events, a large body mass may be favored. However, the large-sized athletes have to balance any potential positive influence of body mass on sports performance with the potential negative factors associated with body fat accumulation. Further research is warranted, as there is currently limited evidence on this topic.
Collapse
Affiliation(s)
- Takashi Abe
- Department of Health, Exercise Science, & Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi
| | - Zachary W Bell
- Department of Health, Exercise Science, & Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi
| | - Vickie Wong
- Department of Health, Exercise Science, & Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi
| | - Robert W Spitz
- Department of Health, Exercise Science, & Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, & Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi
| |
Collapse
|
7
|
Zemski AJ, Keating SE, Broad EM, Marsh DJ, Hind K, Walters KJ, Slater GJ. Differences in visceral adipose tissue and biochemical cardiometabolic risk markers in elite rugby union athletes of Caucasian and Polynesian descent. Eur J Sport Sci 2019; 20:691-702. [PMID: 31409209 DOI: 10.1080/17461391.2019.1656291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Polynesian individuals are leaner with greater musculature than Caucasians of an equivalent size, and this genetically different morphology provides a physique that is often compatible with success in a number of sports, including rugby union. Evidence indicates that Polynesians have greater stores of absolute and relative abdominal fat mass and this is known to confer cardiometabolic risk. The aims of this study were to (1) explore the relationship between ethnicity, visceral adipose tissue (VAT), and cardiometabolic disease risk markers in elite Caucasian and Polynesian rugby union athletes, and (2) assess the impact of a pre-season training programme on these markers. Twenty-two professional rugby union athletes of Caucasian (n = 11) and Polynesian (n = 11) descent underwent physique assessment via surface anthropometry, dual-energy X-ray absorptiometry, and magnetic resonance imaging before and after an 11-week pre-season. A fasted blood test was undertaken at both time points. Compared to Caucasians, at baseline Polynesians displayed significantly higher VAT (771 ± 609 cm3 vs 424 ± 235 cm3; p = 0.043), triglycerides (1.0 ± 0.9 mmol/L vs 0.6 ± 0.2 mmol/L; p = 0.050), and low-density lipoprotein cholesterol (3.1 ± 0.9 mmol/L vs 2.3 ± 0.7 mmol/L; p = 0.019). Similar changes were observed in both groups over the pre-season period in VAT and blood biochemical markers. Polynesian rugby union athletes were more likely than Caucasians to exhibit risk factors associated with cardiometabolic disease, such as elevated VAT and unfavourable lipid profiles. Further longitudinal research is required to identify and explain the short- and long-term risk of cardiometabolic disease in athletes of Polynesian descent.
Collapse
Affiliation(s)
- Adam J Zemski
- School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, Australia
| | - Shelley E Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Australia
| | | | | | - Karen Hind
- Department of Sport and Exercise Sciences, Durham University, Durham, United Kingdom
| | | | - Gary J Slater
- School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, Australia
| |
Collapse
|
8
|
Guilherme JPLF, Egorova ES, Semenova EA, Kostryukova ES, Kulemin NA, Borisov OV, Khabibova SA, Larin AK, Ospanova EA, Pavlenko AV, Lyubaeva EV, Popov DV, Lysenko EA, Vepkhvadze TF, Lednev EM, Govorun VM, Generozov EV, Ahmetov II, Lancha Junior AH. The A-allele of the FTO Gene rs9939609 Polymorphism Is Associated With Decreased Proportion of Slow Oxidative Muscle Fibers and Over-represented in Heavier Athletes. J Strength Cond Res 2019; 33:691-700. [PMID: 30694969 DOI: 10.1519/jsc.0000000000003032] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Guilherme, JPLF, Egorova, ES, Semenova, EA, Kostryukova, ES, Kulemin, NA, Borisov, OV, Khabibova, SA, Larin, AK, Ospanova, EA, Pavlenko, AV, Lyubaeva, EV, Popov, DV, Lysenko, EA, Vepkhvadze, TF, Lednev, EM, Govorun, VM, Generozov, EV, Ahmetov, II, and Lancha Junior, AH. The A-allele of the FTO gene rs9939609 polymorphism is associated with decreased proportion of slow oxidative muscle fibers and over-represented in heavier athletes. J Strength Cond Res 33(3): 691-700, 2019-The purpose of this study was to explore the frequency of the FTO T > A (rs9939609) polymorphism in elite athletes from 2 cohorts (Brazil and Russia), as well as to find a relationship between FTO genotypes and muscle fiber composition. A total of 677 athletes and 652 nonathletes were evaluated in the Brazilian cohort, whereas a total of 920 athletes and 754 nonathletes were evaluated in the Russian cohort. It was found a trend for a lower frequency of A/A genotype in long-distance athletes compared with nonathletes (odds ratio [OR]: 0.65; p = 0.054). By contrast, it was found an increased frequency of the A-allele in Russian power athletes. The presence of the T/A + A/A genotypes rather than T/T increased the OR of being a Russian power athlete compared with matched nonathletes (OR: 1.45; p = 0.002). Different from that observed in combat sports athletes of lighter weight categories, the A-allele was also over-represented in combat sports athletes of heavier weight categories. The presence of the T/A + A/A genotypes rather than T/T increased the OR of being a combat sports athlete of heavier weight categories compared with nonathletes (OR: 1.79; p = 0.018). Regarding the muscle fibers, we found that carriers of the A/A genotype had less slow-twitch muscle fibers than T-allele carriers (p = 0.029). In conclusion, the A/A genotype of the FTO T > A polymorphism is under-represented in athletes more reliant on a lean phenotype and associated with decreased proportion of slow-twitch muscle fibers, while is over-represented in strength and heavier athletes.
Collapse
Affiliation(s)
- João Paulo L F Guilherme
- Laboratory of Applied Nutrition and Metabolism, Department of Biodynamics of the Human Body Movement, School of Physical Education and Sport, University of Sao Paulo, São Paulo, Brazil
| | - Emiliya S Egorova
- Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Department of Biochemistry, Kazan Federal University, Kazan, Russia
| | - Elena S Kostryukova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Nickolay A Kulemin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Oleg V Borisov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Moscow Institute of Physics and Technology (State University), Moscow, Russia
| | - Sofya A Khabibova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Andrey K Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Elena A Ospanova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Alexander V Pavlenko
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ekaterina V Lyubaeva
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Daniil V Popov
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Evgeny A Lysenko
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Tatiana F Vepkhvadze
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Egor M Lednev
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Vadim M Govorun
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Edward V Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ildus I Ahmetov
- Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia.,Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St Petersburg, Russia.,Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Antonio H Lancha Junior
- Laboratory of Applied Nutrition and Metabolism, Department of Biodynamics of the Human Body Movement, School of Physical Education and Sport, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Association of Serum 25-Hydroxyvitamin D Concentrations With Glucose Profiles in Male Collegiate Football Athletes. Int J Sport Nutr Exerc Metab 2019; 29:420–425. [PMID: 30632419 DOI: 10.1123/ijsnem.2018-0225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Low serum 25-hydroxyvitamin D [25(OH)D] concentrations are associated with a high risk of insulin resistance and Type 2 diabetes mellitus in adults. However, it is unknown whether this is the case for American collegiate football and rugby football athletes. This study investigated the associations between serum 25(OH)D concentrations and glucose profiles in male collegiate football athletes. Thirty-four collegiate athletes (13 American football players and 21 rugby football players) aged 21 years were recruited. Their body fat percent and visceral fat area were measured by dual-energy X-ray absorptiometry and magnetic resonance imaging, respectively. The participants completed an oral glucose tolerance test (75 g glucose) with venous blood samples obtained at time points 0, 30, 60, 90, and 120 min for the determination of plasma glucose and serum insulin concentrations. Fasting serum 25(OH)D concentrations were also measured. The prevalence of vitamin D deficiency and insufficiency was 17.6% and 58.8%, respectively. The serum 25(OH)D concentrations were negatively associated with the increments in the areas under the curve (iAUC) for glucose (r = -.429, p = .011) and were borderline significantly correlated with the Matsuda index (r = -.303, p = .082). No relationships were observed between the serum 25(OH)D concentrations and other glucose profiles. Multiple stepwise regression analysis of glucose iAUC concentrations as the dependent variable indicated that the serum 25(OH)D concentrations, but not body fat indicators, were independently associated with glucose iAUC (β = -0.390, p = .025). The serum 25(OH)D concentrations were only an independent predictor for glucose iAUC in male collegiate football athletes, suggesting that increased 25(OH)D concentrations would be helpful for maintaining glucose homeostasis.
Collapse
|
10
|
Ghoul N, Tabben M, Miarka B, Tourny C, Chamari K, Coquart J. Mixed Martial Arts Induces Significant Fatigue and Muscle Damage Up to 24 Hours Post-combat. J Strength Cond Res 2019; 33:1570-1579. [DOI: 10.1519/jsc.0000000000002078] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Sun X, Cao ZB, Tanisawa K, Oshima S, Higuchi M. Serum 25-Hydroxyvitamin D Concentrations Are Inversely Correlated with Hepatic Lipid Content in Male Collegiate Football Athletes. Nutrients 2018; 10:nu10070942. [PMID: 30037116 PMCID: PMC6073760 DOI: 10.3390/nu10070942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/19/2022] Open
Abstract
Lower serum 25-hydroxyvitamin D (25(OH)D) concentrations are associated with more weight and fat mass gain in adults in the general population, but it is unknown whether this is the case in collegiate football athletes with greater body weight. This study aimed to investigate associations of serum 25(OH)D concentrations with body fat and ectopic fat accumulation, and to determine which fat indicators are closely related to serum 25(OH)D in male collegiate football athletes. Thirty-four collegiate athletes aged 21 years were recruited. Serum 25(OH)D concentrations and the levels of visceral fat area (VFA), vastus lateralis intramyocellular lipid (IMCL), extramyocellular lipid (EMCL), and intrahepatic lipid (IHCL) were measured. Serum 25(OH)D concentrations were negatively associated with the IHCL values (r = −0.372, p = 0.030), and the relationship remained after adjustment for several factors (r = −0.378, p = 0.047). Additionally, multiple stepwise regression analysis of IHCL content as the dependent variable indicated that 25(OH)D concentrations were a stronger predictor of IHCL content (β = −0.363, p = 0.030) than % body fat and VO2peakFFM. Higher serum 25(OH)D concentrations are more closely related to lower IHCL content rather than any other fat indicators, suggesting that increasing serum 25(OH)D concentrations may have some effect that inhibits lipid accumulation in hepatic tissue, especially in heavy athletes.
Collapse
Affiliation(s)
- Xiaomin Sun
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
- Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan.
| | - Zhen-Bo Cao
- School of Kinesiology, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, China.
| | - Kumpei Tanisawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan.
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo 162-8636, Japan.
| | - Satomi Oshima
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan.
| | - Mitsuru Higuchi
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan.
| |
Collapse
|
12
|
Erratum to: ‘Characteristics of body composition and cardiometabolic risk of Japanese male heavyweight Judo athletes’. J Physiol Anthropol 2016; 35:11. [PMID: 27095557 PMCID: PMC4836175 DOI: 10.1186/s40101-016-0093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 11/10/2022] Open
|