1
|
Zeng Y, Cao W, Huang Y, Zhang H, Li C, He J, Liu Y, Gong H, Su Y. Huangqi Baihe Granules alleviate hypobaric hypoxia-induced acute lung injury in rats by suppressing oxidative stress and the TLR4/NF-κB/NLRP3 inflammatory pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117765. [PMID: 38228230 DOI: 10.1016/j.jep.2024.117765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangqi Baihe Granules (HQBHG) are a modified formulation based on the traditional recipe "Huangqi Baihe porridge" and the Dunhuang medical prescription "Cistanche Cistanche Soup." The Herbal medicine moistens the lungs and tones the kidneys in addition to replenishing Qi and feeding Yin, making it an ideal choice for enhancing adaptability to high-altitude hypoxic environments. AIM OF THE STUDY The purpose of this study was to examine a potential molecular mechanism for the treatment and prevention of hypoxic acute lung injury (ALI) in rats using Huangqi Baihe Granules. MATERIALS AND METHODS The HCP-III laboratory animal low-pressure simulation chamber was utilized to simulate high-altitude environmental exposure and establish an ALI model in rats. The severity of lung damage was evaluated using a battery of tests that included spirometry, a wet/dry lung ratio, H&E staining, and transmission electron microscopy. Using immunofluorescence, the amount of reactive oxygen species (ROS) in lung tissue was determined. Superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and myeloperoxidase (MPO) levels in lung tissue were determined using this kit. Serum levels of proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1 beta), and antiinflammatory cytokines like interleukin-10 (IL-10) were measured using an enzyme-linked immunosorbent assay kit. Gene expression changes in lung tissue were identified using transcriptomics, and the relative expression of proteins and mRNA involved in the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB p65)/Nod-like receptor protein 3 (NLRP3) pathway were determined using western blotting and quantitative real-time PCR. RESULTS HQBHG was shown to enhance lung function considerably, decrease the wet/dry ratio of the lungs, attenuate lung tissue damage, suppress ROS and MDA formation, and increase SOD activity and GSH expression. The research also demonstrated that HQBHG inhibited the activation of the TLR4/NF-κB p65/NLPR3 signaling pathway in lung tissue, reducing the release of downstream pro-inflammatory cytokines. CONCLUSIONS HQBHG exhibits potential therapeutic effects against ALI induced by altitude hypoxia through suppressing oxidative stress and inflammatory response. This suggests it may be a novel drug for treating and preventing ALI.
Collapse
Affiliation(s)
- Yuanding Zeng
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Wangjie Cao
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Yong Huang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Han Zhang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Congyi Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Jianzheng He
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Yongqi Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Hongxia Gong
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Yun Su
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
2
|
Kim J, Cho Y, Oh GJ, Park HB, Yang MJ, Park CM, Kim YH, Choi KC, Go RE, Kim MS. Repeated intratracheal instillation of whole-cigarette smoke condensate to assess lung damage in a rat model. ENVIRONMENTAL TOXICOLOGY 2024; 39:2304-2315. [PMID: 38148711 DOI: 10.1002/tox.24113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/29/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
Cigarette smoke induces an inflammatory response in the lungs by recruiting inflammatory cells, leading to lung diseases such as lung cancer, chronic obstructive pulmonary disease, and pulmonary fibrosis. Existing inhalation exposure methods for assessing the adverse effects of cigarette smoke require expensive equipment and are labor-intensive. Therefore, we attempted to develop a novel method to assess these adverse effects using intratracheal instillation (ITI) of whole cigarette smoke condensate (WCSC). The WCSC (0, 5, 10, or 20 mg/mL) was administered by ITI once daily for 6 or 12 days using an automatic video instillator. Repeated WCSC ITI increased the lung weight, and monocyte chemoattractant protein-1 (MCP-1), neutrophil, and lymphocyte levels within bronchoalveolar lavage fluid compared to the control. In the histopathological analysis of the lung tissue, a mild inflammatory response was observed in the 6 and 12 days 20 mg/mL WCSC exposure groups. The genome-wide RNA-seq expression patterns revealed that inflammatory and immune response-related genes, such as the chemokine signaling pathway, Th1/Th2 cell differentiation, and cytokine-cytokine receptor interaction, were employed following WCSC exposure. In addition, MCP-1 was time-dependent and increased in the 10 mg/mL exposure group compared to the control group. These results suggested that the WCSC might induce the potential pulmonary inflammatory response. Furthermore, we proposed that ITI may be a rapid and effective method of evaluating the adverse effects of WCSC within a short exposure period (less than 2 weeks), and it can be used to evaluate cigarette inhalation toxicity studies as an alternative method.
Collapse
Affiliation(s)
- Jinhee Kim
- Inhalation Toxicology Research Group, Korea Institute of Toxicology (KIT), Jeongeup, Jeonbuk, Republic of Korea
| | - Yoon Cho
- Inhalation Toxicology Research Group, Korea Institute of Toxicology (KIT), Jeongeup, Jeonbuk, Republic of Korea
| | - Gi-Jun Oh
- Inhalation Toxicology Research Group, Korea Institute of Toxicology (KIT), Jeongeup, Jeonbuk, Republic of Korea
| | - Hae-Bin Park
- Inhalation Toxicology Research Group, Korea Institute of Toxicology (KIT), Jeongeup, Jeonbuk, Republic of Korea
| | - Mi Jin Yang
- Inhalation Toxicology Research Group, Korea Institute of Toxicology (KIT), Jeongeup, Jeonbuk, Republic of Korea
| | - Chul-Min Park
- Inhalation Toxicology Research Group, Korea Institute of Toxicology (KIT), Jeongeup, Jeonbuk, Republic of Korea
| | - Yong-Hyun Kim
- Inhalation Toxicology Research Group, Korea Institute of Toxicology (KIT), Jeongeup, Jeonbuk, Republic of Korea
- Department of Environment & Energy, Jeonbuk National University, Jeonju, Jeonbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Min-Seok Kim
- Inhalation Toxicology Research Group, Korea Institute of Toxicology (KIT), Jeongeup, Jeonbuk, Republic of Korea
| |
Collapse
|
3
|
Identification of Clinical Prognostic Regulators and Analysis of Ferroptosis-Related Signatures in the Tumor Immune Microenvironment in Lung Squamous Cell Carcinoma. DISEASE MARKERS 2023; 2023:9155944. [PMID: 36845013 PMCID: PMC9946749 DOI: 10.1155/2023/9155944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 11/24/2022] [Indexed: 02/17/2023]
Abstract
Objective Lung squamous cell carcinoma (LUSC) is a common respiratory malignancy and presents an increasing prevalence. Ferroptosis is a newly identified controlled cell death that has captured clinical attention worldwide. However, the ferroptosis-related lncRNA expression in LUSC and its relevance to prognosis remain elusive. Methods The research measured predictive ferroptosis-related lncRNAs in LUSC samples from the TCGA datasets. Data on the stemness indices (mRNAsi) and corresponding clinical characteristics were obtained from TCGA. A prognosis model was established using the LASSO regression. Changes within the neoplasm microenvironment (TME) and medicine association were examined to grasp higher immune cell infiltration in numerous risk teams. In line with coexpression studies, the expression of lncRNAs is closely associated with that of ferroptosis. They were overexpressed in unsound people in the absence of alternative clinical symptoms. Results The low-risk and speculative teams were considered to have substantial differences in CCR and inflammation-promoting genes. C10orf55, AC016924.1, AL161431.1, LUCAT1, AC104248.1, and MIR3945HG were highly expressed in the high-risk group, suggesting their involvement in the oncology process of LUSC. Moreover, AP006545.2 and AL122125.1 were considerably higher in the low-risk group, implying the potential of these genes as LUSC tumor suppressor genes. The biomarkers listed above may serve as therapeutic targets for LUSC. lncRNAs were also linked to patient outcomes in the LUSC trial. Conclusion lncRNAs of ferroptosis were overexpressed in the high-risk cohort without other clinical signs, implying their potential to predict BLCA prognosis. GSEA highlighted immunological and tumor-related pathways in the high-risk group. LUSC occurrence and progression are linked to lncRNAs of ferroptosis. Corresponding prognostic models help forecast the prognosis of LUSC patients. lncRNAs of ferroptosis and associated immune cell infiltration in the tumor microenvironment (TME) may serve as potential therapeutic targets in LUSC, which requires further trials. In addition, the lncRNAs of ferroptosis signature offer a viable alternative to predict LUSC, and these ferroptosis-lncRNAs show a prospective research area for LUSC-targeted treatment in the future.
Collapse
|
4
|
Jing L, Zheng D, Sun X, Shi Z. DBDPE upregulates NOD-like receptor signaling to induce NLRP3 inflammasome-mediated HAECs pyroptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120882. [PMID: 36549449 DOI: 10.1016/j.envpol.2022.120882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Decabromodiphenyl ethane (DBDPE), a typical new brominated flame retardant (BFR), is a widespread new pollutant in the environment. Several studies and our previous studies have found that DBDPE can cause aortic endothelial injury and aortic endothelial cell pyroptosis, whereas the molecular mechanism involved has not been elucidated. In this study, we exposed human aortic endothelial cells (HAECs) to 25 μmol/L of DBDPE and analyzed the gene expression profiles by Affymetrix PrimeView™ Human Gene Expression Chip. The results showed that 886 genes were differentially expressed in the DBDPE exposure group. Enrichment analyses revealed that differentially expressed genes were mainly enriched in the inflammatory response and NOD-like receptor signal pathway. Gene-gene functional interaction analyses and crossover genes and pathways analyses found that the NOD-like receptor signal pathway may be involved in regulating NLRP3 and IL-18. We found that NOD2 cannot interact with NLRP3 directly through an immunoprecipitation experiment. Thus, we construct the RIPK2 knockdown HAECs cell line to repress the NOD-like receptor signaling and further study the mechanism of DBDPE-activated NLRP3 inflammasome to induce HAECs pyroptosis. The results showed that RIPK2 knockdown could repress DBDPE-induced NOD-like receptor signaling pathway upregulation, inhibit NLRP3 inflammasome activation, and decrease HAECs pyroptosis. In addition, RIPK2 knockdown decreased the ROS generation in HAECs induced by DBDPE. And NAC pretreated HAECs inhibited DBDPE-induced NLRP3 inflammasome activation and HAECs pyroptosis. These results demonstrated that DBDPE upregulated NOD-like receptor signaling to induce ROS generation and, in turn, activated NLRP3 inflammasome, leading to HAECs pyroptosis.
Collapse
Affiliation(s)
- Li Jing
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Dan Zheng
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xuejing Sun
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
5
|
Clinical Evaluation and Exploration of Mechanisms for Modified Xiebai Powder or Modified Xiebai Powder Combined with Western Medicine in the Treatment of Pneumonia. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2287470. [PMID: 36276995 PMCID: PMC9581678 DOI: 10.1155/2022/2287470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/18/2022]
Abstract
Objective. To systematically evaluate the clinical efficacy of modified Xiebai Powder or modified Xiebai Powder combined with Western medicine in the treatment of pneumonia and explore its potential mechanism of action. Methods. Meta-analysis was used to screen the eligible literature on randomized controlled trials (RCTs) about Xiebai Powder in the treatment of pneumonia, and Review Manager 5.3 software was used for statistical analysis of the data. Based on the results of the meta-analysis, the active ingredients in Xiebai Powder and their therapeutic targets, disease-related targets, and intersection targets were screened using methods of network pharmacology, and their biological processes and key signaling pathways were analyzed using bioinformatics tools. Molecular docking was carried out to verify and predict the mechanisms for Xiebai Powder combined with Western medicine in the treatment of pneumonia. Results. A total of 16 papers were screened out, with a total of 1,465 patients. The results of the meta-analysis showed that modified Xiebai Powder or modified Xiebai Powder combined with Western medicine were superior to conventional Western medicine in terms of clinical efficacy, shortening the disappearance time of symptoms (body temperature, cough, and pulmonary rales) and reducing the level of C-reactive protein, and the incidence of adverse reactions was significantly reduced. A total of 40 active ingredients in Xiebai Powder and 285 therapeutic targets of Xiebai Powder combined with azithromycin after deduplication were screened out from the database. KEGG enrichment analysis showed that Xiebai Powder combined with azithromycin might play a role in the treatment of pneumonia through the IL-17 signaling pathway, tumor necrosis factor signaling pathway, C-type lectin receptor signaling pathway, Toll-like receptor signaling pathway, and HIF-1 signaling pathway. Conclusions. Modified Xiebai Powder or modified Xiebai Powder combined with azithromycin has better effects in treating pneumonia, and modified Xiebai Powder combined with azithromycin may play a role in treating pneumonia through several pathways such as the IL-17 signaling pathway.
Collapse
|
6
|
Yan C, Zhang ZY, Lv Y, Wang Z, Jiang K, Li JT. Genome of Laudakia sacra Provides New Insights into High-Altitude Adaptation of Ectotherms. Int J Mol Sci 2022; 23:ijms231710081. [PMID: 36077479 PMCID: PMC9456099 DOI: 10.3390/ijms231710081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Anan’s rock agama (Laudakia sacra) is a lizard species endemic to the harsh high-altitude environment of the Qinghai–Tibet Plateau, a region characterized by low oxygen tension and high ultraviolet (UV) radiation. To better understand the genetic mechanisms underlying highland adaptation of ectotherms, we assembled a 1.80-Gb L. sacra genome, which contained 284 contigs with an N50 of 20.19 Mb and a BUSCO score of 93.54%. Comparative genomic analysis indicated that mutations in certain genes, including HIF1A, TIE2, and NFAT family members and genes in the respiratory chain, may be common adaptations to hypoxia among high-altitude animals. Compared with lowland reptiles, MLIP showed a convergent mutation in L. sacra and the Tibetan hot-spring snake (Thermophis baileyi), which may affect their hypoxia adaptation. In L. sacra, several genes related to cardiovascular remodeling, erythropoiesis, oxidative phosphorylation, and DNA repair may also be tailored for adaptation to UV radiation and hypoxia. Of note, ERCC6 and MSH2, two genes associated with adaptation to UV radiation in T. baileyi, exhibited L. sacra-specific mutations that may affect peptide function. Thus, this study provides new insights into the potential mechanisms underpinning high-altitude adaptation in ectotherms and reveals certain genetic generalities for animals’ survival on the plateau.
Collapse
Affiliation(s)
- Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhi-Yi Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Correspondence: (Z.-Y.Z.); (J.-T.L.)
| | - Yunyun Lv
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Life Science, Neijiang Normal University, Neijiang 641100, China
| | - Zeng Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ke Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Mangkang Biodiversity and Ecological Station, Tibet Ecological Safety Monitor Network, Changdu 854500, China
- Correspondence: (Z.-Y.Z.); (J.-T.L.)
| |
Collapse
|
7
|
Ma D, Wang L, Jin Y, Gu L, Yin G, Wang J, Yu XA, Huang H, Zhang Z, Wang B, Lu Y, Bi K, Wang P, Wang T. Chemical characteristics of Rhodiola Crenulata and its mechanism in acute mountain sickness using UHPLC-Q-TOF-MS/MS combined with network pharmacology analysis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115345. [PMID: 35526732 DOI: 10.1016/j.jep.2022.115345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhodiola crenulata (Hook.f. & Thomson) H.Ohba has a long history of clinical application for the prevention and treatment of acute mountain sickness (AMS) in traditional Chinese medicine. However, gaps in knowledge still exist in understanding the underlying mechanisms of Rhodiola crenulata against AMS. AIMS To address this problem, a comprehensive method was established by combining UHPLC-Q-TOF-MS/MS analysis and network pharmacology. MATERIALS AND METHODS The ingredients of Rhodiola crenulata were comprehensively analyzed using UHPLC-Q-TOF-MS/MS method. On this basis, a network pharmacology method incorporated target prediction, protein-protein interaction network, gene enrichment analysis and components-targets-pathways network was performed. Finally, the possible mechanisms were verified through molecular docking, in vitro and in vivo experiments. RESULTS A total of 106 constituents of Rhodiola crenulata were charactered via UHPLC-Q-TOF-MS/MS. The 98 potentially active compounds out of 106 were screened and corresponded to 53 anti-AMS targets. Gene enrichment analysis revealed that hypoxia and inflammation related genes may be the central factors for Rhodiola crenulata to modulate AMS. Molecular docking revealed that TNF, VEGFA and HIF-1α had high affinities to Rhodiola crenulata compounds. Subsequently, Rhodiola crenulata extract was indicated to inhibit the protein expression level of TNF in hypoxia induced H9c2 cells. Lastly, Rhodiola crenulata extract was further verified to ameliorate heart injury and decreased the heart levels of TNF, VEGFA and HIF-1α in acute hypoxia-induced rats. CONCLUSIONS This study used UHPLC-Q-TOF-MS/MS analysis and a network pharmacology to provide an important reference for revealing the potential mechanism of Rhodiola crenulata in the prevention and treatment of AMS.
Collapse
Affiliation(s)
- Didi Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China; Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China
| | - Lijun Wang
- Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China
| | - Yibao Jin
- Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China
| | - Lifei Gu
- Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China
| | - Guo Yin
- Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China
| | - Jue Wang
- Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China
| | - Xie-An Yu
- Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China
| | - Houshuang Huang
- Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China
| | - Zhen Zhang
- Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China
| | - Bing Wang
- Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China
| | - Yi Lu
- Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Ping Wang
- Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China
| | - Tiejie Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China; Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China; Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China.
| |
Collapse
|
8
|
Wang X, Xu T, Jin J, Ting Gao MM, Wan B, Gong M, Bai L, Lv T, Song Y. Topotecan reduces sepsis-induced acute lung injury and decreases the inflammatory response via the inhibition of the NF-κB signaling pathway. Pulm Circ 2022; 12:e12070. [PMID: 35514783 PMCID: PMC9063966 DOI: 10.1002/pul2.12070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 11/23/2021] [Accepted: 03/29/2022] [Indexed: 11/06/2022] Open
Abstract
This study aims to determine the function of topotecan (TPT) in acute lung injury (ALI) induced by sepsis. The mouse sepsis model was constructed through cecal ligation and puncture (CLP). The ALI score and lung wet/dry (W/D) weight ratio were applied to evaluate the level of lung injury. Hematoxylin-eosin staining was used to examine the role of TPT in lung tissue in a CLP-induced ALI mouse model. Enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction were used to detect the concentrations of inflammatory factors, such as interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α. Western blot was used to detect relevant protein levels in the nuclear factor-κB (NF-κB) pathway. Moreover, 10-day survival was recorded by constructing the CLP model. The results indicated that TPT could improve lung tissue damage in mice and could significantly reduce lung injury scores (p < 0.01) and the W/D ratio (p < 0.05). Treatment with ammonium pyrrolidinedithiocarbamate obtained the similar results with the TPT treatment. Both significantly reduced the inflammatory response in the lungs, including reducing the number of neutrophils and total cells in the bronchoalveolar lavage fluid (BALF), significantly reducing the total protein concentration of the BALF, and significantly inhibiting the activity of MPO. Both also inhibited inflammatory cytokine expression and the levels of NF-κB pathway proteins induced by sepsis. Furthermore, TPT significantly improved survival in sepsis. TPT improves ALI in the CLP model by inhibiting the NF-κB pathway, preventing fatal inflammation.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Intensive Care Unit, Inner Mongolia People's HospitalHohhotInner Mongolia Autonomous RegionChina
| | - Tianxiang Xu
- Center of Tumor, Inner Mongolia People's HospitalHohhotInner Mongolia Autonomous RegionChina
| | - Jiajia Jin
- Department of Respiratory Medicine, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - M. M. Ting Gao
- Baotou medical collegeBaotouInner Mongolia Autonomous RegionChina
| | - Bing Wan
- Department of Respiratory and Critical MedicineJinling HospitalNanjingChina
| | - Mei Gong
- Intensive Care Unit, Inner Mongolia People's HospitalHohhotInner Mongolia Autonomous RegionChina
| | - Lingxiao Bai
- Intensive Care Unit, Inner Mongolia People's HospitalHohhotInner Mongolia Autonomous RegionChina
| | - Tangfeng Lv
- Department of Respiratory and Critical MedicineJinling HospitalNanjingChina
| | - Yong Song
- Department of Respiratory and Critical MedicineJinling HospitalNanjingChina
| |
Collapse
|